Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Noisy and hierarchical visual memory across timescales

Abstract

Both in everyday life and in memory research, people tend to think that items are ‘held’ in mind, in the same way that a real-world object can be held in one’s hand. Inspired by this metaphor, traditional work on visual working memory and visual long-term memory focuses on understanding how many objects are remembered or forgotten, or held or lost, in particular circumstances. By contrast, newer computational and empirical work on visual memory focuses on the role of noise in memory representations — in which memories are thought to vary continually in ‘strength’ or ‘precision’ — as well as the role of the visual hierarchy and priors in structuring memory. In this Review, we merge these contemporary theories and evidence. We describe how fundamentally noisy memory representations are instantiated at different levels of the visual hierarchy and support both visual working memory and long-term memory. We also discuss how thinking of memory in this way can direct further research and illuminate the nature of cognitive function more broadly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visual memory at different timescales.
Fig. 2: Memory strength across time.
Fig. 3: Categorical and continuous reproduction of memory.
Fig. 4: The effect of complexity and meaning.

Similar content being viewed by others

References

  1. Foer, J. Moonwalking with Einstein: The Art and Science of Remembering Everything (Penguin, 2012).

  2. Squire, L. R., Knowlton, B. & Musen, G. The structure and organization of memory. Annu. Rev. Psychol. 44, 453–495 (1993).

    CAS  PubMed  Google Scholar 

  3. Eichenbaum, H., Yonelinas, A. R. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brady, T. F. & Bainbridge, W. A. Visual Memory (Routledge, 2022).

  5. Luck, S. J. & Hollingworth, A. Visual Memory (Oxford Univ. Press, 2008).

  6. Hubel, D. H. & Wiesel, T. N. Ferrier lecture — Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977).

    CAS  PubMed  ADS  Google Scholar 

  7. Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996).

    CAS  PubMed  Google Scholar 

  8. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Todd, J. J. & Marois, R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428, 751–754 (2004).

    CAS  PubMed  ADS  Google Scholar 

  10. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    CAS  PubMed  Google Scholar 

  11. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beschin, N., Cocchini, G., Della Sala, S. & Logie, R. H. What the eyes perceive, the brain ignores: a case of pure unilateral representational neglect. Cortex 33, 3–26 (1997).

    CAS  PubMed  Google Scholar 

  13. Guariglia, C., Padovani, A., Pantano, P. & Pizzamiglio, L. Unilateral neglect restricted to visual imagery. Nature 364, 235–237 (1993).

    CAS  PubMed  ADS  Google Scholar 

  14. Hebb, D. O. The Organization of Behavior: a Psychological Theory (Wiley, 1949).

  15. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    CAS  PubMed  ADS  Google Scholar 

  16. Goldman-Rakic, P. S. Working memory and the mind. Sci. Am. 267, 110–117 (1992).

    CAS  PubMed  Google Scholar 

  17. Berggren, N. & Eimer, M. Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory? J. Cogn. Neurosci. 28, 2003–2020 (2016).

    PubMed  Google Scholar 

  18. Ikkai, A., McCollough, A. W. & Vogel, E. K. Contralateral delay activity provides a neural measure of the number of representations in visual working memory. J. Neurophysiol. 103, 1963–1968 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Kang, M.-S. & Woodman, G. F. The neurophysiological index of visual working memory maintenance is not due to load dependent eye movements. Neuropsychologia 56, 63–72 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Klaver, P., Talsma, D., Wijers, A. A., Heinze, H.-J. & Mulder, G. An event-related brain potential correlate of visual short-term memory. NeuroReport 10, 2001–2005 (1999).

    CAS  PubMed  Google Scholar 

  21. Pomper, U., Ditye, T. & Ansorge, U. Contralateral delay activity during temporal order memory. Neuropsychologia 129, 104–116 (2019).

    PubMed  Google Scholar 

  22. Carlisle, N. B., Arita, J. T., Pardo, D. & Woodman, G. F. Attentional templates in visual working memory. J. Neurosci. 31, 9315–9322 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Barbosa, J., Lozano-Soldevilla, D. & Compte, A. Pinging the brain with visual impulses reveals electrically active, not activity-silent, working memories. PLOS Biol. 19, e3001436 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrison, S. A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Serences, J. T., Ester, E. F., Vogel, E. K. & Awh, E. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 20, 207–214 (2009).

    PubMed  Google Scholar 

  26. Morey, C. C. The case against specialized visual-spatial short-term memory. Psychol. Bull. 144, 849–883 (2018).

    PubMed  Google Scholar 

  27. Bartlett, F. C. Remembering: A study in Experimental and Social Psychology (Cambridge Univ. Press, 1995).

  28. Carmichael, L., Hogan, H. P. & Walter, A. A. An experimental study of the effect of language on the reproduction of visually perceived form. J. Exp. Psychol. 15, 73–86 (1932).

    Google Scholar 

  29. Logie, R. H. Visuo-spatial Working Memory (Psychology Press, 2014).

  30. Logie, R. H., Belletier, C. & Doherty, J. M. in Working Memory: State of the Science (eds Logie, R. H. et al.) 389–429 (Oxford Univ. Press, 2021).

  31. Atkinson, R. C. & Shiffrin, R. M. in Psychology of Learning and Motivation vol. 2 (eds Spence, K. W. & Spence, J. T.) 89–195 (Elsevier, 1968).

  32. Baddeley, A. D. The influence of acoustic and semantic similarity on long-term memory for word sequences. Q. J. Exp. Psychol. 18, 302–309 (1966).

    CAS  PubMed  Google Scholar 

  33. Cowan, N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 169, 323–338 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. Brainerd, C. J. & Reyna, V. F. Fuzzy-trace theory and false memory. Curr. Dir. Psychol. Sci. 11, 164–169 (2002).

    Google Scholar 

  35. Miner, A. E., Schurgin, M. W. & Brady, T. F. Is working memory inherently more “precise” than long-term memory? Extremely high fidelity visual long-term memories for frequently encountered objects. J. Exp. Psychol. Hum. Percept. Perform. 46, 813–830 (2020).

    PubMed  Google Scholar 

  36. Schurgin, M. W., Wixted, J. T. & Brady, T. F. Psychophysical scaling reveals a unified theory of visual memory strength. Nat. Hum. Behav. 4, 1156–1172 (2020).

    PubMed  Google Scholar 

  37. Serences, J. T. & Yantis, S. Selective visual attention and perceptual coherence. Trends Cogn. Sci. 10, 38–45 (2006).

    PubMed  Google Scholar 

  38. Sprague, T. C., Ester, E. F. & Serences, J. T. Restoring latent visual working memory representations in human cortex. Neuron 91, 694–707 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stokes, M. G. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 19, 394–405 (2015).

    PubMed  PubMed Central  Google Scholar 

  40. Cunningham, C. A. & Wolfe, J. M. The role of object categories in hybrid visual and memory search. J. Exp. Psychol. Gen. 143, 1585 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Wolfe, J. M., Boettcher, S. E., Josephs, E. L., Cunningham, C. A. & Drew, T. You look familiar, but I don’t care: lure rejection in hybrid visual and memory search is not based on familiarity. J. Exp. Psychol. Hum. Percept. Perform. 41, 1576 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Baddeley, A. Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 (2003).

    CAS  PubMed  Google Scholar 

  43. Chun, M. M., Golomb, J. D. & Turk-Browne, N. B. A taxonomy of external and internal attention. Annu. Rev. Psychol. 62, 73–101 (2011).

    PubMed  Google Scholar 

  44. Postle, B. R., Druzgal, T. J. & D’Esposito, M. Seeking the neural substrates of visual working memory storage. Cortex 39, 927–946 (2003).

    PubMed  Google Scholar 

  45. Oberauer, K. Access to information in working memory: exploring the focus of attention. J. Exp. Psychol. Learn. Mem. Cogn. 28, 411 (2002).

    PubMed  Google Scholar 

  46. Cowan, N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114 (2001).

    CAS  PubMed  Google Scholar 

  47. Luck, S. J. & Vogel, E. K. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Markov, Y. A., Utochkin, I. S. & Brady, T. F. Real-world objects are not stored in holistic representations in visual working memory. J. Vis. 21, 18 (2021).

    PubMed  PubMed Central  Google Scholar 

  49. Rademaker, R. L., Park, Y. E., Sack, A. T. & Tong, F. Evidence of gradual loss of precision for simple features and complex objects in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 44, 925–940 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Wilken, P. & Ma, W. J. A detection theory account of change detection. J. Vis. 4, 1120–1135 (2004).

    Google Scholar 

  51. Williams, J. R., Robinson, M. M., Schurgin, M. W., Wixted, J. T. & Brady, T. F. You cannot “count” how many items people remember in visual working memory: the importance of signal detection-based measures for understanding change detection performance. J. Exp. Psychol. Hum. Percept. Perform. 48, 1390–1409 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Alvarez, G. A. & Cavanagh, P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 15, 106–111 (2004).

    CAS  PubMed  Google Scholar 

  53. Awh, E., Barton, B. & Vogel, E. K. Visual working memory represents a fixed number of items regardless of complexity. Psychol. Sci. 18, 622–628 (2007).

    PubMed  Google Scholar 

  54. Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    CAS  PubMed  ADS  Google Scholar 

  55. Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl Acad. Sci. USA 105, 14325–14329 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Bae, G. Y. & Luck, S. J. Interactions between visual working memory representations. Atten. Percept. Psychophys. 79, 2376–2395 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Brady, T. F. & Alvarez, G. A. Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychol. Sci. 22, 384–392 (2011).

    PubMed  Google Scholar 

  58. Chunharas, C., Rademaker, R. L., Brady, T. F. & Serences, J. T. An adaptive perspective on visual working memory distortions. J. Exp. Psychol. Gen. 151, 2300–2323 (2022).

    PubMed  PubMed Central  Google Scholar 

  59. Golomb, J. D. Divided spatial attention and feature-mixing errors. Attent. Percept. Psychophys. 77, 2562–2569 (2015).

    Google Scholar 

  60. Lively, Z., Robinson, M. M. & Benjamin, A. S. Memory fidelity reveals qualitative changes in interactions between items in visual working memory. Psychol. Sci. 32, 1426–1441 (2021).

    PubMed  Google Scholar 

  61. Scotti, P. S., Hong, Y., Golomb, J. D. & Leber, A. B. Statistical learning as a reference point for memory distortions: swap and shift errors. Attent. Percept. Psychophys. 83, 1652–1672 (2021).

    Google Scholar 

  62. Pertzov, Y., Bays, P. M., Joseph, S. & Husain, M. Rapid forgetting prevented by retrospective attention cues. J. Exp. Psychol. Hum. Percept. Perform. 39, 1224 (2013).

    PubMed  Google Scholar 

  63. Makovski, T. & Jiang, Y. V. Distributing versus focusing attention in visual short-term memory. Psychon. Bull. Rev. 14, 1072–1078 (2007).

    Google Scholar 

  64. Marini, F., Scott, J., Aron, A. R. & Ester, E. F. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations. Attent. Percept. Psychophys. 79, 1384–1392 (2017).

    Google Scholar 

  65. van den Berg, R., Shin, H., Chou, W.-C., George, R. & Ma, W. J. Variability in encoding precision accounts for visual short-term memory limitations. Proc. Natl Acad. Sci. USA 109, 8780–8785 (2012).

    PubMed  PubMed Central  ADS  Google Scholar 

  66. Bays, P. M. Noise in neural populations accounts for errors in working memory. J. Neurosci. 34, 3632–3645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. van den Berg, R., Awh, E. & Ma, W. J. Factorial comparison of working memory models. Psychol. Rev. 121, 124–149 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Adam, K. C. S., Vogel, E. K. & Awh, E. Clear evidence for item limits in visual working memory. Cogn. Psychol. 97, 79–97 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Zhang, W. & Luck, S. J. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Schneegans, S., Taylor, R. & Bays, P. M. Stochastic sampling provides a unifying account of visual working memory limits. Proc. Natl Acad. Sci. USA 117, 20959–20968 (2020).

    MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Pratte, M. S. Set size effects on working memory precision are not due to an averaging of slots. Attent. Percept. Psychophys. 82, 2937–2949 (2020).

    Google Scholar 

  72. Bays, P., Schneegans, S., Ma, W. J. & Brady, T. F. Representation and computation in working memory. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/kubr9 (2022).

  73. Swets, J. A. Form of empirical ROCs in discrimination and diagnostic tasks: implications for theory and measurement of performance. Psychol. Bull. 99, 181–198 (1986).

    PubMed  Google Scholar 

  74. Wixted, J. T. Dual-process theory and signal-detection theory of recognition memory. Psychol. Rev. 114, 152–176 (2007).

    PubMed  Google Scholar 

  75. Wixted, J. T. & Mickes, L. A continuous dual-process model of remember/know judgments. Psychol. Rev. 117, 1025–1054 (2010).

    PubMed  Google Scholar 

  76. Taylor, R. & Bays, P. M. Theory of neural coding predicts an upper bound on estimates of memory variability. Psychol. Rev. 127, 700 (2020).

    PubMed  PubMed Central  Google Scholar 

  77. Delay, C. G. & Wixted, J. T. Discrete-state versus continuous models of the confidence-accuracy relationship in recognition memory. Psychon. Bull. Rev. 28, 556–564 (2021).

    PubMed  Google Scholar 

  78. Brady, T. F., Robinson, M. M., Williams, J. R. & Wixted, J. T. Measuring memory is harder than you think: how to avoid problematic measurement practices in memory research. Psychon. Bull. Rev. 30, 421–449 (2023).

    PubMed  Google Scholar 

  79. Honig, M., Ma, W. J. & Fougnie, D. Humans incorporate trial-to-trial working memory uncertainty into rewarded decisions. Proc. Natl Acad. Sci. USA 117, 8391–8397 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Jabar, S. B. et al. Using a betting game to reveal the rich nature of visual working memories. Preprint at bioRxiv https://doi.org/10.1101/2020.10.28.357442 (2020).

  81. Yoo, A. H., Acerbi, L. & Ma, W. J. Uncertainty is maintained and used in working memory. J. Vis. 21, 13 (2021).

    PubMed  PubMed Central  Google Scholar 

  82. Treisman, A. Features and objects in visual processing. Sci. Am. 13, 114–125 (1986).

    Google Scholar 

  83. Schneegans, S. & Bays, P. M. Neural architecture for feature binding in visual working memory. J. Neurosci. 37, 3913–3925 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bays, P. M., Wu, E. Y. & Husain, M. Storage and binding of object features in visual working memory. Neuropsychologia 49, 1622–1631 (2011).

    PubMed  Google Scholar 

  85. Fougnie, D. & Alvarez, G. A. Object features fail independently in visual working memory: evidence for a probabilistic feature-store model. J. Vis. 11, 3 (2011).

    PubMed  Google Scholar 

  86. Shin, H. & Ma, W. J. Visual short-term memory for oriented, colored objects. J. Vis. 17, 12 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Utochkin, I. S. & Brady, T. F. Independent storage of different features of real-world objects in long-term memory. J. Exp. Psychol. Gen. 149, 530–549 (2020).

    PubMed  Google Scholar 

  88. Fougnie, D., Cormiea, S. M. & Alvarez, G. A. Object-based benefits without object-based representations. J. Exp. Psychol. Gen. 142, 621–626 (2013).

    PubMed  Google Scholar 

  89. Wang, B., Cao, X., Theeuwes, J., Olivers, C. N. & Wang, Z. Location-based effects underlie feature conjunction benefits in visual working memory. J. Vis. 16, 12 (2016).

    PubMed  Google Scholar 

  90. Egly, R., Driver, J. & Rafal, R. D. Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. J. Exp. Psychol. Gen. 123, 161–177 (1994).

    PubMed  Google Scholar 

  91. Francis, G. & Thunell, E. Excess success in articles on object-based attention. Attent. Percept. Psychophys. 84, 700–714 (2022).

    Google Scholar 

  92. Chater, N., Tenenbaum, J. B. & Yuille, A. Probabilistic models of cognition: conceptual foundations. Trends Cogn. Sci. 10, 287–291 (2006).

    PubMed  Google Scholar 

  93. Ma, W. J. Organizing probabilistic models of perception. Trends Cogn. Sci. 16, 511–518 (2012).

    PubMed  Google Scholar 

  94. Kellen, D., Winiger, S., Dunn, J. C. & Singmann, H. Testing the foundations of signal detection theory in recognition memory. Psychol. Rev. 128, 1022–1050 (2021).

    PubMed  Google Scholar 

  95. Rotello, C. M., Heit, E. & Dubé, C. When more data steer us wrong: replications with the wrong dependent measure perpetuate erroneous conclusions. Psychon. Bull. Rev. 22, 944–954 (2015).

    PubMed  Google Scholar 

  96. Starns, J. J. et al. Assessing theoretical conclusions with blinded inference to investigate a potential inference crisis. Adv. Meth. Pract. Psychol. Sci. 2, 335–349 (2019).

    Google Scholar 

  97. Wixted, J. T. & Mickes, L. Theoretical vs. empirical discriminability: the application of ROC methods to eyewitness identification. Cogn. Res. Princ. Implic. 3, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Shen, K. J., Colloff, M. F., Vul, E., Wilson, B. M. & Wixted, J. T. Modeling face similarity in police lineups. Psychol. Rev. 130, 432–461 (2023).

    PubMed  Google Scholar 

  99. Adler, W. T. & Ma, W. J. Comparing Bayesian and non-Bayesian accounts of human confidence reports. PLoS Comput. Biol. 14, e1006572 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  100. Ma, W. J. Bayesian decision models: a primer. Neuron 104, 164–175 (2019).

    CAS  PubMed  Google Scholar 

  101. Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Brady, T. F. & Tenenbaum, J. B. A probabilistic model of visual working memory: incorporating higher order regularities into working memory capacity estimates. Psychol. Rev. 120, 85–109 (2013).

    PubMed  Google Scholar 

  103. Smith, P. L., Saber, S., Corbett, E. A. & Lilburn, S. D. Modeling continuous outcome color decisions with the circular diffusion model: metric and categorical properties. Psychol. Rev. 127, 562 (2020).

    PubMed  Google Scholar 

  104. Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working memory. Nat. Neurosci. 17, 347–356 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Schurgin, M. W. & Flombaum, J. I. Visual working memory is more tolerant than visual long-term memory. J. Exp. Psychol. Hum. Percept. Perform. 44, 1216–1227 (2018).

    PubMed  Google Scholar 

  106. Howard, M. W. & Kahana, M. J. A distributed representation of temporal context. J. Math. Psychol. 46, 269–299 (2002).

    MathSciNet  Google Scholar 

  107. Brady, T. F. & Störmer, V. S. The role of meaning in visual working memory: real-world objects, but not simple features, benefit from deeper processing. J. Exp. Psychol. Learn. Mem. Cogn. 48, 942–958 (2022).

    PubMed  Google Scholar 

  108. Endress, A. D. & Potter, M. C. Large capacity temporary visual memory. J. Exp. Psychol. Gen. 143, 548–565 (2014).

    PubMed  Google Scholar 

  109. Tsubomi, H., Fukuda, K., Watanabe, K. & Vogel, E. K. Neural limits to representing objects still within view. J. Neurosci. 33, 8257–8263 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vogel, E. K., Woodman, G. F. & Luck, S. J. The time course of consolidation in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 32, 1436–1451 (2006).

    PubMed  Google Scholar 

  111. Ricker, T. J. & Hardman, K. O. The nature of short-term consolidation in visual working memory. J. Exp. Psychol. Gen. 146, 1551–1573 (2017).

    PubMed  Google Scholar 

  112. Li, X., Xiong, Z., Theeuwes, J. & Wang, B. Visual memory benefits from prolonged encoding time regardless of stimulus type. J. Exp. Psychol. Learn. Mem. Cogn. 46, 1998–2005 (2020).

    PubMed  Google Scholar 

  113. Draschkow, D., Kallmayer, M. & Nobre, A. C. When natural behavior engages working memory. Curr. Biol. 31, 869–874 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Williams, J. & Störmer, V. S. Working memory: how much is it used in natural behavior? Curr. Biol. 31, R205–R206 (2021).

    CAS  PubMed  Google Scholar 

  115. Miller, G. A. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).

    CAS  PubMed  Google Scholar 

  116. Balaban, H. & Luria, R. The number of objects determines visual working memory capacity allocation for complex items. NeuroImage 119, 54–62 (2015).

    PubMed  Google Scholar 

  117. Barton, B., Ester, E. F. & Awh, E. Discrete resource allocation in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 35, 1359–1367 (2009).

    PubMed  PubMed Central  Google Scholar 

  118. Rouder, J. N. et al. An assessment of fixed-capacity models of visual working memory. Proc. Natl Acad. Sci. USA 105, 5975–5979 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  119. Navon, D. Resources — a theoretical soup stone? Psychol. Rev. 99, 216–234 (1984).

    Google Scholar 

  120. Franconeri, S. L., Alvarez, G. A. & Cavanagh, P. Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn. Sci. 17, 134–141 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. Bays, P. M. Spikes not slots: noise in neural populations limits working memory. Trends Cogn. Sci. 19, 431–438 (2015).

    PubMed  Google Scholar 

  122. Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    CAS  Google Scholar 

  123. Smith, P. L., Lilburn, S. D., Corbett, E. A., Sewell, D. K. & Kyllingsbæk, S. The attention-weighted sample-size model of visual short-term memory: attention capture predicts resource allocation and memory load. Cogn. Psychol. 89, 71–105 (2016).

    PubMed  Google Scholar 

  124. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (John Wiley, 1966).

  125. Palmer, J. Attentional limits on the perception and memory of visual information. J. Exp. Psychol. Hum. Percept. Perform. 16, 332 (1990).

    CAS  PubMed  Google Scholar 

  126. Brady, T. F., Konkle, T. & Alvarez, G. A. Compression in visual working memory: using statistical regularities to form more efficient memory representations. J. Exp. Psychol. Gen. 138, 487–502 (2009).

    PubMed  Google Scholar 

  127. Orhan, A. E., Sims, C. R., Jacobs, R. A. & Knill, D. C. The adaptive nature of visual working memory. Curr. Dir. Psychol. Sci. 23, 164–170 (2014).

    Google Scholar 

  128. Bates, C. J. & Jacobs, R. A. Efficient data compression in perception and perceptual memory. Psychol. Rev. 127, 891–917 (2020).

    PubMed  Google Scholar 

  129. Van den Berg, R. & Ma, W. J. A resource-rational theory of set size effects in human visual working memory. eLife 7, e34963 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7, 217–229 (2015).

    PubMed  Google Scholar 

  131. Kristjánsson, Á. & Draschkow, D. Keeping it real: looking beyond capacity limits in visual cognition. Attent. Percept. Psychophys. 83, 1375–1390 (2021).

    Google Scholar 

  132. Hayhoe, M. & Ballard, D. Eye movements in natural behavior. Trends Cogn. Sci. 9, 188–194 (2005).

    PubMed  Google Scholar 

  133. Ballard, D. H., Hayhoe, M. M. & Pelz, J. B. Memory representations in natural tasks. J. Cogn. Neurosci. 7, 66–80 (1995).

    CAS  PubMed  Google Scholar 

  134. Simons, D. J. & Rensink, R. A. Change blindness: past, present, and future. Trends Cogn. Sci. 9, 16–20 (2005).

    PubMed  Google Scholar 

  135. Simons, D. J. & Ambinder, M. S. Change blindness: theory and consequences. Curr. Dir. Psychol. Sci. 14, 44–48 (2005).

    Google Scholar 

  136. Dretske, F. What change blindness teaches about consciousness. Phil. Persp. 21, 215–230 (2007).

    Google Scholar 

  137. O’Regan, J. K. & Noë, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973 (2001).

    PubMed  Google Scholar 

  138. O’Regan, J. K. Solving the ‘real’ mysteries of visual perception: the world as an outside memory. Can. J. Psychol. 46, 461–488 (1992).

    PubMed  Google Scholar 

  139. Rensink, R. A. Change blindness. In Neurobiology of Attention 76–81 (Elsevier, 2005).

  140. Hollingworth, A. Scene and position specificity in visual memory for objects. J. Exp. Psychol. Learn. Mem. Cogn. 32, 58–69 (2006).

    PubMed  Google Scholar 

  141. Jost, K. et al. Controlling conflict from interfering long-term memory representations. J. Cogn. Neurosci. 24, 1173–1190 (2012).

    PubMed  Google Scholar 

  142. Konkle, T., Brady, T. F., Alvarez, G. A. & Oliva, A. Scene memory is more detailed than you think: the role of categories in visual long-term memory. Psychol. Sci. 21, 1551–1556 (2010).

    PubMed  Google Scholar 

  143. Konkle, T., Brady, T. F., Alvarez, G. A. & Oliva, A. Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. J. Exp. Psychol. Gen. 139, 558 (2010).

    PubMed  PubMed Central  Google Scholar 

  144. Robertson, E. M. New insights in human memory interference and consolidation. Curr. Biol. 22, R66–R71 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Wais, P. E. & Gazzaley, A. Distractibility during retrieval of long-term memory: domain-general interference, neural networks and increased susceptibility in normal aging. Front. Psychol. 5, 280 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Drascher, M. L. & Kuhl, B. A. Long-term memory interference is resolved via repulsion and precision along diagnostic memory dimensions. Psychon. Bull. Rev. 29, 1898–1912 (2022).

    PubMed  PubMed Central  Google Scholar 

  147. Fukuda, K. & Vogel, E. K. Visual short-term memory capacity predicts the ‘bandwidth’ of visual long-term memory encoding. Mem. Cogn. 47, 1481–1497 (2019).

    Google Scholar 

  148. Sundby, C. S., Woodman, G. F. & Fukuda, K. Electrophysiological and behavioral evidence for attentional up-regulation, but not down-regulation, when encoding pictures into long-term memory. Mem. Cogn. 47, 351–364 (2019).

    Google Scholar 

  149. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. NeuroSci. 18, 193–222 (2019).

    Google Scholar 

  150. Beck, D. M. & Kastner, S. Top-down and bottom-up mechanisms in biasing competition in the human brain. Vis. Res. 49, 1154–1165 (2009).

    PubMed  Google Scholar 

  151. Rugo, K. F., Tamler, K. N., Woodman, G. F. & Maxcey, A. M. Recognition-induced forgetting of faces in visual long-term memory. Attent. Percept. Psychophys. 79, 1878–1885 (2017).

    Google Scholar 

  152. Lin, P.-H. & Luck, S. J. Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task. Front. Psychol. 3, 42 (2012).

    PubMed  PubMed Central  Google Scholar 

  153. Olson, I. R. & Jiang, Y. Visual short-term memory is not improved by training. Mem. Cogn. 32, 1326–1332 (2004).

    Google Scholar 

  154. Lu, X., Dai, A., Guo, Y., Shen, M. & Gao, Z. Is the social chunking of agent actions in working memory resource-demanding? Cognition 229, 105249 (2022).

    PubMed  Google Scholar 

  155. Snow, J. C. & Culham, J. C. The treachery of images: how realism influences brain and behavior. Trends Cogn. Sci. 25, 506–519 (2021).

    PubMed  PubMed Central  Google Scholar 

  156. Vestner, T., Over, H., Gray, K. L. & Cook, R. Objects that direct visuospatial attention produce the search advantage for facing dyads. J. Exp. Psychol. Gen. 151, 161–171 (2022).

  157. Brady, T. F. et al. Scaling up visual attention and visual working memory to the real world. In Psychology of Learning and Motivation Vol. 70, 29–69 (Elsevier, 2019).

  158. Wiseman, S. & Neisser, U. Perceptual organization as a determinant of visual recognition memory. Am. J. Psychol. 87, 675–681 (1974).

    CAS  PubMed  Google Scholar 

  159. Asp, I. E., Störmer, V. S. & Brady, T. F. Greater visual working memory capacity for visually matched stimuli when they are perceived as meaningful. J. Cogn. Neurosci. 33, 902–918 (2021).

    PubMed  Google Scholar 

  160. Ngiam, W. X. Q., Brissenden, J. A. & Awh, E. “Memory compression” effects in visual working memory are contingent on explicit long-term memory. J. Exp. Psychol. Gen. 148, 1373–1385 (2019).

    PubMed  PubMed Central  Google Scholar 

  161. Starr, A., Srinivasan, M. & Bunge, S. A. Semantic knowledge influences visual working memory in adults and children. PLoS ONE 15, e0241110 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Moore, C. D., Cohen, M. X. & Ranganath, C. Neural mechanisms of expert skills in visual working memory. J. Neurosci. 26, 11187–11196 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Xie, W. & Zhang, W. Familiarity increases the number of remembered Pokémon in visual short-term memory. Mem. Cogn. 45, 677–689 (2017).

    Google Scholar 

  164. Brady, T. F., Störmer, V. S. & Alvarez, G. A. Working memory is not fixed-capacity: more active storage capacity for real-world objects than for simple stimuli. Proc. Natl Acad. Sci. USA 113, 7459–7464 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  165. Jackson, M. C. & Raymond, J. E. Familiarity enhances visual working memory for faces. J. Exp. Psychol. Hum. Percept. Perform. 34, 556–568 (2008).

    PubMed  PubMed Central  Google Scholar 

  166. O’Donnell, R. E., Clement, A. & Brockmole, J. R. Semantic and functional relationships among objects increase the capacity of visual working memory. J. Exp. Psychol. Learn. Mem. Cogn. 44, 1151–1158 (2018).

    PubMed  Google Scholar 

  167. Nosofsky, R. M. Tests of an exemplar model for relating perceptual classification and recognition memory. J. Exp. Psychol. Hum. Percept. Perform. 17, 3–27 (1991).

    CAS  PubMed  Google Scholar 

  168. Wyble, B., Swan, G. & Callahan-Flintoft, C. Measuring visual memory in its native format. Trends Cogn. Sci. 20, 790–791 (2016).

    PubMed  Google Scholar 

  169. Sahar, T., Sidi, Y. & Makovski, T. A metacognitive perspective of visual working memory with rich complex objects. Front. Psychol. 11, 179 (2020).

    PubMed  PubMed Central  Google Scholar 

  170. Stojanoski, B., Emrich, S. M. & Cusack, R. Representation of semantic information in ventral areas during encoding is associated with improved visual short-term memory. Preprint at bioRxiv https://doi.org/10.1101/2019.12.13.875542 (2020).

  171. Allen, M. G., Destefano, I. & Brady, T. F. Chunks are not ‘content-free’: hierarchical representations preserve perceptual detail within chunks. In Proc. Ann. Meet. Cogn. Sci. Soc. 43, 721–727 (2021).

    Google Scholar 

  172. Mathy, F. & Feldman, J. What’s magic about magic numbers? Chunking and data compression in short-term memory. Cognition 122, 346–362 (2012).

    PubMed  Google Scholar 

  173. Wood, J. N. Visual working memory for observed actions. J. Exp. Psychol. Gen. 136, 639–652 (2007).

    PubMed  Google Scholar 

  174. Shen, M., Gao, Z., Ding, X., Zhou, B. & Huang, X. Holding biological motion information in working memory. J. Exp. Psychol. Hum. Percept. Perform. 40, 1332–1345 (2014).

    PubMed  Google Scholar 

  175. Craik, F. I. Levels of processing: past, present… and future? Memory 10, 305–318 (2002).

    PubMed  Google Scholar 

  176. Craik, F. I. & Lockhart, R. S. Levels of processing: a framework for memory research. J. Verbal Learn. Verbal Behav. 11, 671–684 (1972).

    Google Scholar 

  177. Bradshaw, G. L. & Anderson, J. R. Elaborative encoding as an explanation of levels of processing. J. Verbal Learn. Verbal Behav. 21, 165–174 (1982).

    Google Scholar 

  178. Nairne, J. S. Remembering over the short-term. Annu. Rev. Psychol. 53, 53–81 (2002).

    PubMed  Google Scholar 

  179. Nelson, D. L., Cermak, L. & Craik, F. Remembering pictures and words: appearance, significance and name. In Levels of Processing in Human Memory 45–76 (Taylor & Francis, 1979).

  180. Tulving, E. & Thomson, D. M. Encoding specificity and retrieval processes in episodic memory. Psychol. Rev. 80, 352–373 (1973).

    Google Scholar 

  181. Hedayati, S., O’Donnell, R. E. & Wyble, B. A model of working memory for latent representations. Nat. Hum. Behav. 6, 709–719 (2022).

    PubMed  Google Scholar 

  182. van Kerkoerle, T., Self, M. W. & Roelfsema, P. R. Layer-specificity in the effects of attention and working memory on activity in primary visual cortex. Nat. Commun. 8, 13804 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  183. Self, M. W., van Kerkoerle, T., Goebel, R. & Roelfsema, P. R. Benchmarking laminar fMRI: neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex. NeuroImage 197, 806–817 (2019).

    PubMed  Google Scholar 

  184. Maxcey, A. M. & Woodman, G. F. Forgetting induced by recognition of visual images. Vis. Cogn. 22, 789–808 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Konkle, T. & Alvarez, G. Deepnets do not need category supervision to predict visual system responses to objects. J. Vis. 20, 498–498 (2020).

    Google Scholar 

  186. Naspi, L., Hoffman, P., Devereux, B. & Morcom, A. M. Perceptual and semantic representations at encoding contribute to true and false recognition of objects. J. Neurosci. 41, 8375–8389 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Sheng, J. et al. Higher-dimensional neural representations predict better episodic memory. Sci. Adv. 8, eabm3829 (2022).

    PubMed  PubMed Central  Google Scholar 

  188. Kahana, M. J. Foundations of Human Memory (Oxford Univ. Press, 2012).

  189. Rust, N. C. & Mehrpour, V. Understanding image memorability. Trends Cogn. Sci. 24, 557–568 (2020).

    PubMed  PubMed Central  Google Scholar 

  190. Hemmer, P. & Steyvers, M. A bayesian account of reconstructive memory. Top. Cogn. Sci. 1, 189–202 (2009).

    PubMed  Google Scholar 

  191. Huttenlocher, J., Hedges, L. V. & Vevea, J. L. Why do categories affect stimulus judgment? J. Exp. Psychol. Gen. 129, 220–241 (2000).

    CAS  PubMed  Google Scholar 

  192. Hemmer, P. & Steyvers, M. Integrating episodic memories and prior knowledge at multiple levels of abstraction. Psychon. Bull. Rev. 16, 80–87 (2009).

    PubMed  Google Scholar 

  193. Bae, G.-Y., Olkkonen, M., Allred, S. R. & Flombaum, J. I. Why some colors appear more memorable than others: a model combining categories and particulars in color working memory. J. Exp. Psychol. Gen. 144, 744–763 (2015).

    PubMed  Google Scholar 

  194. Destefano, I., Brady, T. & Vul, E. Predicting memory errors with a Bayesian model of concept generalization. In Proc. Ann. Meeting Cogn. Sci. Soc. 43, 1760–1766 (2021).

    Google Scholar 

  195. Brady, T. F., Schacter, D. L. & Alvarez, G. A. The adaptive nature of false memories is revealed by gist- based distortion of true memories. J. Vis. 15, 948 (2015).

    Google Scholar 

  196. Bruning, A. L. & Lewis-Peacock, J. A. Long-term memory guides resource allocation in working memory. Sci. Rep. 10, 22161 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  197. Dubé, C. Central tendency representation and exemplar matching in visual short-term memory. Mem. Cogn. 47, 589–602 (2019).

    Google Scholar 

  198. Orhan, A. E. & Jacobs, R. A. A probabilistic clustering theory of the organization of visual short-term memory. Psychol. Rev. 120, 297 (2013).

    PubMed  Google Scholar 

  199. Brady, T. F. & Alvarez, G. A. No evidence for a fixed object limit in working memory: spatial ensemble representations inflate estimates of working memory capacity for complex objects. J. Exp. Psychol. Learn. Mem. Cogn. 41, 921–929 (2015).

    PubMed  Google Scholar 

  200. Hollingworth, A. & Henderson, J. M. Testing a conceptual locus. Mem. Cogn. 31, 930–940 (2003).

    Google Scholar 

  201. Oliva, A. in Neurobiology of Attention (eds Itti, L. et al.) 251–256 (Elsevier, 2005).

  202. Friedman, A. Framing pictures: the role of knowledge in automatized encoding and memory for gist. J. Exp. Psychol. Gen. 108, 316–355 (1979).

    CAS  PubMed  Google Scholar 

  203. Hollingworth, A. & Henderson, J. M. Semantic informativeness mediates the detection of changes in natural scenes. Vis. Cogn. 7, 213–235 (2000).

    Google Scholar 

  204. Miller, M. B. & Gazzaniga, M. S. Creating false memories for visual scenes. Neuropsychologia 36, 513–520 (1998).

    CAS  PubMed  Google Scholar 

  205. Brewer, W. F. & Treyens, J. C. Role of schemata in memory for places. Cogn. Psychol. 13, 207–230 (1981).

    Google Scholar 

  206. Lampinen, J. M., Copeland, S. M. & Neuschatz, J. S. Recollections of things schematic: room schemas revisited. J. Exp. Psychol. Learn. Mem. Cogn. 27, 1211–1222 (2001).

    PubMed  Google Scholar 

  207. Schurgin, M. W. & Brady, T. F. When “capacity” changes with set size: ensemble representations support the detection of across-category changes in visual working memory. J. Vis. 19, 3 (2019).

    PubMed  Google Scholar 

  208. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    PubMed  PubMed Central  Google Scholar 

  209. Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R. S. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179–190 (2006).

    CAS  PubMed  Google Scholar 

  210. Jaiswal, S., Fernando, B. & Tan, C. TDAM: top-down attention module for contextually guided feature selection in CNNs. In Proc. Computer Vision–ECCV 2022: 17th Eur. Conf. XXV 259–276 (Springer, 2022).

  211. Bates, C. J., Alvarez, G. & Gershman, S. J. Scaling models of visual working memory to natural images. Preprint at bioRxiv https://doi.org/10.1101/2023.03.17.533050 (2023).

  212. Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  213. Cleary, A. M. Dependent measures in memory research: from free recall to recognition. In Handbook of Research Methods in Human Memory 19–35 (Routledge, 2018).

  214. Harlow, I. M. & Yonelinas, A. P. Distinguishing between the success and precision of recollection. Memory 24, 114–127 (2016).

    PubMed  Google Scholar 

  215. Nilakantan, A. S., Bridge, D. J., VanHaerents, S. & Voss, J. L. Distinguishing the precision of spatial recollection from its success: evidence from healthy aging and unilateral mesial temporal lobe resection. Neuropsychologia 119, 101–106 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Sutterer, D. W. & Awh, E. Retrieval practice enhances the accessibility but not the quality of memory. Psychon. Bull. Rev. 23, 831–841 (2016).

    PubMed  PubMed Central  Google Scholar 

  217. Pratte, M. S. Swap errors in spatial working memory are guesses. Psychon. Bull. Rev. 26, 958–966 (2018).

    Google Scholar 

  218. Konkle, T. & Oliva, A. A familiar-size Stroop effect: real-world size is an automatic property of object representation. J. Exp. Psychol. Hum. Percept. Perform. 38, 561–569 (2012).

    PubMed  PubMed Central  Google Scholar 

  219. Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000).

    CAS  PubMed  Google Scholar 

  220. Rust, N. C. & Cohen, M. R. Priority coding in the visual system. Nat. Rev. Neurosci. 23, 376–388 (2022).

    CAS  PubMed  Google Scholar 

  221. Yonelinas, A. P. Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J. Exp. Psychol. Learn Mem. Cogn. 20, 1341–1354 (1994).

    CAS  PubMed  Google Scholar 

  222. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (MIT Press, 2010).

  223. van Bergen, R. S. & Jehee, J. F. Probabilistic representation in human visual cortex reflects uncertainty in serial decisions. J. Neurosci. 39, 8164–8176 (2019).

    PubMed  PubMed Central  Google Scholar 

  224. Yeon, J. & Rahnev, D. The suboptimality of perceptual decision making with multiple alternatives. Nat. Commun. 11, 3857 (2020).

    PubMed  PubMed Central  ADS  Google Scholar 

  225. Rahnev, D., Block, N., Denison, R. N. & Jehee, J. Is perception probabilistic? Clarifying the definitions. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/f8v5r (2021).

  226. Bays, P. M., Catalao, R. F. G. & Husain, M. The precision of visual working memory is set by allocation of a shared resource. J. Vis. 9, 7 (2009).

    Google Scholar 

  227. Shiffrin, R. M. & Steyvers, M. A model for recognition memory: REM — retrieving effectively from memory. Psychon. Bull. Rev. 4, 145–166 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Wixted and V. Störmer for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to aspects of the manuscript.

Corresponding author

Correspondence to Timothy F. Brady.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Zaifeng Gao, Robert Logie, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brady, T.F., Robinson, M.M. & Williams, J.R. Noisy and hierarchical visual memory across timescales. Nat Rev Psychol 3, 147–163 (2024). https://doi.org/10.1038/s44159-024-00276-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-024-00276-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing