Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A levels-of-analysis framework for studying social emotions

Abstract

Social emotions such as guilt and gratitude serve adaptive functions critical to social interactions and relationships. Therefore, an ecologically valid approach to studying the psychological and neural mechanisms of social emotions is to elicit and measure them in social interactive contexts, where relevant adaptive goals and functions are salient. However, multiple psychological and neurocognitive processes might be simultaneously activated during real-time social interactions: traditional observation-based tasks and self-report measures alone are not sufficient to capture and dissociate these processes. In this Perspective, we draw on Marr’s levels-of-analysis framework to argue that a holistic consideration of the goals and functions of a social emotion (computation level), formal modelling of its underlying cognitive operations (algorithm level), and neuroscientific measures of the biological bases of these cognitive operations (implementation level) will afford the theoretical frameworks and methodological tools necessary to advance understanding of social emotions. To support this argument, we describe research that showcases the utility of creative combinations of interactive tasks, neural and behavioural measures, and computational modelling for advancing understanding of how social emotions arise and achieve their adaptive goals and functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Studying social emotions in the levels-of-analysis framework.
Fig. 2: Approach and avoidance motivations following interpersonal transgression.
Fig. 3: Motivations underlying mixed social emotions in help recipients.

Similar content being viewed by others

References

  1. Tooby, J. & Cosmides, L. in Handbook of Emotions (eds Lewis, M., Haviland-Jones, J. & Barrett, L. F.) 114–137 (Guilford Press, 2008).

  2. Sznycer, D. Forms and functions of the self-conscious emotions. Trends Cogn. Sci. 23, 143–157 (2018). This review paper provides an up-to-date account of the adaptationist theory of social emotions.

    PubMed  Google Scholar 

  3. Moors, A., Ellsworth, P. C., Scherer, K. R. & Frijda, N. H. Appraisal theories of emotion: state of the art and future development. Emot. Rev. 5, 119–124 (2013). This review paper provides an up-to-date account of appraisal theories of emotion.

    Google Scholar 

  4. Scherer, K. R. & Moors, A. The emotion process: event appraisal and component differentiation. Annu. Rev. Psychol. 70, 719–745 (2019).

    PubMed  Google Scholar 

  5. Ekman, P. An argument for basic emotions. Cogn. Emot. 6, 169–200 (1992).

    Google Scholar 

  6. Ekman, P. in Handbook of Cognition and Emotion (eds Dalgleish, T. & Power, M.) 45–60 (Wiley, 1999).

  7. Tracy, J. L. & Randles, D. Four models of basic emotions: a review of Ekman and Cordaro, Izard, Levenson, and Panksepp and Watt. Emot. Rev. 3, 397–405 (2011).

    Google Scholar 

  8. Sell, A., Tooby, J. & Cosmides, L. Formidability and the logic of human anger. Proc. Natl Acad. Sci. USA 106, 15073–15078 (2009).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Sznycer, D. et al. Shame closely tracks the threat of devaluation by others, even across cultures. Proc. Natl Acad. Sci. USA 113, 2625–2630 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Sznycer, D. et al. Cross-cultural invariances in the architecture of shame. Proc. Natl Acad. Sci. USA 115, 9702–9707 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Sznycer, D., Sell, A. & Lieberman, D. Forms and functions of the social emotions. Curr. Dir. Psychol. Sci. 30, 292–299 (2021).

    Google Scholar 

  12. Sander, D., Grandjean, D. & Scherer, K. R. An appraisal-driven componential approach to the emotional brain. Emot. Rev. 10, 219–231 (2018).

    Google Scholar 

  13. Scherer, K. R. Emotions are emergent processes: they require a dynamic computational architecture. Phil. Trans. R. Soc. B 364, 3459–3474 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Mohammadi, G., Van De Ville, D. & Vuilleumier, P. Brain networks subserving functional core processes of emotions identified with componential modeling. Cereb. Cortex 33, 7993–8010 (2023).

    PubMed  PubMed Central  Google Scholar 

  15. Keltner, D., Sauter, D., Tracy, J. & Cowen, A. Emotional expression: advances in basic emotion theory. J. Nonverbal Behav. 43, 133–160 (2019). This review paper provides a comprehensive and up-to-date account of empirical research and theoretical development in the research on basic emotions.

    PubMed  PubMed Central  Google Scholar 

  16. Lindquist, K. A., Jackson, J. C., Leshin, J., Satpute, A. B. & Gendron, M. The cultural evolution of emotion. Nat. Rev. Psychol. 1, 669–681 (2022). This theoretical paper provides a comprehensive review of major emotion theories and an in-depth analysis of the constructionist approach to emotion and its social-cultural origins.

    Google Scholar 

  17. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (MIT Press, 2010).

  18. Adolphs, R. & Andler, D. Investigating emotions as functional states distinct from feelings. Emot. Rev. 10, 191–201 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Bolis, D., Balsters, J., Wenderoth, N., Becchio, C. & Schilbach, L. Beyond autism: introducing the dialectical misattunement hypothesis and a Bayesian account of intersubjectivity. Psychopathology 50, 355–372 (2018).

    Google Scholar 

  20. Cushman, F. Computational social psychology. Annu. Rev. Psychol. 75, 625–652 (2023).

    PubMed  Google Scholar 

  21. Huskey, R. et al. Marr’s tri-level framework integrates biological explanation across communication subfields. J. Commun. 70, 356–378 (2020).

    Google Scholar 

  22. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    CAS  PubMed  Google Scholar 

  23. Lockwood, P. L., Apps, M. A. J. & Chang, S. W. C. Is there a ‘social’ brain? Implementations and algorithms. Trends Cogn. Sci. 24, 802–813 (2020). This opinion paper applies Marr’s levels-of-analysis framework to understanding social cognition and its neural basis.

    PubMed  PubMed Central  Google Scholar 

  24. Naud, R. & Longtin, A. Connecting levels of analysis in the computational era. Preprint at arXiv https://doi.org/10.48550/arXiv.2305.06037 (2023).

  25. Wittmann, M. K. et al. Self–other mergence in the frontal cortex during cooperation and competition. Neuron 91, 482–493 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hampton, A. N., Bossaerts, P. & O’Doherty, J. P. Neural correlates of mentalizing-related computations during strategic interactions in humans. Proc. Natl Acad. Sci. USA 105, 6741–6746 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Hill, C. A. et al. A causal account of the brain network computations underlying strategic social behavior. Nat. Neurosci. 20, 1142–1149 (2017).

    CAS  PubMed  Google Scholar 

  28. Baumeister, R. F., Stillwell, A. M. & Heatherton, T. F. Guilt: an interpersonal approach. Psychol. Bull. 115, 243–267 (1994).

    CAS  PubMed  Google Scholar 

  29. Tangney, J. P., Stuewig, J. & Mashek, D. J. Moral emotions and moral behavior. Annu. Rev. Psychol. 58, 345–372 (2007). This review paper summarizes social psychology and personality approaches to moral emotions and their roles in moral behaviours, focusing on guilt and shame.

    PubMed  PubMed Central  Google Scholar 

  30. Cryder, C. E., Springer, S. & Morewedge, C. K. Guilty feelings, targeted actions. Pers. Soc. Psychol. Bull. 38, 607–618 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Hari, R. From brain–environment connections to temporal dynamics and social interaction: principles of human brain function. Neuron 94, 1033–1039 (2017).

    CAS  PubMed  Google Scholar 

  32. Wheatley, T., Thornton, M. A., Stolk, A. & Chang, L. J. The emerging science of interacting minds. Persp. Psychol. Sci. https://doi.org/10.1177/17456916231200177 (2023).

  33. Redcay, E. & Schilbach, L. Using second-person neuroscience to elucidate the mechanisms of social interaction. Nat. Rev. Neurosci. 20, 495–505 (2019). This opinion paper reviews arguments for adopting a second-person perspective to study the neural mechanisms of social emotional phenomena.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schilbach, L. et al. Toward a second-person neuroscience. Behav. Brain Sci. 36, 393–414 (2013).

    PubMed  Google Scholar 

  35. Schilbach, L. Towards a second-person neuropsychiatry. Phil. Trans. R. Soc. B 371, 20150081 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Hamilton, A. F., de, C. & Holler, J. Face2face: advancing the science of social interaction. Phil. Trans. R. Soc. B 378, 20210470 (2023).

    PubMed  PubMed Central  Google Scholar 

  37. Pinti, P. et al. The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann. NY Acad. Sci. 1464, 5–29 (2020).

    PubMed  ADS  Google Scholar 

  38. Shamay-Tsoory, S. G. & Mendelsohn, A. Real-life neuroscience: an ecological approach to brain and behavior research. Persp. Psychol. Sci. 14, 841–859 (2019).

    Google Scholar 

  39. Hadley, L. V., Naylor, G. & Hamilton, A. FdeC. A review of theories and methods in the science of face-to-face social interaction. Nat. Rev. Psychol. 1, 42–54 (2022).

    Google Scholar 

  40. FeldmanHall, O. et al. Differential neural circuitry and self-interest in real vs hypothetical moral decisions. Soc. Cogn. Affect. Neurosci. 7, 743–751 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. FeldmanHall, O. et al. What we say and what we do: the relationship between real and hypothetical moral choices. Cognition 123, 434–441 (2012).

    PubMed  PubMed Central  Google Scholar 

  42. Gifuni, A. J., Kendal, A. & Jollant, F. Neural mapping of guilt: a quantitative meta-analysis of functional imaging studies. Brain Imaging Behav. 11, 1164–1178 (2017).

    PubMed  Google Scholar 

  43. Kédia, G., Berthoz, S., Wessa, M., Hilton, D. & Martinot, J.-L. An agent harms a victim: a functional magnetic resonance imaging study on specific moral emotions. J. Cogn. Neurosci. 20, 1788–1798 (2008).

    PubMed  Google Scholar 

  44. Michl, P. et al. Neurobiological underpinnings of shame and guilt: a pilot fMRI study. Soc. Cogn. Affect. Neurosci. 9, 150–157 (2014).

    PubMed  Google Scholar 

  45. Morey, R. A. et al. Neural systems for guilt from actions affecting self versus others. NeuroImage 60, 683–692 (2012).

    PubMed  Google Scholar 

  46. Wagner, U., N’Diaye, K., Ethofer, T. & Vuilleumier, P. Guilt-specific processing in the prefrontal cortex. Cereb. Cortex 21, 2461–2470 (2011).

    PubMed  Google Scholar 

  47. Cracco, E., Desmet, C. & Brass, M. When your error becomes my error: anterior insula activation in response to observed errors is modulated by agency. Soc. Cogn. Affect. Neurosci. 11, 357–366 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Koban, L., Corradi-Dell’Acqua, C. & Vuilleumier, P. Integration of error agency and representation of others’ pain in the anterior insula. J. Cogn. Neurosci. 25, 258–272 (2013).

    PubMed  Google Scholar 

  49. Li, Z., Yu, H., Zhou, Y., Kalenscher, T. & Zhou, X. Guilty by association: how group-based (collective) guilt arises in the brain. NeuroImage 209, 116488 (2020).

    PubMed  Google Scholar 

  50. Radke, S., De Lange, F. P., Ullsperger, M. & De Bruijn, E. R. A. Mistakes that affect others: an fMRI study on processing of own errors in a social context. Exp. Brain Res. 211, 405–413 (2011).

    PubMed  PubMed Central  Google Scholar 

  51. Yu, H., Hu, J., Hu, L. & Zhou, X. The voice of conscience: neural bases of interpersonal guilt and compensation. Soc. Cogn. Affect. Neurosci. 9, 1150–1158 (2014).

    PubMed  Google Scholar 

  52. Zhu, R., Feng, C., Zhang, S., Mai, X. & Liu, C. Differentiating guilt and shame in an interpersonal context with univariate activation and multivariate pattern analyses. NeuroImage 186, 476–486 (2019).

    PubMed  Google Scholar 

  53. Gao, X. et al. The mutuality of social emotions: how the victim’s reactive attitude influences the transgressor’s emotional responses. NeuroImage 244, 118631 (2021).

    PubMed  Google Scholar 

  54. Jack, R. E. & Schyns, P. G. Toward a social psychophysics of face communication. Annu. Rev. Psychol. 68, 269–297 (2017).

    PubMed  Google Scholar 

  55. Adolphs, R. Conceptual challenges and directions for social neuroscience. Neuron 65, 752–767 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Adolphs, R. How should neuroscience study emotions? By distinguishing emotion states, concepts, and experiences. Soc. Cogn. Affect. Neurosci. 12, 24–31 (2017). This theoretical paper provides an in-depth analysis of functionalist approaches to understanding emotion and its neurobiological basis.

    PubMed  Google Scholar 

  57. Mobbs, D. et al. Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc. Natl Acad. Sci. USA 107, 20582 (2010).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21, 34–38 (2011).

    CAS  PubMed  Google Scholar 

  59. Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal–periaqueductal gray shifts in humans. Science 317, 1079–1083 (2007).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Eldar, E., Rutledge, R. B., Dolan, R. J. & Niv, Y. Mood as representation of momentum. Trends Cogn. Sci. 20, 15–24 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Emanuel, A. & Eldar, E. Emotions as computations. Neurosci. Biobehav. Rev. 144, 104977 (2022).

    PubMed  PubMed Central  Google Scholar 

  62. Kao, C.-H., Feng, G. W., Hur, J. K., Jarvis, H. & Rutledge, R. B. Computational models of subjective feelings in psychiatry. Neurosci. Biobehav. Rev. 145, 105008 (2022).

    PubMed  PubMed Central  Google Scholar 

  63. Crockett, M. J. How formal models can illuminate mechanisms of moral judgment and decision making. Curr. Dir. Psychol. Sci. 25, 85–90 (2016). This opinion paper outlines the value of adopting computational modelling in the study of social and moral phenomena.

    Google Scholar 

  64. Conroy-Beam, D. in The Oxford Handbook of Human Mating (ed. Buss, D. M.) 154–177 (Oxford Univ. Press, 2023).

  65. Roberts, I. D. & Hutcherson, C. A. Affect and decision making: insights and predictions from computational models. Trends Cogn. Sci. 23, 602–614 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. Wilson, R. C. & Collins, A. G. E. Ten simple rules for the computational modeling of behavioral data. eLife 8, e49547 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Schaller, M. & Muthukrishna, M. Modeling cultural change: computational models of interpersonal influence dynamics can yield new insights about how cultures change, which cultures change more rapidly than others, and why. Am. Psychol. 76, 1027–1038 (2021).

    PubMed  Google Scholar 

  68. Muthukrishna, M. & Schaller, M. Are collectivistic cultures more prone to rapid transformation? Computational models of cross-cultural differences, social network structure, dynamic social influence, and cultural change. Personal. Soc. Psychol. Rev. 24, 103–120 (2020).

    Google Scholar 

  69. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Hitchcock, P. F., Fried, E. I. & Frank, M. J. Computational psychiatry needs time and context. Annu. Rev. Psychol. 73, 243–270 (2022).

    PubMed  Google Scholar 

  71. Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Montague, P. R., Dolan, R. J., Friston, K. J. & Dayan, P. Computational psychiatry. Trends Cogn. Sci. 16, 72–80 (2012).

    PubMed  Google Scholar 

  73. Wang, X.-J. & Krystal, J. H. Computational psychiatry. Neuron 84, 638–654 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  PubMed  Google Scholar 

  75. Itti, L. & Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).

    CAS  PubMed  Google Scholar 

  76. Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008). This theoretical paper describes an influential computational framework for value-based decision-making.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ruff, C. C. & Fehr, E. The neurobiology of rewards and values in social decision making. Nat. Rev. Neurosci. 15, 549–562 (2014).

    CAS  PubMed  Google Scholar 

  78. Chang, L. J., Smith, A., Dufwenberg, M. & Sanfey, A. G. Triangulating the neural, psychological, and economic bases of guilt aversion. Neuron 70, 560–572 (2011). This neuroimaging study of guilt aversion illustrates how researchers can develop computational models for a social emotional phenomenon and identify its neurobiological implementation.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gao, X. et al. Distinguishing neural correlates of context-dependent advantageous- and disadvantageous-inequity aversion. Proc. Natl Acad. Sci. USA 115, E7680–E7689 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao, X. et al. The psychological, computational, and neural foundations of indebtedness. Nat. Commun. 15, 68 (2024). This study triangulates computation, algorithm and implementation levels to understand mixed feelings and behavioural motivations after receiving favours.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Rutledge, R. B., De Berker, A. O., Espenhahn, S., Dayan, P. & Dolan, R. J. The social contingency of momentary subjective well-being. Nat. Commun. 7, 11825 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  82. Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. A computational and neural model of momentary subjective well-being. Proc. Natl Acad. Sci. USA 111, 12252–12257 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. Dopaminergic modulation of decision making and subjective well-being. J. Neurosci. 35, 9811–9822 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rutledge, R. B. et al. Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiat. 74, 790–797 (2017).

    Google Scholar 

  85. Villano, W. J. et al. Individual differences in naturalistic learning link negative emotionality to the development of anxiety. Sci. Adv. 9, eadd2976 (2023).

    PubMed  PubMed Central  Google Scholar 

  86. Villano, W. J., Otto, A. R., Ezie, C. E., Gillis, R. & Heller, A. S. Temporal dynamics of real-world emotion are more strongly linked to prediction error than outcome. J. Exp. Psychol. Gen. 149, 1755–1766 (2020).

    PubMed  Google Scholar 

  87. Eslinger, P. J. et al. The neuroscience of social feelings: mechanisms of adaptive social functioning. Neurosci. Biobehav. Rev. 128, 592–620 (2021).

    PubMed  PubMed Central  Google Scholar 

  88. Darby, R. S., Henniger, N. E. & Harris, C. R. Reactions to physician-inspired shame and guilt. Basic. Appl. Soc. Psychol. 36, 9–26 (2014).

    Google Scholar 

  89. Teroni, F. & Deonna, J. A. Differentiating shame from guilt. Conscious. Cogn. 17, 725–740 (2008).

    PubMed  Google Scholar 

  90. Tracy, J. L. & Robins, R. W. Appraisal antecedents of shame and guilt: support for a theoretical model. Pers. Soc. Psychol. Bull. 32, 1339–1351 (2006).

    PubMed  Google Scholar 

  91. Xie, E. B. Understanding the Perpetrator’s Experience: Shame, Guilt, and Forgiveness (Carleton Univ., 2020).

  92. Takahashi, H. et al. Brain activation associated with evaluative processes of guilt and embarrassment: an fMRI study. Neuroimage 23, 967–974 (2004).

    PubMed  Google Scholar 

  93. Landers, M., Sznycer, D. & Durkee, P. Are self-conscious emotions about the self? Testing competing theories of shame and guilt across two disparate cultures. Emotion https://doi.org/10.1037/emo0001321 (2023).

  94. Wise, T., Robinson, O. J. & Gillan, C. M. Identifying transdiagnostic mechanisms in mental health using computational factor modeling. Biol. Psychiat. 93, 690–703 (2023).

    PubMed  Google Scholar 

  95. Pessoa, L. A network model of the emotional brain. Trends Cogn. Sci. 21, 357–371 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. de Hooge, I. E. The exemplary social emotion guilt: not so relationship-oriented when another person repairs for you. Cogn. Emot. 26, 1189–1207 (2012).

    PubMed  Google Scholar 

  97. Ketelaar, T. & Au, W. T. The effects of feelings of guilt on the behaviour of uncooperative individuals in repeated social bargaining games: an affect-as-information interpretation of the role of emotion in social interaction. Cogn. Emot. 17, 429–453 (2003).

    PubMed  Google Scholar 

  98. McCullough, M. E., Pedersen, E. J., Tabak, B. A. & Carter, E. C. Conciliatory gestures promote forgiveness and reduce anger in humans. Proc. Natl Acad. Sci. USA 111, 11211–11216 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  99. Algoe, S. B. Find, remind, and bind: the functions of gratitude in everyday relationships. Soc. Pers. Psychol. Compass 6, 455–469 (2012).

    Google Scholar 

  100. Bartlett, M. Y., Condon, P., Cruz, J., Baumann, J. & Desteno, D. Gratitude: prompting behaviours that build relationships. Cogn. Emot. 26, 2–13 (2012).

    PubMed  Google Scholar 

  101. DeSteno, D., Bartlett, M. Y., Baumann, J., Williams, L. A. & Dickens, L. Gratitude as moral sentiment: emotion-guided cooperation in economic exchange. Emotion 10, 289–293 (2010).

    PubMed  Google Scholar 

  102. Tsang, J. A. Gratitude and prosocial behaviour: an experimental test of gratitude. Cogn. Emot. 20, 138–148 (2006).

    Google Scholar 

  103. Haidt, J. in Handbook of Affective Sciences (eds Davidson, R. J., Scherer, K. R. & Goldsmith, H. H.) 852–870 (Oxford Univ. Press, 2003). This theoretical paper proposes an influential theory and taxonomy of moral emotions.

  104. Keltner, D. & Harker, L. in Shame: Interpersonal Behavior, Psychopathology, and Culture (eds Gilbert, P. & Andrews, B.) 78–98 (Oxford Univ. Press, 1998).

  105. Thomason, K. K. Naked: The Dark Side of Shame and Moral Life (Oxford Univ. Press, 2018).

  106. Tangney, J. P. Moral affect: the good, the bad, and the ugly. J. Pers. Soc. Psychol. 61, 598–607 (1991).

    CAS  PubMed  Google Scholar 

  107. Bargh, J. A., Gollwitzer, P. M., Lee-Chai, A., Barndollar, K. & Trötschel, R. The automated will: nonconscious activation and pursuit of behavioral goals. J. Pers. Soc. Psychol. 81, 1014–1027 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Frederick, S. & Loewenstein, G. Conflicting motives in evaluations of sequences. J. Risk Uncertainty 37, 221–235 (2008).

    Google Scholar 

  109. Van Osselaer, S. M. J. et al. Choice based on goals. Mark. Lett. 16, 335–346 (2005).

    Google Scholar 

  110. Hornsey, M. J., Okimoto, T. G. & Wenzel, M. The appraisal gap: why victim and transgressor groups disagree on the need for a collective apology. Eur. J. Soc. Psychol. 47, 135–147 (2017).

    Google Scholar 

  111. Schumann, K. The psychology of offering an apology: understanding the barriers to apologizing and how to overcome them. Curr. Dir. Psychol. Sci. 27, 74–78 (2018).

    Google Scholar 

  112. Woodyatt, L., Wenzel, M., Okimoto, T. G. & Thai, M. Interpersonal transgressions and psychological loss: understanding moral repair as dyadic, reciprocal, and interactionist. Curr. Opin. Psychol. 44, 7–11 (2022).

    PubMed  Google Scholar 

  113. Niemi, L. & Young, L. When and why we see victims as responsible: the impact of ideology on attitudes toward victims. Pers. Soc. Psychol. Bull. 42, 1227–1242 (2016).

    PubMed  Google Scholar 

  114. Suarez, E. & Gadalla, T. M. Stop blaming the victim: a meta-analysis on rape myths. J. Interpers. Violence 25, 2010–2035 (2010).

    PubMed  Google Scholar 

  115. Tennen, H. & Affleck, G. Blaming others for threatening events. Psychol. Bull. 108, 209–232 (1990).

    Google Scholar 

  116. Wohl, M. J. A., Branscombe, N. R. & Klar, Y. Collective guilt: emotional reactions when one’s group has done wrong or been wronged. Eur. Rev. Soc. Psychol. 17, 1–37 (2006).

    Google Scholar 

  117. Amodio, D. M., Devine, P. G. & Harmon-Jones, E. A dynamic model of guilt — implications for motivation and self-regulation in the context of prejudice. Psychol. Sci. 18, 524–530 (2007).

    PubMed  Google Scholar 

  118. Stillman, P. E., Shen, X. & Ferguson, M. J. How mouse-tracking can advance social cognitive theory. Trends Cogn. Sci. 22, 531–543 (2018).

    PubMed  Google Scholar 

  119. Shen, B. et al. The competition dynamics of approach and avoidance motivations following interpersonal transgression. Proc. Natl Acad. Sci. USA 120, e2302484120 (2023). This study combines computational modelling and a time-resolved measure of decision-making processes to offer a nuanced account of the social adaptive functions of social emotions following interpersonal transgression.

    CAS  PubMed  Google Scholar 

  120. Chen, K. et al. A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking. Sci. Data 9, 416 (2022).

    PubMed  PubMed Central  Google Scholar 

  121. Koenig-Robert, R., Quek, G., Grootswagers, T. & Varlet, M. Movement trajectories as a window into the dynamics of emerging neural representations. Preprint at bioRxiv https://doi.org/10.1101/2023.03.15.532848 (2023).

  122. Algoe, S. B. & Haidt, J. Witnessing excellence in action: the ‘other-praising’ emotions of elevation, gratitude, and admiration. J. Posit. Psychol. 4, 105–127 (2009).

    PubMed  PubMed Central  Google Scholar 

  123. Williams, L. A. & Bartlett, M. Y. Warm thanks: gratitude expression facilitates social affiliation in new relationships via perceived warmth. Emotion 15, 1–5 (2015).

    PubMed  Google Scholar 

  124. Peng, C., Nelissen, R. M. A. & Zeelenberg, M. Reconsidering the roles of gratitude and indebtedness in social exchange. Cogn. Emot. 32, 760–772 (2018).

    PubMed  Google Scholar 

  125. Yu, H., Zhou, Y. & Nussberger, A.-M. Gratitude is morally sensitive. Pers. Soc. Psychol. Bull. https://doi.org/10.1177/01461672221092273 (2022).

  126. Mauss, M. The Gift: The Form and Reason for Exchange in Archaic Societies (WW Norton, 2000).

  127. Yan, Y. The Flow of Gifts: Reciprocity and Social Networks in a Chinese Village (Stanford Univ. Press, 1996).

  128. Deng, Y. et al. Culture and patterns of reciprocity: the role of exchange type, regulatory focus, and emotions. Pers. Soc. Psychol. Bull. 47, 20–41 (2021).

    PubMed  Google Scholar 

  129. Goyal, N., Adams, M. M., Wice, M., Sullivan, S. & Miller, J. G. Gratitude endures while indebtedness persuades: investigating the unique influences of gratitude and indebtedness in helping. Cogn. Emot. 36, 1361–1373 (2022).

    PubMed  Google Scholar 

  130. Tsang, J. A. The effects of helper intention on gratitude and indebtedness. Motiv. Emot. 30, 198–204 (2006).

    Google Scholar 

  131. Greenberg, M. S. in Social Exchange: Advances in Theory and Research (eds Gergen, K. J., Greenberg, M. S. & Willis, R. H) 3–26 (Springer, 1980).

  132. Greenberg, M. S. & Westcott, D. R. in New Directions in Helping: Recipient Reactions to Aid (eds Fisher J. D., Nadler A. & DePaulo, B.) 85–112 (Academic Press, 1983).

  133. Washizu, N. & Naito, T. The emotions sumanai, gratitude, and indebtedness, and their relations to interpersonal orientation and psychological well-being among Japanese university students. Int. Perspect. Psychol. 4, 209–222 (2015).

    Google Scholar 

  134. Naito, T., Wangwan, J. & Tani, M. Gratitude in university students in Japan and Thailand. J. Cross-Cult. Psychol. 36, 247–263 (2005).

    Google Scholar 

  135. Naito, T. & Washizu, N. Gratitude in life-span development: an overview of comparative studies between different age groups. J. Behav. Sci. 14, 80–93 (2019).

    Google Scholar 

  136. Le, B. M., Impett, E. A., Lemay, E. P. Jr, Muise, A. & Tskhay, K. O. Communal motivation and well-being in interpersonal relationships: an integrative review and meta-analysis. Psychol. Bull. 144, 1–25 (2018).

    PubMed  Google Scholar 

  137. Rotella, A. Who Cooperates And Why? Investigations of the Roles of Individual Differences and Reputation in Cooperative Behaviours. PhD thesis, Univ. Guelph (2020).

  138. Tomasello, M. The moral psychology of obligation. Behav. Brain Sci. 43, e56 (2020).

    Google Scholar 

  139. Di Paolo, E. & De Jaegher, H. The interactive brain hypothesis. Front. Hum. Neurosci. 6, 163 (2012).

    PubMed  PubMed Central  Google Scholar 

  140. Schirmer, A., Fairhurst, M. & Hoehl, S. Being ‘in sync’ — is interactional synchrony the key to understanding the social brain? Soc. Cogn. Affect. Neurosci. 16, 1–4 (2021).

    PubMed  Google Scholar 

  141. Misaki, M. et al. Beyond synchrony: the capacity of fMRI hyperscanning for the study of human social interaction. Soc. Cogn. Affect. Neurosci. 16, 84–92 (2021).

    PubMed  Google Scholar 

  142. Burns, S. & Lieberman, M. The use of fNIRS for unique contributions to social and affective neuroscience. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/kygbm (2019).

  143. Crum, J. et al. An approach to neuroimaging interpersonal interactions in mental health interventions. Biol. Psychiat. Cogn. Neurosci. Neuroimag. 7, 669–679 (2022).

    Google Scholar 

  144. Hirsch, J., Zhang, X., Noah, J. A. & Ono, Y. Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. NeuroImage 157, 314–330 (2017).

    PubMed  Google Scholar 

  145. Hirsch, J., Adam Noah, J., Zhang, X., Dravida, S. & Ono, Y. A cross-brain neural mechanism for human-to-human verbal communication. Soc. Cogn. Affect. Neurosci. 13, 907–920 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Hirsch, J. et al. Interpersonal agreement and disagreement during face-to-face dialogue: an fNIRS investigation. Front. Hum. Neurosci. 14, 601 (2021).

    Google Scholar 

  147. Theriault, J. E., Young, L. & Barrett, L. F. The sense of should: a biologically-based framework for modeling social pressure. Phys. Life Rev. 36, 100–136 (2021).

    PubMed  ADS  Google Scholar 

  148. Lehmann, K., Bolis, D., Ramstead, M. J., Friston, K. & Kanske, P. An active inference approach to second-person neuroscience. Persp. Psychol. Sci. https://doi.org/10.1177/17456916231188000 (2023).

  149. Chang, L. J. & Jolly, E. in The Nature of Emotion: Fundamental Questions (eds Fox, A., Lapate, R. C., Shackman, A. J. & Davidson, R. J.) 343–348 (Oxford Univ. Press, 2018).

  150. Hackel, L. M., Doll, B. B. & Amodio, D. M. Instrumental learning of traits versus rewards: dissociable neural correlates and effects on choice. Nat. Neurosci. 18, 1233–1235 (2015).

    CAS  PubMed  Google Scholar 

  151. Hackel, L. M., Mende-Siedlecki, P. & Amodio, D. M. Reinforcement learning in social interaction: the distinguishing role of trait inference. J. Exp. Soc. Psychol. 88, 103948 (2020).

    Google Scholar 

  152. Yu, H., Duan, Y. & Zhou, X. Guilt in the eyes: eye movement and physiological evidence for guilt-induced social avoidance. J. Exp. Soc. Psychol. 71, 128–137 (2017).

    Google Scholar 

  153. Yu, H., Cai, Q., Shen, B., Gao, X. & Zhou, X. Neural substrates and social consequences of interpersonal gratitude: intention matters. Emotion 17, 589–601 (2017).

    PubMed  Google Scholar 

  154. Yu, H., Gao, X., Zhou, Y. & Zhou, X. Decomposing gratitude: representation and integration of cognitive antecedents of gratitude in the brain. J. Neurosci. 38, 4886–4898 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Jones, R. M. et al. Behavioral and neural properties of social reinforcement learning. J. Neurosci. 31, 13039–13045 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Siegel, J. Z., Mathys, C., Rutledge, R. B. & Crockett, M. J. Beliefs about bad people are volatile. Nat. Hum. Behav. 2, 750–756 (2018).

    PubMed  Google Scholar 

  157. Charles, S. T. & Carstensen, L. L. Social and emotional aging. Annu. Rev. Psychol. 61, 383–409 (2010).

    PubMed  PubMed Central  Google Scholar 

  158. Orth, U., Robins, R. W. & Soto, C. J. Tracking the trajectory of shame, guilt, and pride across the life span. J. Pers. Soc. Psychol. 99, 1061–1071 (2010).

    PubMed  Google Scholar 

  159. Vaish, A. The prosocial functions of early social emotions: the case of guilt. Curr. Opin. Psychol. 20, 25–29 (2018).

    PubMed  Google Scholar 

  160. Powell, L. J., Macrae, C. N., Cloutier, J., Metcalfe, J. & Mitchell, J. P. Dissociable neural substrates for agentic versus conceptual representations of self. J. Cogn. Neurosci. 22, 2186–2197 (2010).

    PubMed  Google Scholar 

  161. Vaish, A. & Hepach, R. The development of prosocial emotions. Emot. Rev. 12, 259–273 (2020).

    Google Scholar 

  162. Pan, Y., Wen, Y., Jin, J. & Chen, J. The interpersonal computational psychiatry of social coordination in schizophrenia. Lancet Psychiat. 10, 801–808 (2023).

    Google Scholar 

  163. Ekman, P. & Cordaro, D. What is meant by calling emotions basic. Emot. Rev. 3, 364–370 (2011).

    Google Scholar 

  164. Shariff, A. F. & Tracy, J. L. What are emotion expressions for? Curr. Dir. Psychol. Sci. 20, 395–399 (2011).

    Google Scholar 

  165. Fehr, E. & Schmidt, K. M. A theory of fairness, competition, and cooperation. Q. J. Econ. 114, 817–868 (1999).

    Google Scholar 

  166. Charness, G. & Dufwenberg, M. Promises and partnership. Econometrica 74, 1579–1601 (2006).

    MathSciNet  Google Scholar 

  167. Tracy, J. L. & Robins, R. W. Putting the self into self-conscious emotions: a theoretical model. Psychol. Inq. 15, 103–125 (2004). This theoretical paper provides a comprehensive and in-depth account of the role of self-representation in self-conscious emotions.

    Google Scholar 

  168. Tracy, J. L. & Weidman, A. C. in Handbook of Personality: Theory and Research (eds Oliver, P. J. & Robins, R. W.) 504–522 (The Guilford Press, 2021).

  169. Tangney, J. P. & Tracy, J. L. in Handbook of Self and Identity (eds Leary, M. R. & Tangney, J. P.) 446–480 (The Guilford Press, 2012).

  170. Nussbaum, M. C. Justice for Animals: Our Collective Responsibility (Simon and Schuster, 2023).

  171. de Hooge, I. E., Zeelenberg, M. & Breugelmans, S. M. Moral sentiments and cooperation: differential influences of shame and guilt. Cogn. Emot. 21, 1025–1042 (2007).

    Google Scholar 

  172. de Hooge, I. E., Nelissen, R. M. A., Breugelmans, S. M. & Zeelenberg, M. What is moral about guilt? Acting ‘prosocially’ at the disadvantage of others. J. Pers. Soc. Psychol. 100, 462–473 (2011).

    PubMed  Google Scholar 

  173. Giner-Sorolla, R. Judging Passions: Moral Emotions in Persons and Groups (Psychology Press, 2013).

  174. McGee, D. & Giner-Sorolla, R. in The Moral Psychology of Guilt (eds Cokelet, B. & Maley, C.) 149–170 (Rowman & Littlefield, 2019).

  175. De Hooge, I. E. in The Moral Psychology of Guilt (eds Cokelet, B. & Maley, C.) 131–148 (Rowman & Littlefield, 2019).

  176. Deonna, J. A., Rodogno, R. & Teroni, F. In Defense of Shame: The Faces of an Emotion. (Oxford Univ. Press, 2012).

  177. Hofmann, W., Meindl, P., Mooijman, M. & Graham, J. Morality and self-control: how they are intertwined and where they differ. Curr. Dir. Psychol. Sci. 27, 286–291 (2018).

    Google Scholar 

  178. Tesser, A., Gatewood, R. & Driver, M. Some determinants of gratitude. J. Pers. Soc. Psychol. 9, 233–236 (1968).

    CAS  PubMed  Google Scholar 

  179. Fox, G. R., Kaplan, J., Damasio, H. & Damasio, A. Neural correlates of gratitude. Front. Psychol. 6, 1491 (2015).

    PubMed  PubMed Central  Google Scholar 

  180. Brady, W. J., McLoughlin, K., Doan, T. N. & Crockett, M. J. How social learning amplifies moral outrage expression in online social networks. Sci. Adv. 7, eabe5641 (2021).

    PubMed  PubMed Central  ADS  Google Scholar 

  181. Russell, P. S. & Giner-Sorolla, R. Moral anger is more flexible than moral disgust. Soc. Psychol. Pers. Sci. 2, 360–364 (2011).

    Google Scholar 

  182. Russell, P. S. & Giner-Sorolla, R. Moral anger, but not moral disgust, responds to intentionality. Emotion 11, 233–240 (2011).

    PubMed  Google Scholar 

  183. Giner-Sorolla, R. in The Routledge International Handbook of the Psychology of Morality (eds Ellemers, N., Pagliaro, S. & van Nunspeet, F.) 139–143 (Routledge, 2023).

  184. Tracy, J. L., Shariff, A. F. & Cheng, J. T. A naturalist’s view of pride. Emot. Rev. 2, 163–177 (2010).

    Google Scholar 

  185. Tinbergen, N. On aims and methods of ethology. Z. Tierpsychol. 20, 410–433 (1963).

    Google Scholar 

  186. Falcon, A. in The Stanford Encyclopedia of Philosophy (Spring 2023 edn) (eds Zalta, E. N. & Nodelman, U.) https://plato.stanford.edu/archives/spr2023/entries/aristotle-causality/ (Metaphysics Research Lab, Philosophy Dept, Stanford Univ., 2023).

  187. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).

  188. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  189. Lockwood, P. L., Apps, M. A. J., Roiser, J. P. & Viding, E. Encoding of vicarious reward prediction in anterior cingulate cortex and relationship with trait empathy. J. Neurosci. 35, 13720–13727 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Lockwood, P. L., Apps, M. A. J., Valton, V., Viding, E. & Roiser, J. P. Neurocomputational mechanisms of prosocial learning and links to empathy. Proc. Natl Acad. Sci. USA 113, 9763–9768 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  191. Pan, Y., Novembre, G. & Olsson, A. The interpersonal neuroscience of social learning. Persp. Psychol. Sci. 17, 680–695 (2022).

    Google Scholar 

  192. Sul, S. et al. Spatial gradient in value representation along the medial prefrontal cortex reflects individual differences in prosociality. Proc. Natl Acad. Sci. USA 112, 7851–7856 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  193. Suzuki, S. et al. Learning to simulate others’ decisions. Neuron 74, 1125–1137 (2012).

    CAS  PubMed  Google Scholar 

  194. FeldmanHall, O. & Nassar, M. R. The computational challenge of social learning. Trends Cogn. Sci. 25, 1045–1057 (2021). This review paper describes the challenges and opportunities of studying the computational mechanisms of social learning.

    PubMed  PubMed Central  Google Scholar 

  195. Lockwood, P. L. & Klein-Flügge, M. Computational modelling of social cognition and behaviour — a reinforcement learning primer. Soc. Cogn. Affect. Neurosci. 16, 761–771 (2019).

  196. Stillerman, B. S. & Freeman, J. B. in A Handbook of Process Tracing Methods 2nd edn (eds Schulte-Mecklenbeck, M., Kühberger, A., & Johnson, J. G.) 146–160 (Routledge, 2019).

  197. Freeman, J. B. & Ambady, N. MouseTracker: software for studying real-time mental processing using a computer mouse-tracking method. Behav. Res. Meth. 42, 226–241 (2010).

    Google Scholar 

  198. Stolier, R. M., Hehman, E. & Freeman, J. B. A dynamic structure of social trait space. Trends Cogn. Sci. 22, 197–200 (2018).

    PubMed  Google Scholar 

  199. Lim, S.-L., Penrod, M. T., Ha, O.-R., Bruce, J. M. & Bruce, A. S. Calorie labeling promotes dietary self-control by shifting the temporal dynamics of health- and taste-attribute integration in overweight individuals. Psychol. Sci. 29, 447–462 (2018).

    PubMed  Google Scholar 

  200. Freeman, J. B. & Ambady, N. Motions of the hand expose the partial and parallel activation of stereotypes. Psychol. Sci. 20, 1183–1188 (2009).

    PubMed  Google Scholar 

  201. Melnikoff, D. E., Mann, T. C., Stillman, P. E., Shen, X. & Ferguson, M. J. Tracking prejudice: a mouse-tracking measure of evaluative conflict predicts discriminatory behavior. Soc. Psychol. Pers. Sci. 12, 266–272 (2021).

    Google Scholar 

  202. Chen, F., Zhu, Z., Shen, Q., Krajbich, I. & Hare, T. A. Intrachoice dynamics shape social decisions. Manag. Sci. https://doi.org/10.1287/mnsc.2023.4732 (2023).

  203. Garcia-Guerrero, S., O’Hora, D., Zgonnikov, A. & Scherbaum, S. The action dynamics of approach-avoidance conflict during decision-making. Q. J. Exp. Psychol. 76, 160–179 (2023).

    Google Scholar 

  204. Scherbaum, S., Dshemuchadse, M., Fischer, R. & Goschke, T. How decisions evolve: the temporal dynamics of action selection. Cognition 115, 407–416 (2010).

    PubMed  Google Scholar 

  205. Sullivan, N., Hutcherson, C., Harris, A. & Rangel, A. Dietary self-control is related to the speed with which attributes of healthfulness and tastiness are processed. Psychol. Sci. 26, 122–134 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant 71942001 to X.Z., X.G., and Y.H.; grant 32371094 to X.G.; grant 31630034 to X.Z. and X.G.; grant 32200853 to Y.H.), by the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (grants YESS20210176 and 2021QNRC001 to X.G.), the STI 2023 — Major Projects (grant 2021ZD0200500 to X.G., Y.H. and X.Z.), the Research Project of Shanghai Science and Technology Commission (grant 20dz2260300 to X.G. and X.Z.), and the Fundamental Research Funds for the Central Universities (to X.G. and X.Z.). Y.H. was supported by the Natural Science Foundation of Shanghai (grant 23ZR1418400) and by the Fundamental Research Funds for the Central Universities (2022ECNU-XWK-XK003). The authors thank D. Sznycer, R. Carlson and S. Wang for their constructive comments on the content and structure of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. conceived the idea and structure of the manuscript. H.Y., X.G., B.S. and Y.H. wrote the first draft of the manuscript. All authors discussed, revised and contributed intellectually to the manuscript.

Corresponding author

Correspondence to Hongbo Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Leonhard Schilbach, Jessica Tracy, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Gao, X., Shen, B. et al. A levels-of-analysis framework for studying social emotions. Nat Rev Psychol 3, 198–213 (2024). https://doi.org/10.1038/s44159-024-00285-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-024-00285-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing