Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stereoselective synthesis through remote functionalization

A Publisher Correction to this article was published on 14 April 2022

This article has been updated

Abstract

Transition-metal-catalysed alkene isomerization is instrumental to remote functionalization processes, in which a chemical transformation is induced at a position remote from the initial reactive site. The dynamic nature of alkene isomerization, which is crucial for such transformations, often leads to substantial difficulties in controlling the stereochemistry of C(sp3) centres along the carbon skeleton. This review features synthetic methods that tackle this issue and strategically leverage alkene isomerization to control C(sp3) stereocentres in complex organic molecules. Stereocentres can be created at either the initiation or termination site of an isomerization process, retained during chain-walking across the molecular backbone or revealed through restructuring of the carbon skeleton by selective ring-opening of a strained ring. As each of these options imposes different mechanistic requirements, the different examples are divided according to the stage in the chain-walking process at which stereochemistry is established and the type of intermediates that lead to stereodefined products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Remote functionalization and general considerations.
Fig. 2: Asymmetric C-H bond formation at the initiation site.
Fig. 3: Asymmetric C–C and C–B bond formation at the initiation site.
Fig. 4: Walking ‘over’ tertiary and quaternary stereocentres.
Fig. 5: Formation of stereocentres at the termination site through allyl- and benzylmetal intermediates.
Fig. 6: Formation of stereocentres at the termination site through alkylmetal intermediates.
Fig. 7: Formation of stereocentres at the termination site through intermolecular reactions of alkene intermediates.
Fig. 8: Accessing sigmatropic rearrangement substrates through alkene isomerization.

Similar content being viewed by others

Change history

References

  1. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Molloy, J. J., Morack, T. & Gilmour, R. Positional and geometrical isomerisation of alkenes: the pinnacle of atom economy. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).

    Article  CAS  Google Scholar 

  4. Janssen‐Müller, D., Sahoo, B., Sun, S. & Martin, R. Tackling remote sp3 C−H functionalization via Ni‐catalyzed ‘chain‐walking’ reactions. Isr. J. Chem. 60, 195–206 (2020).

    Article  Google Scholar 

  5. Massad, I. & Marek, I. Alkene isomerization through allylmetals as a strategic tool in stereoselective synthesis. ACS Catal. 10, 5793–5804 (2020).

    Article  CAS  Google Scholar 

  6. Fiorito, D., Scaringi, S. & Mazet, C. Transition metal-catalyzed alkene isomerization as an enabling technology in tandem, sequential and domino processes. Chem. Soc. Rev. 50, 1391–1406 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, F. G. et al. Remote fluorination and fluoroalkyl(thiol)ation reactions. Chem. Eur. J. 26, 15378–15396 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Juliá-Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017).

    Article  PubMed  Google Scholar 

  9. Kumobayashi, H., Akutagawa, S. & Otsuka, S. Metal-assisted terpenoid syntheses. 6. Enantioselective hydrogen migration in prochiral allylamine systems by chiral cobalt catalysts. J. Am. Chem. Soc. 100, 3949–3950 (1978).

    Article  CAS  Google Scholar 

  10. Tani, K. et al. Highly enantioselective isomerization of prochiral allylamines catalyzed by chiral diphosphine rhodium(I) complexes. Preparation of optically active enamines. J. Am. Chem. Soc. 106, 5208–5217 (1984).

    Article  CAS  Google Scholar 

  11. Tani, K. Asymmetric isomerization of allylic compounds and the mechanism. Pure Appl. Chem. 57, 1845–1854 (1985).

    Article  CAS  Google Scholar 

  12. Akutagawa, S. Asymmetric synthesis by metal BINAP catalysts. Appl. Catal. A 128, 171–207 (1995).

    Article  CAS  Google Scholar 

  13. Yoshimura, T. et al. Exploring the full catalytic cycle of rhodium(I)–BINAP-catalysed isomerisation of allylic amines: a graph theory approach for path optimisation. Chem. Sci. 8, 4475–4488 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanaka, K., Qiao, S., Tobisu, M., Lo, M. M.-C. & Fu, G. C. Enantioselective isomerization of allylic alcohols catalyzed by a rhodium/phosphaferrocene complex. J. Am. Chem. Soc. 122, 9870–9871 (2000).

    Article  CAS  Google Scholar 

  15. Tanaka, K. & Fu, G. C. A versatile new catalyst for the enantioselective isomerization of allylic alcohols to aldehydes: scope and mechanistic studies. J. Org. Chem. 66, 8177–8186 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Fu, G. C. in Modern Rhodium(I)‐Catalyzed Organic Reactions (ed. Evans, P. A.) Ch. 4 (Wiley‐VCH, 2005).

  17. Mantilli, L., Gerard, D., Torche, S., Besnard, C. & Mazet, C. Iridium‐catalyzed asymmetric isomerization of primary allylic alcohols. Angew. Chem. Int. Ed. 48, 5143–5147 (2009).

    Article  CAS  Google Scholar 

  18. Mantilli, L., Gérard, D., Torche, S., Besnard, C. & Mazet, C. Improved catalysts for the iridium‐catalyzed asymmetric isomerization of primary allylic alcohols based on Charton analysis. Chem. Eur. J. 16, 12736–12745 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Li, H. & Mazet, C. Iridium-catalyzed selective isomerization of primary allylic alcohols. Acc. Chem. Res. 49, 1232–1241 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Cahard, D., Gaillard, S. & Renaud, J.-L. Asymmetric isomerization of allylic alcohols. Tetrahedron Lett. 56, 6159–6169 (2015).

    Article  CAS  Google Scholar 

  21. Arai, N., Sato, K., Azuma, K. & Ohkuma, T. Enantioselective isomerization of primary allylic alcohols into chiral aldehydes with the tol-binap/dbapen/ruthenium(II) catalyst. Angew. Chem. Int. Ed. 52, 7500–7504 (2013).

    Article  CAS  Google Scholar 

  22. Wu, R., Beauchamps, M. G., Laquidara, J. M. & Sowa, J. R. Ruthenium-catalyzed asymmetric transfer hydrogenation of allylic alcohols by an enantioselective isomerization/transfer hydrogenation mechanism. Angew. Chem. Int. Ed. 51, 2106–2110 (2012).

    Article  CAS  Google Scholar 

  23. Lin, L., Romano, C. & Mazet, C. Palladium-catalyzed long-range deconjugative isomerization of highly substituted α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 138, 10344–10350 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, T. L., Ng, T. W. & Zhao, Y. Rhodium-catalyzed enantioselective isomerization of secondary allylic alcohols. J. Am. Chem. Soc. 139, 3643–3646 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, R.-Z., Lau, K. K., Li, Z., Liu, T.-L. & Zhao, Y. Rhodium-catalyzed enantioconvergent isomerization of homoallylic and bishomoallylic secondary alcohols. J. Am. Chem. Soc. 140, 14647–14654 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Martinez-Erro, S. et al. Base-catalyzed stereospecific isomerization of electron-deficient allylic alcohols and ethers through ion-pairing. J. Am. Chem. Soc. 138, 13408–13414 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Frauenrath, H., Reim, S. & Wiesner, A. Asymmetric double-bond isomerization of cyclic allyl acetals by using diop and chiraphos modified nickel complexes. Tetrahedron Asymmetry 9, 1103–1106 (1998).

    Article  CAS  Google Scholar 

  28. Mei, T. S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Werner, E. W., Mei, T. S., Burckle, A. J. & Sigman, M. S. Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338, 1455–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mei, T.-S., Werner, E. W., Burckle, A. J. & Sigman, M. S. Enantioselective redox-relay oxidative Heck arylations of acyclic alkenyl alcohols using boronic acids. J. Am. Chem. Soc. 135, 6830–6833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, L. et al. Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J. Am. Chem. Soc. 136, 1960–1967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, C., Santiago, C. B., Crawford, J. M. & Sigman, M. S. Enantioselective dehydrogenative Heck arylations of trisubstituted alkenes with indoles to construct quaternary stereocenters. J. Am. Chem. Soc. 137, 15668–15671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, Z. M., Hilton, M. J. & Sigman, M. S. Palladium-catalyzed enantioselective redox-relay Heck arylation of 1,1-disubstituted homoallylic alcohols. J. Am. Chem. Soc. 138, 11461–11464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Race, N. J., Schwalm, C. S., Nakamuro, T. & Sigman, M. S. Palladium-catalyzed enantioselective intermolecular coupling of phenols and allylic alcohols. J. Am. Chem. Soc. 138, 15881–15884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Avila, C. M. et al. Enantioselective Heck–Matsuda arylations through chiral anion phase‐transfer of aryl diazonium salts. Angew. Chem. Int. Ed. 56, 5806–5811 (2017).

    Article  CAS  Google Scholar 

  36. Race, N. J., Yuan, Q. & Sigman, M. S. Enantioselective C2-alkylation of indoles via a redox-relay Heck reaction of 2-indole triflates. Chem. Eur. J. 25, 512–515 (2019).

    CAS  PubMed  Google Scholar 

  37. Chen, Z. M., Nervig, C. S., DeLuca, R. J. & Sigman, M. S. Palladium-catalyzed enantioselective redox-relay Heck alkynylation of alkenols to access propargylic stereocenters. Angew. Chem. Int. Ed. 56, 6651–6654 (2017).

    Article  CAS  Google Scholar 

  38. Yuan, Q. & Sigman, M. S. Palladium-catalyzed enantioselective relay Heck arylation of enelactams: Accessing α, β-unsaturated δ-lactams. J. Am. Chem. Soc. 140, 6527–6530 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuan, Q. & Sigman, M. S. Palladium-catalyzed enantioselective alkenylation of enelactams using a relay Heck strategy. Chem. Eur. J. 25, 10823–10827 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, J., Yuan, Q., Toste, F. D. & Sigman, M. S. Enantioselective construction of remote tertiary carbon–fluorine bonds. Nat. Chem. 11, 710–715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ross, S. P., Rahman, A. A. & Sigman, M. S. Development and mechanistic interrogation of interrupted chain-walking in the enantioselective relay Heck reaction. J. Am. Chem. Soc. 142, 10516–10525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prater, M. B. & Sigman, M. S. Enantioselective synthesis of alkyl allyl ethers via palladium‐catalyzed redox‐relay Heck alkenylation of O‐alkyl enol ethers. Isr. J. Chem. 60, 452–460 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, C. et al. Palladium-catalyzed enantioselective Heck alkenylation of trisubstituted allylic alkenols: a redox-relay strategy to construct vicinal stereocenters. Chem. Sci. 8, 2277–2282 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura, H., Yasui, K., Kanda, Y. & Baran, P. S. 11-step total synthesis of teleocidins B-1–B-4. J. Am. Chem. Soc. 141, 1494–1497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lessard, S., Peng, F. & Hall, D. G. α-Hydroxyalkyl heterocycles via chiral allylic boronates: Pd-catalyzed borylation leading to a formal enantioselective isomerization of allylic ether and amine. J. Am. Chem. Soc. 131, 9612–9613 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, Y. R. & Hall, D. G. Optimization and multigram scalability of a catalytic enantioselective borylative migration for the synthesis of functionalized chiral piperidines. Org. Biomol. Chem. 14, 4739–4748 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Clement, H. A. & Hall, D. G. Synthesis of α-hydroxyalkyl dehydroazepanes via catalytic enantioselective borylative migration of an enol nonaflate. Tetrahedron Lett. 59, 4334–4339 (2018).

    Article  CAS  Google Scholar 

  48. Clement, H. A., Estaitie, M., Kim, Y.-R., Hall, D. G. & Legault, C. Y. Mechanism of the palladium-catalyzed asymmetric borylative migration of enol perfluorosulfonates: insights into an enantiofacial-selective transmetalation. ACS Catal. 11, 8902–8914 (2021).

    Article  CAS  Google Scholar 

  49. Larionov, E., Lin, L., Guenee, L. & Mazet, C. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols. J. Am. Chem. Soc. 136, 16882–16894 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Ida, A., Hoshiya, N. & Uenishi, J. Alkene migration to the end-terminal carbon bearing a phenyl group over a chiral siloxy carbon center in Heck reaction. Tetrahedron 71, 6442–6448 (2015).

    Article  CAS  Google Scholar 

  51. Chen, X., Cheng, Z., Guo, J. & Lu, Z. Asymmetric remote CH borylation of internal alkenes via alkene isomerization. Nat. Commun. 9, 3939 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kochi, T., Kanno, S. & Kakiuchi, F. Nondissociative chain walking as a strategy in catalytic organic synthesis. Tetrahedron Lett. 60, 150938 (2019).

    Article  CAS  Google Scholar 

  53. Li, J., Qu, S. & Zhao, W. Rhodium-catalyzed remote C(sp3)−H borylation of silyl enol ethers. Angew. Chem. Int. Ed. 59, 2360–2364 (2020).

    Article  CAS  Google Scholar 

  54. Cohen, Y., Cohen, A. & Marek, I. Creating stereocenters within acyclic systems by C–C bond cleavage of cyclopropanes. Chem. Rev. 121, 140–161 (2020).

    Article  PubMed  Google Scholar 

  55. Masarwa, A. et al. Merging allylic carbon–hydrogen and selective carbon–carbon bond activation. Nature 505, 199–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Bruffaerts, J. et al. Zirconocene-mediated selective C–C bond cleavage of strained carbocycles: scope and mechanism. J. Org. Chem. 83, 3497–3515 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Singh, S., Bruffaerts, J., Vasseur, A. & Marek, I. A unique Pd-catalysed Heck arylation as a remote trigger for cyclopropane selective ring-opening. Nat. Commun. 8, 14200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kou, X., Shao, Q., Ye, C., Yang, G. & Zhang, W. Asymmetric aza-Wacker-type cyclization of N-Ts hydrazine-tethered tetrasubstituted olefins: synthesis of pyrazolines bearing one quaternary or two vicinal stereocenters. J. Am. Chem. Soc. 140, 7587–7597 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Bruffaerts, J., Pierrot, D. & Marek, I. Efficient and stereodivergent synthesis of unsaturated acyclic fragments bearing contiguous stereogenic elements. Nat. Chem. 10, 1164–1170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cohen, A., Chagneau, J. & Marek, I. Stereoselective preparation of distant stereocenters (1,5) within acyclic molecules. ACS Catal. 10, 7154–7161 (2020).

    Article  CAS  Google Scholar 

  61. Jiang, X. et al. Nickel-catalysed migratory hydroalkynylation and enantioselective hydroalkynylation of olefins with bromoalkynes. Nat. Commun. 12, 3972 (2021).

    Article  Google Scholar 

  62. Yu, R., Rajasekar, S. & Fang, X. Enantioselective nickel‐catalyzed migratory hydrocyanation of nonconjugated dienes. Angew. Chem. Int. Ed. 59, 21436–21441 (2020).

    Article  CAS  Google Scholar 

  63. Larock, R. C., Wang, Y., Lu, Y. & Russell, C. A. Synthesis of aryl-substituted allylic amines via palladium-catalyzed coupling of aryl iodides, nonconjugated dienes, and amines. J. Org. Chem. 59, 8107–8114 (1994).

    Article  CAS  Google Scholar 

  64. Zhu, D. et al. Asymmetric three-component Heck arylation/amination of nonconjugated cyclodienes. Angew. Chem. Int. Ed. 59, 5341–5345 (2020).

    Article  CAS  Google Scholar 

  65. Liu, C., Yuan, J., Zhang, Z., Gridnev, I. D. & Zhang, W. Asymmetric hydroacylation involving alkene isomerization for the construction of C3-chirogenic center. Angew. Chem. Int. Ed. 60, 8997–9002 (2021).

    Article  CAS  Google Scholar 

  66. Park, J. W., Kou, K. G. M., Kim, D. K. & Dong, V. M. Rh-catalyzed desymmetrization of α-quaternary centers by isomerization–hydroacylation. Chem. Sci. 6, 4479–4483 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ebe, Y., Onoda, M., Nishimura, T. & Yorimitsu, H. Iridium-catalyzed regio- and enantioselective hydroarylation of alkenyl ethers by olefin isomerization. Angew. Chem. Int. Ed. 56, 5607–5611 (2017).

    Article  CAS  Google Scholar 

  68. Ebe, Y. & Nishimura, T. Iridium-catalyzed branch-selective hydroarylation of vinyl ethers via C–H bond activation. J. Am. Chem. Soc. 137, 5899–5902 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Kochi, T., Hamasaki, T., Aoyama, Y., Kawasaki, J. & Kakiuchi, F. Chain-walking strategy for organic synthesis: catalytic cycloisomerization of 1,n-dienes. J. Am. Chem. Soc. 134, 16544–16547 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Hamasaki, T., Aoyama, Y., Kawasaki, J., Kakiuchi, F. & Kochi, T. Chain walking as a strategy for carbon–carbon bond formation at unreactive sites in organic synthesis: catalytic cycloisomerization of various 1, n-dienes. J. Am. Chem. Soc. 137, 16163–16171 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Kochi, T., Ichinose, K., Shigekane, M., Hamasaki, T. & Kakiuchi, F. Metal-catalyzed sequential formation of distant bonds in organic molecules: palladium-catalyzed hydrosilylation/cyclization of 1,n-dienes by chain walking. Angew. Chem. Int. Ed. 58, 5261–5265 (2019).

    Article  CAS  Google Scholar 

  72. Lin, W., Zhang, K.-F. & Baudoin, O. Regiodivergent enantioselective C–H functionalization of Boc-1, 3-oxazinanes for the synthesis of β2- and β3-amino acids. Nat. Catal. 2, 882–888 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Royal, T. & Baudoin, O. Pd-catalyzed γ-arylation of γ,δ-unsaturated O-carbamates via an unusual haptotropic rearrangement. Chem. Sci. 10, 2331–2335 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Miura, T., Nishida, Y., Morimoto, M. & Murakami, M. Enantioselective synthesis of anti homoallylic alcohols from terminal alkynes and aldehydes based on concomitant use of a cationic iridium complex and a chiral phosphoric acid. J. Am. Chem. Soc. 135, 11497–11500 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Miura, T., Oku, N. & Murakami, M. Diastereo- and enantioselective synthesis of (E)-δ-boryl-substituted anti-homoallylic alcohols in two steps from terminal alkynes. Angew. Chem. Int. Ed. 58, 14620–14624 (2019).

    Article  CAS  Google Scholar 

  76. Miura, T., Nishida, Y. & Murakami, M. Construction of homoallylic alcohols from terminal alkynes and aldehydes with installation of syn-stereochemistry. J. Am. Chem. Soc. 136, 6223–6226 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Miura, T. et al. Enantioselective synthesis of anti-1,2-oxaborinan-3-enes from aldehydes and 1,1-di(boryl)alk-3-enes using ruthenium and chiral phosphoric acid catalysts. J. Am. Chem. Soc. 139, 10903–10908 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Miura, T., Nakahashi, J. & Murakami, M. Enantioselective synthesis of (E)‐δ‐boryl‐substituted anti homoallylic alcohols using palladium and a chiral phosphoric acid. Angew. Chem. Int. Ed. 56, 6989–6993 (2017).

    Article  CAS  Google Scholar 

  79. Weber, F., Ballmann, M., Kohlmeyer, C. & Hilt, G. Nickel-catalyzed double bond transposition of alkenyl boronates for in situ syn-selective allylboration reactions. Org. Lett. 18, 548–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Weber, F. et al. Double-bond isomerization: highly reactive nickel catalyst applied in the synthesis of the pheromone (9Z,12Z)-tetradeca-9,12-dienyl acetate. Org. Lett. 17, 2952–2955 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Lin, L., Yamamoto, K., Matsunaga, S. & Kanai, M. Rhodium-catalyzed cross-aldol reaction: in situ aldehyde–enolate formation from allyloxyboranes and primary allylic alcohols. Angew. Chem. Int. Ed. 51, 10275–10279 (2012).

    Article  CAS  Google Scholar 

  82. Lin, L. et al. Catalytic asymmetric iterative/domino aldehyde cross-aldol reactions for the rapid and flexible synthesis of 1,3-polyols. J. Am. Chem. Soc. 137, 15418–15421 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Baudry, D., Ephritikhine, M. & Felkin, H. Isomerisation of allyl ethers catalysed by the cationic iridium complex [Ir(cyclo-octa-1,5-diene) (PMePh2)2]PF6. A highly stereoselective route to trans-propenyl ethers. J. Chem. Soc. Chem. Commun. 1978, 694–695 (1978).

    Article  Google Scholar 

  84. Oltvort, J. J., Van Boeckel, C. A. A., De Koning, J. H. & Van Bloom, J. H. Use of the cationic iridium complex 1,5-cyclooctadiene-bis[methyldiphenylphosphine]-iridium hexafluorophosphate in carbohydrate chemistry: smooth isomerization of allyl ethers to 1-propenyl ethers. Synthesis 1981(305), 308 (1981).

    Google Scholar 

  85. Moriya, T., Suzuki, A. & Miyaura, N. A stereoselective preparation of γ-alkoxyallylboronates via catalytic isomerization of pinacol [(E)-3-alkoxy-1-propenyl] boronates. Tetrahedron Lett. 36, 1887–1888 (1995).

    Article  CAS  Google Scholar 

  86. Massad, I., Sommer, H. & Marek, I. Stereoselective access to fully substituted aldehyde-derived silyl enol ethers by iridium-catalyzed alkene isomerization. Angew. Chem. Int. Ed. 59, 15549–15553 (2020).

    Article  CAS  Google Scholar 

  87. Wang, P. Y., Massad, I. & Marek, I. Stereoselective Sc(OTf)3-catalyzed aldol reactions of disubstituted silyl enol ethers of aldehydes with acetals. Angew. Chem. Int. Ed. 60, 12765–12769 (2021).

    Article  CAS  Google Scholar 

  88. Nelson, S. G., Bungard, C. J. & Wang, K. Catalyzed olefin isomerization leading to highly stereoselective Claisen rearrangements of aliphatic allyl vinyl ethers. J. Am. Chem. Soc. 125, 13000–13001 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Stevens, B. D., Bungard, C. J. & Nelson, S. G. Strategies for expanding structural diversity available from olefin isomerization−Claisen rearrangement reactions. J. Org. Chem. 71, 6397–6402 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, K., Bungard, C. J. & Nelson, S. G. Stereoselective olefin isomerization leading to asymmetric quaternary carbon construction. Org. Lett. 9, 2325–2328 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Kerrigan, N. J., Bungard, C. J. & Nelson, S. G. Pd(II)-catalyzed aliphatic Claisen rearrangements of acyclic allyl vinyl ethers. Tetrahedron 64, 6863–6869 (2008).

    Article  CAS  Google Scholar 

  92. Massad, I. & Marek, I. Alkene isomerization revitalizes the Coates–Claisen rearrangement. Angew. Chem. Int. Ed. 60, 18509–18513 (2021).

    Article  CAS  Google Scholar 

  93. Coates, R. M., Shah, S. K. & Mason, R. W. Stereoselective total synthesis of (+/–)-gymnomitrol via reduction–alkylation of α-cyano ketones. J. Am. Chem. Soc. 104, 2198–2208 (1982).

    Article  CAS  Google Scholar 

  94. Coates, R. M. & Hobbs, S. J. α-Alkoxyallylation of activated carbonyl compounds. A novel variant of the Michael reaction. J. Org. Chem. 49, 140–152 (1984).

    Article  CAS  Google Scholar 

  95. Coates, R. M., Rogers, B. D., Hobbs, S. J., Peck, D. R. & Curran, D. P. Synthesis and Claisen rearrangement of alkoxyallyl enol ethers. Evidence for a dipolar transition state. J. Am. Chem. Soc. 109, 1160–1170 (1987).

    Article  CAS  Google Scholar 

  96. Sommer, H., Weissbrod, T. & Marek, I. A tandem iridium-catalyzed ‘chain-walking’/Cope rearrangement sequence. ACS Catal. 9, 2400–2406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Suresh, R., Massad, I. & Marek, I. Stereoselective tandem iridium-catalyzed alkene isomerization–Cope rearrangement of ω-diene epoxides: efficient access to acyclic 1,6-dicarbonyl compounds. Chem. Sci. 12, 9328–9332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 786976.

Author information

Authors and Affiliations

Authors

Contributions

I. Massad, R.S., L.S. and I. Marek conceived and wrote the manuscript. All the authors contributed to discussions.

Corresponding author

Correspondence to Ilan Marek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Guangbin Dong, Wanbin Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Alison Stoddart managed the editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massad, I., Suresh, R., Segura, L. et al. Stereoselective synthesis through remote functionalization. Nat Synth 1, 37–48 (2022). https://doi.org/10.1038/s44160-021-00002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00002-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing