Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lignin as a multifunctional photocatalyst for solar-powered biocatalytic oxyfunctionalization of C–H bonds

Abstract

Each year, the pulp and paper industry produces approximately 50 million metric tons of lignin as waste, 95% of which is combusted or abandoned. Here, we report the use of lignin as a photocatalyst that forms H2O2 by O2 reduction and H2O oxidation under visible light. We investigated the photophysical and electronic properties of two lignin models, lignosulfonate and kraft lignin, by spectroscopic and photoelectrochemical analyses, and demonstrated the photoredox chemistry of lignin using these and other lignin models (for example, native-like cellulolytic enzyme lignin, artificial lignin dehydrogenation polymer and phenolic β-aryl ether-type lignin dimer). Furthermore, the integration of lignin and H2O2-dependent unspecific peroxygenases (UPOs) enabled the highly enantioselective oxyfunctionalization of various C–H bonds. The use of lignin photocatalysts solves a number of the challenges relating to the sustainable activation of UPOs, notably, eliminating the need for artificial electron donors and suppressing the HO·-mediated inactivation of UPOs. Thus, the lignin–UPO hybrid catalyst achieved a total turnover number of UPO of 81,000 for solar-powered biocatalytic oxyfunctionalization in photochemical platforms.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Photoenzymatic oxyfunctionalization using lignin photocatalysts and peroxygenases.
Fig. 2: Structural investigation of the lignin models.
Fig. 3: Electronic and photophysical properties of lignin photocatalysts.
Fig. 4: Lignin-sensitized production of H2O2 under visible light and its mechanism.
Fig. 5: TTNrAaeUPO values of photoenzymatic systems for ethylbenzene hydroxylation.

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Kille, S., Zilly, F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat. Chem. 3, 738–743 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Gumulya, Y. et al. Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nat. Catal. 1, 878–888 (2018).

    Article  CAS  Google Scholar 

  3. Zhang, W. et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat. Catal. 1, 55–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, S. H., Choi, D. S., Kuk, S. K. & Park, C. B. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 57, 7958–7985 (2018).

    Article  CAS  Google Scholar 

  5. Völler, J.-S. Enzymatic H2O2 for biocatalysis. Nat. Catal. 2, 375 (2019).

    Article  Google Scholar 

  6. Zhang, W. et al. Selective activation of C−H bonds in a cascade process combining photochemistry and biocatalysis. Angew. Chem. Int. Ed. 56, 15451–15455 (2017).

    Article  CAS  Google Scholar 

  7. Willot, S. J. P. et al. Expanding the spectrum of light-driven peroxygenase reactions. ACS Catal. 9, 890–894 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. van Schie, M. M. C. H. et al. Cascading g-C3N4 and peroxygenases for selective oxyfunctionalization reactions. ACS Catal. 9, 7409–7417 (2019).

    Article  Google Scholar 

  9. Kim, J. et al. Nicotinamide adenine dinucleotide as a photocatalyst. Sci. Adv. 5, eaax0501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, D. S., Kim, J., Hollmann, F. & Park, C. B. Solar-assisted eBiorefinery: photoelectrochemical pairing of oxyfunctionalization and hydrogenation reactions. Angew. Chem. Int. Ed. 59, 15886–15890 (2020).

    Article  CAS  Google Scholar 

  11. Choi, D. S. et al. Bias-free in situ H2O2 generation in a photovoltaic-photoelectrochemical tandem cell for biocatalytic oxyfunctionalization. ACS Catal. 9, 10562–10566 (2019).

    Article  CAS  Google Scholar 

  12. Kim, J. & Park, C. B. Shedding light on biocatalysis: photoelectrochemical platforms for solar-driven biotransformation. Curr. Opin. Chem. Biol. 49, 122–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J. et al. Robust FeOOH/BiVO4/Cu(In, Ga)Se2 tandem structure for solar-powered biocatalytic CO2 reduction. J. Mater. Chem. A 8, 8496–8502 (2020).

    Article  CAS  Google Scholar 

  14. Kuk, S. K. et al. CO2-reductive, copper oxide-based photobiocathode for Z-scheme semi-artificial leaf structure. ChemSusChem 13, 2940–2944 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, Y. W. et al. Unbiased biocatalytic solar-to-chemical conversion by FeOOH/BiVO4/perovskite tandem structure. Nat. Commun. 9, 4208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim, J. et al. Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angew. Chem. Int. Ed. 57, 13825–13828 (2018).

    Article  CAS  Google Scholar 

  17. Le, T.-K. et al. Solar-powered whole-cell P450 catalytic platform for C-hydroxylation reactions. ChemSusChem 14, 3054–3058 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Son, G., Kim, J. & Park, C. B. Interference of solvatochromic twist in amyloid nanostructure for light-driven biocatalysis. ACS Appl. Energy Mater. 3, 1215–1221 (2020).

    Article  CAS  Google Scholar 

  19. Wang, D., Lee, S. H., Kim, J. & Park, C. B. “Waste to wealth”: lignin as a renewable building block for energy harvesting/storage and environmental remediation. ChemSusChem 13, 2807–2827 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, C.-C., Dai, L., Ma, L. & Guo, R.-T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4, 114–126 (2020).

    Article  Google Scholar 

  21. Li, C., Zhao, X., Wang, A., Huber, G. W. & Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, M. & Wang, F. Catalytic scissoring of lignin into aryl monomers. Adv. Mater. 31, 1901866 (2019).

    Article  Google Scholar 

  23. Sanderson, K. Lignocellulose: a chewy problem. Nature 474, S12–S14 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, D. et al. Lignin-fueled photoelectrochemical platform for light-driven redox biotransformation. Green Chem. 22, 5151–5160 (2020).

    Article  CAS  Google Scholar 

  25. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  Google Scholar 

  26. Zhang, G., Lan, Z.-A. & Wang, X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 15712–15727 (2016).

    Article  Google Scholar 

  27. Dessbesell, L., Paleologou, M., Leitch, M., Pulkki, R. & Xu, C. Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renew. Sustain. Energy Rev. 123, 109768 (2020).

    Article  CAS  Google Scholar 

  28. Sáez-Jiménez, V. et al. Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin. Biotechnol. Biofuels 9, 198 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lancefield, C. S. et al. Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chem. Sci. 9, 6348–6360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crestini, C., Lange, H., Sette, M. & Argyropoulos, D. S. On the structure of softwood kraft lignin. Green Chem. 19, 4104–4121 (2017).

    Article  CAS  Google Scholar 

  31. Constant, S. et al. New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18, 2651–2665 (2016).

    Article  CAS  Google Scholar 

  32. Jiang, Z. et al. Nature-based catalyst for visible-light-driven photocatalytic CO2 reduction. Energ. Environ. Sci. 11, 2382–2389 (2018).

    Article  CAS  Google Scholar 

  33. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article  CAS  Google Scholar 

  34. Kitahara, R., Yoshimura, Y., Xue, M., Kameda, T. & Mulder, F. A. A. Detecting O2 binding sites in protein cavities. Sci. Rep. 6, 20534 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hou, H., Zeng, X. & Zhang, X. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376 (2020).

    Article  CAS  Google Scholar 

  36. Yoon, J. et al. Piezobiocatalysis: ultrasound-driven enzymatic oxyfunctionalization of C–H bonds. ACS Catal. 10, 5236–5242 (2020).

    Article  CAS  Google Scholar 

  37. Kim, J. K., Yang, J., Park, S. Y., Yu, J.-H. & Kim, K. H. Cellulase recycling in high-solids enzymatic hydrolysis of pretreated empty fruit bunches. Biotechnol. Biofuels 12, 138 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hwang, H., Moon, S.-J., Won, K., Kim, Y. H. & Choi, J. W. Parameters affecting in vitro monolignol couplings during dehydrogenative polymerization in the presence of peroxidase and H2O2. J. Ind. Eng. Chem. 26, 390–395 (2015).

    Article  CAS  Google Scholar 

  39. Kim, H. & Ralph, J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org. Biomol. Chem. 8, 576–591 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Rahimi, A., Azarpira, A., Kim, H., Ralph, J. & Stahl, S. S. Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135, 6415–6418 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Choi, D. S. et al. Photoelectroenzymatic oxyfunctionalization on flavin-hybridized carbon nanotube electrode platform. ACS Catal. 7, 1563–1567 (2017).

    Article  CAS  Google Scholar 

  42. Simon, T. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huang, C. et al. Unveiling the structural properties of lignin–carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustain. Chem. Eng. 6, 12522–12531 (2018).

    Article  CAS  Google Scholar 

  45. Gomez de Santos, P. et al. Selective synthesis of the human drug metabolite 5′-hydroxypropranolol by an evolved self-sufficient peroxygenase. ACS Catal. 8, 4789–4799 (2018).

    Article  CAS  Google Scholar 

  46. Zeng, Z. et al. A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation. Phys. Chem. Chem. Phys. 19, 20101–20109 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF; grant nos. NRF-2015R1A3A2066191 (C.B.P. and J.K.) and 2017M1A2A2087630 (Y.H.K.)) and the Global Ph.D. Fellowship Program (grant no. NRF-2019H1A2A1075810 (J.K.)), Republic of Korea. The authors thank G. Jung from B. Shin’s group (Korea Advanced Institute of Science and Technology) for permitting us to use a micro gas chromatograph.

Author information

Authors and Affiliations

Authors

Contributions

J.K. conceived/designed the research, performed the experiments, analysed the data and wrote the manuscript. C.B.P. supervised the research. T.V.T.N. and Y.H.K. provided lignin DHP, CEL and their HSQC spectra. F.H. supplied the UPOs. J.K., Y.H.K., F.H. and C.B.P. commented on the photo(bio)catalysis. J.K. and T.V.T.N. discussed the molecular structures of the lignins. All authors revised the manuscript.

Corresponding author

Correspondence to Chan Beum Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Han Sen Soo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–8 and Figs. 1–33.

Source data

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Nguyen, T.V.T., Kim, Y.H. et al. Lignin as a multifunctional photocatalyst for solar-powered biocatalytic oxyfunctionalization of C–H bonds. Nat Synth 1, 217–226 (2022). https://doi.org/10.1038/s44160-022-00035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00035-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing