Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthesis strategies and design principles for nanosized and hierarchical zeolites

Abstract

The preparation of zeolites has long been viewed as an empirical practice in which the impact of numerous synthesis parameters on complex pathways of crystallization remains unresolved. Efforts to achieve predictive control in zeolite crystal engineering are often motivated by the benefits of producing materials with nanosized dimensions for improved mass transport properties. In the past decade there has been substantial progress in the synthesis of zeolites and zeotypes with nanosized and hierarchical structures that have been shown to outperform conventional analogues in various applications. The ability to synthesize state-of-the-art nanoporous materials has socioeconomic advantages in processes that are critical to addressing twenty-first-century problems. Here we summarize synthetic methods used to prepare different classes of zeolitic materials and we highlight the diversity of nucleation and growth mechanisms, approaches to control these pathways through experimental design, and the advantages of infusing computational and big data analyses to transition zeolite synthesis away from trial-and-error methodologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classes of zeolites with nanoscale dimensions and diverse pathways of crystallization.
Fig. 2: Zeolite nucleation and growth by colloidal assembly and particle attachment.
Fig. 3: Meta-analysis of synthesis conditions leading to zeolite nanoparticles.
Fig. 4: Hierarchical zeolites with pillared and layered architectures.
Fig. 5: Classes of nanosized zeolites prepared by seeding methods.
Fig. 6: OSDAs used in syntheses of nanosized and hierarchical zeolites.
Fig. 7: Guiding zeolite synthesis with data analytics and machine learning.
Fig. 8: Evaluating nanosized zeolites for mass transport properties and potential defects.

Similar content being viewed by others

References

  1. Li, Y., Li, L. & Yu, J. Applications of zeolites in sustainable chemistry. Chem 3, 928–949 (2017).

    Article  CAS  Google Scholar 

  2. Přech, J., Pizarro, P., Serrano, D. & Čejka, J. From 3D to 2D zeolite catalytic materials. Chem. Soc. Rev. 47, 8263–8306 (2018).

    Article  PubMed  Google Scholar 

  3. Chen, L.-H. et al. Hierarchically structured zeolites: from design to application. Chem. Rev. 120, 11194–11294 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Masoumifard, N., Guillet‐Nicolas, R. & Kleitz, F. Synthesis of engineered zeolitic materials: from classical zeolites to hierarchical core-shell materials. Adv. Mater. 30, 1704439 (2018).

    Article  CAS  Google Scholar 

  5. Roth, W. J., Nachtigall, P., Morris, R. E. & Čejka, J. Two-dimensional zeolites: current status and perspectives. Chem. Rev. 114, 4807–4837 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Valtchev, V. & Tosheva, L. Porous nanosized particles: preparation, properties and applications. Chem. Rev. 113, 6734–6760 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Tosheva, L. & Valtchev, V. P. Nanozeolites: synthesis, crystallization mechanism and applications. Chem. Mater. 17, 2494–2513 (2005).

    Article  CAS  Google Scholar 

  8. Schwieger, W. et al. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45, 3353–3376 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Maldonado, M., Oleksiak, M. D., Chinta, S. & Rimer, J. D. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. J. Am. Chem. Soc. 135, 2641–2652 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. McCormick, A. V. & Bell, A. T. The solution chemistry of zeolite precursors. Cat. Rev. Sci. Eng. 31, 97–127 (1989).

    Article  CAS  Google Scholar 

  11. Li, R. et al. Diverse physical states of amorphous precursors in zeolite synthesis. Ind. Eng. Chem. Res. 57, 8460–8471 (2018).

    Article  CAS  Google Scholar 

  12. Jain, R., Mallette, A. J. & Rimer, J. D. Controlling nucleation pathways in zeolite crystallization: seeding conceptual methodologies for advanced materials design. J. Am. Chem. Soc. 143, 21446–21460 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Itani, L. et al. Investigation of the physicochemical changes preceding zeolite nucleation in a sodium-rich aluminosilicate gel. J. Am. Chem. Soc. 131, 10127–10139 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Itani, L., Bozhilov, K. N., Clet, G., Delmotte, L. & Valtchev, V. Factors that control zeolite L crystal size. Chem. Eur. J. 17, 2199–2210 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Lupulescu, A. I. & Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 344, 729–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic and geologic environments. Science 349, aaa6760 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Shen, Y. et al. The inner heterogeneity of ZSM-5 zeolite crystals. J. Mater. Chem. A 9, 4203–4212 (2021).

    Article  CAS  Google Scholar 

  18. Vekilov, P. G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2, 2346–2357 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Sheng, Z. et al. Observing a zeolite nucleus (subcrystal) with a uniform framework structure and its oriented attachment without single-molecule addition. Angew. Chem. Int. Ed. 60, 13444–13451 (2021).

    Article  CAS  Google Scholar 

  20. Valtchev, V. P. & Bozhilov, K. N. Evidences for zeolite nucleation at the solid-liquid interface of gel cavities. J. Am. Chem. Soc. 127, 16171–16177 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Mintova, S., Olson, N. H., Valtchev, V. & Bein, T. Mechanism of zeolite A nanocrystal growth from colloids at room temperature. Science 283, 958–960 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kumar, S., Wang, Z., Penn, R. L. & Tsapatsis, M. A structural resolution cryo-TEM study of the early stages of MFI growth. J. Am. Chem. Soc. 130, 17284–17286 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Dai, H. et al. Finned zeolite catalysts. Nat. Mater. 19, 1074–1080 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Hould, N. D., Kumar, S., Tsapatsis, M., Nikolakis, V. & Lobo, R. F. Structure and colloidal stability of nanosized zeolite beta precursors. Langmuir 26, 1260–1270 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Davis, T. M. et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat. Mater. 5, 400–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Karwacki, L., Stavitski, E., Kox, M. H., Kornatowski, J. & Weckhuysen, B. M. Intergrowth structure of zeolite crystals as determined by optical and fluorescence microscopy of the template‐removal process. Angew. Chem. Int. Ed. 119, 7366–7369 (2007).

    Article  Google Scholar 

  27. Bozhilov, K. N. et al. Time-resolved dissolution elucidates the mechanism of zeolite MFI crystallization. Sci. Adv. 7, eabg0454 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sashkina, K. A., Shestakova, D. O. & Parkhomchuk, E. V. The synthesis of monodisperse MFI nanozeolites: controlling the crystallization process. Pet. Chem. 60, 881–889 (2020).

    Article  CAS  Google Scholar 

  29. Kumar, M., Luo, H., Román-Leshkov, Y. & Rimer, J. D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J. Am. Chem. Soc. 137, 13007–13017 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Choudhary, M. K., Kumar, M. & Rimer, J. D. Regulating nonclassical pathways of silicalite‐1 crystallization through controlled evolution of amorphous precursors. Angew. Chem. Int. Ed. 131, 15859–15863 (2019).

    Article  Google Scholar 

  31. Wong, S.-F. et al. KF zeolite nanocrystals synthesized from organic-template-free precursor mixture. Micropor. Mesopor. Mater. 249, 105–110 (2017).

    Article  CAS  Google Scholar 

  32. Wang, B., Li, Y., Shao, C., Cui, M. & Dutta, P. K. Rapid and high yield synthesis method of colloidal nano faujasite. Micropor. Mesopor. Mater. 230, 89–99 (2016).

    Article  CAS  Google Scholar 

  33. Chen, X. et al. Gamma‐ray irradiation to accelerate crystallization of mesoporous zeolites. Angew. Chem. Int. Ed. 132, 11421–11425 (2020).

    Article  Google Scholar 

  34. Song, W., Grassian, V. H. & Larsen, S. C. High yield method for nanocrystalline zeolite synthesis. Chem. Commun. 23, 2951–2953 (2005).

    Article  CAS  Google Scholar 

  35. Houlleberghs, M. et al. Evolution of the crystal growth mechanism of zeolite W (MER) with temperature. Micropor. Mesopor. Mater. 274, 379–384 (2019).

    Article  CAS  Google Scholar 

  36. Awala, H. et al. Template-free nanosized faujasite-type zeolites. Nat. Mater. 14, 447–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Broach, R. W. et al. Tailoring zeolite morphology by charge density mismatch for aromatics processing. J. Catal. 308, 142–153 (2013).

    Article  CAS  Google Scholar 

  38. Turrina, A. et al. STA-20: an ABC-6 zeotype structure prepared by co-templating and solved via a hypothetical structure database and STEM-ADF imaging. Chem. Mater. 29, 2180–2190 (2017).

    Article  CAS  Google Scholar 

  39. Ghojavand, S. et al. The role of mixed alkali metal cations on the formation of nanosized CHA zeolite from colloidal precursor suspension. J. Colloid Interface Sci. 604, 350–357 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Di Iorio, J. R. et al. Cooperative and competitive occlusion of organic and inorganic structure-directing agents within chabazite zeolites influences their aluminum arrangement. J. Am. Chem. Soc. 142, 4807–4819 (2020).

    Article  PubMed  CAS  Google Scholar 

  41. Eliášová, P. et al. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 44, 7177–7206 (2015).

    Article  PubMed  Google Scholar 

  42. Corma, A., Corell, C. & Pérez-Pariente, J. Synthesis and characterization of the MCM-22 zeolite. Zeolites 15, 2–8 (1995).

    Article  CAS  Google Scholar 

  43. Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L. & Marler, B. PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Mater. 6, 259–271 (1996).

    Article  CAS  Google Scholar 

  44. Roth, W. J., Gil, B. & Marszalek, B. Comprehensive system integrating 3D and 2D zeolite structures with recent new types of layered geometries. Catal. Today 227, 9–14 (2014).

    Article  CAS  Google Scholar 

  45. Roth, W. J. et al. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 5, 628–633 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Zhu, X. et al. Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets. Chem. Sci. 7, 6506–6513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naranov, E. R., Sadovnikov, A. A., Bugaev, A. L., Shavaleev, D. A. & Maximov, A. L. A stepwise fabrication of MFI nanosheets in accelerated mode. Catal. Today https://doi.org/10.1016/j.cattod.2021.06.011 (2021).

  49. Knio, O., Medford, A. J., Nair, S. & Sholl, D. S. Database of computation-ready 2D zeolitic slabs. Chem. Mater. 31, 353–364 (2018).

    Article  CAS  Google Scholar 

  50. Verboekend, D. & Pérez-Ramírez, J. Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1, 879–890 (2011).

    Article  CAS  Google Scholar 

  51. García-Martínez, J., Johnson, M., Valla, J., Li, K. & Ying, J. Y. Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catal. Sci. Technol. 2, 987–994 (2012).

    Article  CAS  Google Scholar 

  52. Verboekend, D., Vilé, G. & Pérez-Ramírez, J. Mesopore formation in USY and beta zeolites by base leaching: selection criteria and optimization of pore-directing agents. Cryst. Growth Des. 12, 3123–3132 (2012).

    Article  CAS  Google Scholar 

  53. Chal, R., Gerardin, C., Bulut, M. & van Donk, S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem 3, 67–81 (2011).

    Article  CAS  Google Scholar 

  54. Wang, Z. et al. Direct, single-step synthesis of hierarchical zeolites without secondary templating. J. Mater. Chem. A 3, 1298–1305 (2015).

    Article  CAS  Google Scholar 

  55. Chu, W. et al. Size-controlled synthesis of hierarchical ferrierite zeolite and its catalytic application in 1-butene skeletal isomerization. Micropor. Mesopor. Mater. 240, 189–196 (2017).

    Article  CAS  Google Scholar 

  56. Zhao, Y. et al. Tailoring the morphology of MTW zeolite mesocrystals: intertwined classical/nonclassical crystallization. Chem. Mater. 29, 3387–3396 (2017).

    Article  CAS  Google Scholar 

  57. Tao, S. et al. Facile synthesis of hierarchical nanosized single‐crystal aluminophosphate molecular sieves from highly homogeneous and concentrated precursors. Angew. Chem. Int. Ed. 59, 3455–3459 (2020).

    Article  CAS  Google Scholar 

  58. Möller, K., Yilmaz, B., Jacubinas, R. M., Müller, U. & Bein, T. One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals. J. Am. Chem. Soc. 133, 5284–5295 (2011).

    Article  PubMed  CAS  Google Scholar 

  59. Sun, Q., Wang, N., Bai, R., Chen, X. & Yu, J. Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. J. Mater. Chem. A 4, 14978–14982 (2016).

    Article  CAS  Google Scholar 

  60. Chen, L., Xue, T., Wu, H. & Wu, P. Hierarchical ZSM-5 nanocrystal aggregates: seed-induced green synthesis and its application in alkylation of phenol with tert-butanol. RSC Adv. 8, 2751–2758 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Velaga, B., Parde, R. P., Soni, J. & Peela, N. R. Synthesized hierarchical mordenite zeolites for the biomass conversion to levulinic acid and the mechanistic insights into humins formation. Micropor. Mesopor. Mater. 287, 18–28 (2019).

    Article  CAS  Google Scholar 

  62. Liu, J. et al. Synthesis of hierarchical zeolite T nanocrystals with the assistance of zeolite seed solution. J. Solid State Chem. 285, 121228 (2020).

    Article  CAS  Google Scholar 

  63. Zhang, H. et al. Seeding bundlelike MFI zeolite mesocrystals: a dynamic, nonclassical crystallization via epitaxially anisotropic growth. Chem. Mater. 29, 9247–9255 (2017).

    Article  CAS  Google Scholar 

  64. Kim, W.-G., Zhang, X., Lee, J. S., Tsapatsis, M. & Nair, S. Epitaxially grown layered MFI-bulk MFI hybrid zeolitic materials. ACS Nano 6, 9978–9988 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, X. et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336, 1684–1687 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Roth, W. J. et al. in Studies in Surface Science and Catalysis (Beyer, H. K. et al.) Vol. 94, 301–308 (Elsevier, 1995).

  68. Chaikittisilp, W. et al. Formation of hierarchically organized zeolites by sequential intergrowth. Angew. Chem. Int. Ed. 125, 3439–3443 (2013).

    Article  Google Scholar 

  69. Khaleel, M., Wagner, A. J., Mkhoyan, K. A. & Tsapatsis, M. On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angew. Chem. Int. Ed. 126, 9610–9615 (2014).

    Article  Google Scholar 

  70. Wang, L. et al. Fractal MTW zeolite crystals: hidden dimensions in nanoporous materials. Angew. Chem. Int. Ed. 56, 11764–11768 (2017).

    Article  CAS  Google Scholar 

  71. Jain, R., Chawla, A., Linares, N., García Martínez, J. & Rimer, J. D. Spontaneous pillaring of pentasil zeolites. Adv. Mater. 33, 2100897 (2021).

    Article  CAS  Google Scholar 

  72. Lamberti, C. et al. Ti location in the MFI framework of Ti-silicalite-1: a neutron powder diffraction study. J. Am. Chem. Soc. 123, 2204–2212 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Inayat, A., Schneider, C. & Schwieger, W. Organic-free synthesis of layer-like FAU-type zeolites. Chem. Commun. 51, 279–281 (2015).

    Article  CAS  Google Scholar 

  74. Iyoki, K., Itabashi, K. & Okubo, T. Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Micropor. Mesopor. Mater. 189, 22–30 (2014).

    Article  CAS  Google Scholar 

  75. Dai, H. et al. Enhanced selectivity and stability of finned ferrierite catalysts in butene isomerization. Angew. Chem. Int. Ed. 134, e202113077 (2022).

    Google Scholar 

  76. Yun, Y. et al. The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chem. Commun. 51, 7602–7605 (2015).

    Article  CAS  Google Scholar 

  77. Gramm, F. et al. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444, 79–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Baerlocher, C. et al. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315, 1113–1116 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Baerlocher, C. et al. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nat. Mater. 7, 631–635 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Jackowski, A., Zones, S. I., Hwang, S.-J. & Burton, A. W. Diquaternary ammonium compounds in zeolite synthesis: cyclic and polycyclic N-heterocycles connected by methylene chains. J. Am. Chem. Soc. 131, 1092–1100 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Lu, P. et al. Few‐unit‐cell MFI zeolite synthesized using a simple di‐quaternary ammonium structure‐directing agent. Angew. Chem. Int. Ed. 133, 19363–19370 (2021).

    Article  Google Scholar 

  82. Na, K. et al. Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 328–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Singh, B. K. et al. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant. Chem. Mater. 26, 7183–7188 (2014).

    Article  CAS  Google Scholar 

  84. Na, K., Choi, M. & Ryoo, R. Cyclic diquaternary ammoniums for nanocrystalline BEA, MTW and MFI zeolites with intercrystalline mesoporosity. J. Mater. Chem. 19, 6713–6719 (2009).

    Article  CAS  Google Scholar 

  85. Pophale, R., Daeyaert, F. & Deem, M. W. Computational prediction of chemically synthesizable organic structure directing agents for zeolites. J. Mater. Chem. A 1, 6750–6760 (2013).

    Article  CAS  Google Scholar 

  86. Lewis, D. W. et al. Synthesis of a small‐pore microporous material using a computationally designed template. Angew. Chem. Int. Ed. 36, 2675–2677 (1997).

    Article  CAS  Google Scholar 

  87. Schmidt, J. E., Deem, M. W., Lew, C. & Davis, T. M. Computationally-guided synthesis of the 8-ring zeolite AEI. Top. Catal. 58, 410–415 (2015).

    Article  CAS  Google Scholar 

  88. Davis, T. M. et al. Computationally guided synthesis of SSZ-52: a zeolite for engine exhaust clean-up. Chem. Mater. 28, 708–711 (2016).

    Article  CAS  Google Scholar 

  89. Brand, S. K. et al. Enantiomerically enriched, polycrystalline molecular sieves. Proc. Natl Acad. Sci. USA 114, 5101–5106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jo, D. & Hong, S. B. Targeted synthesis of a zeolite with pre‐established framework topology. Angew. Chem. Int. Ed. 131, 13983–13986 (2019).

    Article  Google Scholar 

  91. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120, 8066–8129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moliner, M., Román-Leshkov, Y. & Corma, A. Machine learning applied to zeolite synthesis: the missing link for realizing high-throughput discovery. Acc. Chem. Res. 52, 2971–2980 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Schwalbe-Koda, D. et al. A priori control of zeolite phase competition and intergrowth with high-throughput simulations. Science 374, 308–315 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Schwalbe-Koda, D., Jensen, Z., Olivetti, E. & Gómez-Bombarelli, R. Graph similarity drives zeolite diffusionless transformations and intergrowth. Nat. Mater. 18, 1177–1181 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Jensen, Z. et al. A machine learning approach to zeolite synthesis enabled by automatic literature data extraction. ACS Cent. Sci. 5, 892–899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Muraoka, K., Sada, Y., Miyazaki, D., Chaikittisilp, W. & Okubo, T. Linking synthesis and structure descriptors from a large collection of synthetic records of zeolite materials. Nat. Commun. 10, 4459 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Khare, R., Liu, Z., Han, Y. & Bhan, A. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5. J. Catal. 348, 300–305 (2017).

    Article  CAS  Google Scholar 

  99. Yarulina, I. et al. Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nat. Chem. 10, 804–812 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Khare, R., Millar, D. & Bhan, A. A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI. J. Catal. 321, 23–31 (2015).

    Article  CAS  Google Scholar 

  101. Grand, J. et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nat. Mater. 16, 1010–1015 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Na, K. et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J. Am. Chem. Soc. 132, 4169–4177 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Choi, M. et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 5, 718–723 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Huang, G. et al. Fast synthesis of hierarchical beta zeolites with uniform nanocrystals from layered silicate precursor. Micropor. Mesopor. Mater. 248, 30–39 (2017).

    Article  CAS  Google Scholar 

  105. Kumar, P. et al. One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport. Nat. Mater. 19, 443–449 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Department of Energy, Office of Basic Energy Sciences, Materials Science Division, grant no. DE-SC0021384. Additional support was provided by The Welch Foundation (E-1794).

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the preparation and writing of this Review.

Corresponding author

Correspondence to Jeffrey D. Rimer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Wei Fan, Svetlana Mintova, Ryong Ryoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallette, A.J., Seo, S. & Rimer, J.D. Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nat. Synth 1, 521–534 (2022). https://doi.org/10.1038/s44160-022-00091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00091-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing