Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Accelerating the prediction of stable materials with machine learning

Abstract

Despite the rise in computing power, the large space of possible combinations of elements and crystal structure types makes large-scale high-throughput surveys of stable materials prohibitively expensive, especially for complex materials and materials subject to environmental conditions such as finite temperature. When physics-based computational methods and labor-intensive experiments are not feasible, machine learning (ML) methods can be a rapid and powerful alternative. Owing to a wealth of experimental and first-principles data as well as improved ML frameworks designed for materials modeling, ML is shown to be effective in predicting stability parameters and accelerating the discovery of new stable materials. In this Review, we summarize the most recent advancements in applying ML methodologies in predicting materials stability, focusing particularly on predictions of zero- and finite-temperature stability. We also highlight the need for more ML development in predictions of other thermodynamic knobs, such as pressure and surface/interfacial energy, which practically impact materials stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of how the convex hull can vary with temperature.
Fig. 2: Examples of recent ML frameworks for material stability predictions.
Fig. 3: Workflow to discover new stable compounds using elemental substitution.
Fig. 4: Examples of recent ML models for predicting vibrational free energy of ordered compounds at T > 0.
Fig. 5: Examples of recent ML models for predicting disordered compounds at T > 0.

Similar content being viewed by others

References

  1. Sun, W. et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2, e1600225 (2016).

    Article  Google Scholar 

  2. Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article  Google Scholar 

  3. Sun, W. & Powell-Palm, M. J. Generalized Gibbs’ phase rule. Preprint at https://arxiv.org/abs/2105.01337 (2021).

  4. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  MathSciNet  Google Scholar 

  5. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  MathSciNet  Google Scholar 

  6. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

    Article  Google Scholar 

  7. Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mate. 1, 011002 (2013).

    Article  Google Scholar 

  8. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).

    Article  Google Scholar 

  9. Shen, J. et al. Reflections on one million compounds in the Open Quantum Materials Database (OQMD). J. Phys. Mater. 5, 031001 (2022).

    Article  Google Scholar 

  10. Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Article  Google Scholar 

  11. Choudhary, K. et al. The Joint Automated Repository for Various Integrated Simulations (JARVIS) for data-driven materials design. npj Comput. Mater. 6, 173 (2020).

    Article  Google Scholar 

  12. Draxl, C. & Scheffler, M. NOMAD: The FAIR concept for big data-driven materials science. MRS Bull. 43, 676–682 (2018).

    Article  Google Scholar 

  13. Ghiringhelli, L. M. et al. Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats. npj Comput. Mater. 3, 46 (2017).

    Article  Google Scholar 

  14. Andersen, C. W. et al. Optimade, an API for exchanging materials data. Sci. Data 8, 217 (2021).

    Article  Google Scholar 

  15. Verma, P. & Truhlar, D. G. Status and challenges of density functional theory. Trends Chem. 2, 302–318 (2020).

    Article  Google Scholar 

  16. Marzari, N., Ferretti, A. & Wolverton, C. Electronic-structure methods for materials design. Nat. Mater. 20, 736–749 (2021).

    Article  Google Scholar 

  17. Griesemer, S. D., Ward, L. & Wolverton, C. High-throughput crystal structure solution using prototypes. Phys. Rev. Mater. 5, 105003 (2021).

    Article  Google Scholar 

  18. Hicks, D. et al. AFLOW-XtalFinder: a reliable choice to identify crystalline prototypes. npj Comput. MateR. 7, 30 (2021).

    Article  Google Scholar 

  19. Zunger, A., Wei, S.-H., Ferreira, L. G. & Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 65, 353–356 (1990).

    Article  Google Scholar 

  20. Wu, Q., He, B., Song, T., Gao, J. & Shi, S. Cluster expansion method and its application in computational materials science. Computat. Mater. Sci. 125, 243–254 (2016).

    Article  Google Scholar 

  21. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  Google Scholar 

  22. Xia, Y. et al. High-throughput study of lattice thermal conductivity in binary rocksalt and zinc blende compounds including higher-order anharmonicity. Phys. Rev. X 10, 041029 (2020).

    Google Scholar 

  23. Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic materials. Sci. Data 5, 180065 (2018).

    Article  Google Scholar 

  24. Ward, L. &Wolverton, C. Atomistic calculations and materials informatics: a review. Curr. Opin. Solid State Mater. Sci. 21, 167–176 (2017).

    Article  Google Scholar 

  25. Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014).

    Article  Google Scholar 

  26. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2, 16028 (2016).

    Article  Google Scholar 

  27. Ward, L. et al. Matminer: an open source toolkit for materials data mining. Computat. Mater. Sci. 152, 60–69 (2018).

    Article  Google Scholar 

  28. Gossett, E. et al. AFLOW-ML: a restful API for machine-learning predictions of materials properties. Computa. Mater. Sci. 152, 134–145 (2018).

    Article  Google Scholar 

  29. Ward, L. et al. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys. Rev. B 96, 024104 (2017).

    Article  Google Scholar 

  30. Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for machine learning models of formation energies. Int. J. Quantum Chem. 115, 1094–1101 (2015).

    Article  Google Scholar 

  31. Schütt, K. T. et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).

    Article  Google Scholar 

  32. Seko, A., Hayashi, H., Nakayama, K., Takahashi, A. & Tanaka, I. Representation of compounds for machine-learning prediction of physical properties. Phys. Rev. B 95, 144110 (2017).

    Article  Google Scholar 

  33. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  Google Scholar 

  34. Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Article  Google Scholar 

  35. Zhang, Y. & Ling, C. A strategy to apply machine learning to small datasets in materials science. npj Comput. Mater. 4, 25 (2018).

    Article  Google Scholar 

  36. Kajita, S., Ohba, N., Jinnouchi, R. & Asahi, R. A universal 3D voxel descriptor for solid-state material informatics with deep convolutional neural networks. Sci. Rep. 7, 16991 (2017).

    Article  Google Scholar 

  37. Jiang, Y. et al. Topological representations of crystalline compounds for the machine-learning prediction of materials properties. npj Comput. Mater. 7, 28 (2021).

    Article  Google Scholar 

  38. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996).

    MathSciNet  MATH  Google Scholar 

  39. Ghiringhelli, L. M. et al. Learning physical descriptors for materials science by compressed sensing. New J. Phys. 19, 023017 (2017).

    Article  Google Scholar 

  40. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M. & Ghiringhelli, L. M. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2, 083802 (2018).

    Article  Google Scholar 

  41. Fan, J. & Lv, J. Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B 70, 849–911 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  42. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  Google Scholar 

  43. Choudhary, K. et al. Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8, 59 (2022).

    Article  Google Scholar 

  44. Zhou, Q. et al. Learning atoms for materials discovery. Proc. Natl Acad. Sci. USA 115, E6411–E6417 (2018).

    Article  Google Scholar 

  45. Jha, D. et al. ElemNet: deep learning the chemistry of materials from only elemental composition. Sci. Rep. 8, 17593 (2018).

    Article  Google Scholar 

  46. Jha, D. et al. IRNet: a general purpose deep residual regression framework for materials discovery. In Proc. 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2385–2393 (Association for Computing Machinery, 2019).

  47. Goodall, R. E. A. & Lee, A. A. Predicting materials properties without crystal structure: deep representation learning from stoichiometry. Nat. Commun. 11, 6280 (2020).

    Article  Google Scholar 

  48. Wang, A. Y.-T., Kauwe, S. K., Murdock, R. J. & Sparks, T. D. Compositionally restricted attention-based network for materials property predictions. npj Comput. Mater. 7, 77 (2021).

    Article  Google Scholar 

  49. Faber, F. A., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Machine learning energies of 2 million elpasolite (abC2D6) crystals. Phys. Rev. Lett. 117, 135502 (2016).

    Article  Google Scholar 

  50. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    Article  Google Scholar 

  51. Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst. 28, 2224–2232 (2015).

    Google Scholar 

  52. Park, C. W. & Wolverton, C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery. Phys. Rev. Mater. 4, 063801 (2020).

    Article  Google Scholar 

  53. Pal, K., Park, C. W., Xia, Y., Shen, J. & Wolverton, C. Scale-invariant machine-learning model accelerates the discovery of quaternary chalcogenides with ultralow lattice thermal conductivity. npj Comput. Mater. 8, 48 (2022).

    Article  Google Scholar 

  54. Schmidt, J., Pettersson, L., Verdozzi, C., Botti, S. & Marques, M. A. L. Crystal graph attention networks for the prediction of stable materials. Sci. Adv. 7, eabi7948 (2021).

    Article  Google Scholar 

  55. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).

    Article  Google Scholar 

  56. Banjade, H. R. et al. Structure motif-centric learning framework for inorganic crystalline systems. Sci. Adv. 7, eabf1754 (2021).

    Article  Google Scholar 

  57. Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 6, 138 (2020).

    Article  Google Scholar 

  58. Jha, D. et al. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning. Nat. Commun. 10, 5316 (2019).

    Article  Google Scholar 

  59. Chen, C. & Ong, S. P. Atomsets as a hierarchical transfer learning framework for small and large materials datasets. npj Comput. Mater. 7, 173 (2021).

    Article  Google Scholar 

  60. Ouyang, R., Ahmetcik, E., Carbogno, C., Scheffler, M. & Ghiringhelli, L. M. Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO. J. Phys. Mater. 2, 024002 (2019).

    Article  Google Scholar 

  61. De Breuck, P.-P., Hautier, G. & Rignanese, G.-M. Materials property prediction for limited datasets enabled by feature selection and joint learning with modnet. npj Comput. Mater. 7, 83 (2021).

    Article  Google Scholar 

  62. Hautier, G., Ong, S. P., Jain, A., Moore, C. J. & Ceder, G. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B 85, 155208 (2012).

    Article  Google Scholar 

  63. Bartel, C. J., Weimer, A. W., Lany, S., Musgrave, C. B. & Holder, A. M. The role of decomposition reactions in assessing first-principles predictions of solid stability. npj Comput. Mater. 5, 4 (2019).

    Article  Google Scholar 

  64. Bartel, C. J. et al. A critical examination of compound stability predictions from machine-learned formation energies. npj Comput. Mater. 6, 97 (2020).

    Article  Google Scholar 

  65. Amsler, M. et al. Ternary mixed-anion semiconductors with tunable band gaps from machine-learning and crystal structure prediction. Phys. Rev. Mater. 3, 035404 (2019).

    Article  Google Scholar 

  66. Kim, K. et al. Machine-learning-accelerated high-throughput materials screening: discovery of novel quaternary Heusler compounds. Phys. Rev. Mater. 2, 123801 (2018).

    Article  Google Scholar 

  67. Schmidt, J., Chen, L., Botti, S. & Marques, M. A. L. Predicting the stability of ternary intermetallics with density functional theory and machine learning. J. Chem. Phys. 148, 241728 (2018).

    Article  Google Scholar 

  68. Zhao, Y. et al. Physics guided deep learning for generative design of crystal materials with symmetry constraints. npj Comput. Mater. 9, 38 (2023).

    Article  Google Scholar 

  69. Pandey, S., Qu, J., Stevanoviv, V., St. John, P. & Gorai, P. Predicting energy and stability of known and hypothetical crystals using graph neural network. Patterns 2, 100361 (2021).

    Article  Google Scholar 

  70. Goodall, R. E. A., Parackal, A. S., Faber, F. A., Armiento, R. & Lee, A. A. Rapid discovery of stable materials by coordinate-free coarse graining. Sci. Adv. 8, eabn4117 (2022).

    Article  Google Scholar 

  71. He, J., Naghavi, S. S., Hegde, V. I., Amsler, M. & Wolverton, C. Designing and discovering a new family of semiconducting quaternary heusler compounds based on the 18-electron rule. Chem. Mater. 30, 4978–4985 (2018).

    Article  Google Scholar 

  72. Noh, J., Gu, G. H., Kim, S. & Jung, Y. Uncertainty-quantified hybrid machine learning/density functional theory high throughput screening method for crystals. J. Chem. Inf. Model. 60, 1996–2003 (2020).

    Article  Google Scholar 

  73. Singh, P., Del Rose, T., Vazquez, G., Arroyave, R. & Mudryk, Y. Machine-learning enabled thermodynamic model for the design of new rare-earth compounds. Acta Mater. 229, 117759 (2022).

    Article  Google Scholar 

  74. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).

    Article  Google Scholar 

  75. Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    Article  Google Scholar 

  76. Szymanski, N. J. et al. Toward autonomous design and synthesis of novel inorganic materials. Mater. Horiz. 8, 2169–2198 (2021).

    Article  Google Scholar 

  77. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  Google Scholar 

  78. Cheng, G., Gong, X.-G. & Yin, W.-J. Crystal structure prediction by combining graph network and optimization algorithm. Nat. Commun. 13, 1492 (2022).

    Article  Google Scholar 

  79. Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).

    Article  Google Scholar 

  80. Montoya, J. H. et al. Autonomous intelligent agents for accelerated materials discovery. Chem. Sci. 11, 8517–8532 (2020).

    Article  Google Scholar 

  81. Freund, Y., Schapire, R. & Abe, N. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14, 1612 (1999).

    Google Scholar 

  82. Seung, H. S., Opper, M. & Sompolinsky, H. Query by committee. In Proc. Fifth Annual Workshop on Computational Learning Theory 287–294 (Association for Computing Machinery, 1992).

  83. Brochu, E., Cora, V. M. & de Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Preprint at https://arxiv.org/abs/1012.2599 (2010).

  84. Ye, W., Lei, X., Aykol, M. & Montoya, J. H. Novel inorganic crystal structures predicted using autonomous simulation agents. Sci. Data 9, 302 (2022).

    Article  Google Scholar 

  85. Kim, Y., Kim, E., Antono, E., Meredig, B. & Ling, J. Machine-learned metrics for predicting the likelihood of success in materials discovery. npj Comput. Mater. 6, 131 (2020).

    Article  Google Scholar 

  86. Zunger, A. Structural stability of 495 binary compounds. Phys. Rev. Lett. 44, 582–586 (1980).

    Article  Google Scholar 

  87. Villars, P. A three-dimensional structural stability diagram for 998 binary ab intermetallic compounds. J. Less Common Met. 92, 215–238 (1983).

    Article  Google Scholar 

  88. Pettifor, D. G. The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C 19, 285–313 (1986).

    Article  Google Scholar 

  89. Fischer, C. C., Tibbetts, K. J., Morgan, D. & Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics. Nat. Mater. 5, 641–646 (2006).

    Article  Google Scholar 

  90. Zhang, Y. et al. The role of Hume-Rothery’s rules play in the MAX phases formability. Materialia 12, 100810 (2020).

    Article  Google Scholar 

  91. Sun, W. et al. A map of the inorganic ternary metal nitrides. Nat. Mater. 18, 732–739 (2019).

    Article  Google Scholar 

  92. Glawe, H., Sanna, A., Gross, E. K. U. & Marques, M. A. L. The optimal one dimensional periodic table: a modified Pettifor chemical scale from data mining. New J. Phys. 18, 093011 (2016).

    Article  Google Scholar 

  93. Vasylenko, A. et al. Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry. Nat. Commun. 12, 5561 (2021).

    Article  Google Scholar 

  94. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).

    Article  Google Scholar 

  95. Wang, H.-C., Botti, S. & Marques, M. A. L. Predicting stable crystalline compounds using chemical similarity. npj Comput. Mater. 7, 12 (2021).

    Article  Google Scholar 

  96. Bartel, C. J. et al. Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nat. Commun. 9, 4168 (2018).

    Article  Google Scholar 

  97. Legrain, F. et al. Vibrational properties of metastable polymorph structures by machine learning. J. Chem. Inf. Model. 58, 2460–2466 (2018).

    Article  Google Scholar 

  98. Grabowski, B. et al. Ab initio vibrational free energies including anharmonicity for multicomponent alloys. npj Comput. Mater. 5, 80 (2019).

    Article  Google Scholar 

  99. Jinnouchi, R., Karsai, F. & Kresse, G. Making free-energy calculations routine: combining first principles with machine learning. Phys. Rev. B 101, 060201 (2020).

    Article  Google Scholar 

  100. Krynski, M. & Rossi, M. Efficient Gaussian process regression for prediction of molecular crystals harmonic free energies. npj Comput. Mater. 7, 169 (2021).

    Article  Google Scholar 

  101. Allen, R. E. & de Wette, F. W. Calculation of dynamical surface properties of noble-gas crystals. I. The quasiharmonic approximation. Phys. Rev. 179, 873–886 (1969).

    Article  Google Scholar 

  102. Boyer, L. L. Calculation of thermal expansion, compressiblity, an melting in alkali halides: NaCl and KCl. Phys. Rev. Lett. 42, 584–587 (1979).

    Article  Google Scholar 

  103. Souvatzis, P., Eriksson, O., Katsnelson, M. I. & Rudin, S. P. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100, 095901 (2008).

    Article  Google Scholar 

  104. Hellman, O., Steneteg, P., Abrikosov, I. A. & Simak, S. I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87, 104111 (2013).

    Article  Google Scholar 

  105. Errea, I., Calandra, M. & Mauri, F. Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: application to platinum and palladium hydrides. Phys. Rev. B 89, 064302 (2014).

    Article  Google Scholar 

  106. Alfè, D., Price, G. D. & Gillan, M. J. Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions. Phys. Rev. B 64, 045123 (2001).

    Article  Google Scholar 

  107. Vočadlo, L. et al. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth’s core. Nature 424, 536–539 (2003).

    Article  Google Scholar 

  108. Moustafa, S. G., Schultz, A. J., Zurek, E. & Kofke, D. A. Accurate and precise ab initio anharmonic free-energy calculations for metallic crystals: application to hcp Fe at high temperature and pressure. Phys. Revl. B 96, 014117 (2017).

    Article  Google Scholar 

  109. Wallace, D. C. Thermodynamics of crystals. Am. J. Phys. 40, 1718–1719 (1972).

    Article  Google Scholar 

  110. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  Google Scholar 

  111. Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    Article  Google Scholar 

  112. Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  113. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  114. Mortazavi, B. et al. Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials. Appl. Mater. Today 20, 100685 (2020).

    Article  Google Scholar 

  115. Mortazavi, B. et al. Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Mater. Horiz. 7, 2359–2367 (2020).

    Article  Google Scholar 

  116. George, J., Hautier, G., Bartók, A. P., Csányi, G. & Deringer, V. L. Combining phonon accuracy with high transferability in Gaussian approximation potential models. J. Chem. Phys. 153, 044104 (2020).

    Article  Google Scholar 

  117. Duff, A. I. et al. Improved method of calculating ab initio high-temperature thermodynamic properties with application to ZrC. Phys. Rev. B 91, 214311 (2015).

    Article  Google Scholar 

  118. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  Google Scholar 

  119. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016).

    Article  Google Scholar 

  120. Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

    Article  Google Scholar 

  121. Zhang, Y. Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites. In Materials Science Forum Vol. 654, 1058–1061 (Trans Tech Publications, 2010).

  122. Zhang, Y. & Zhou, Y. J. Solid solution formation criteria for high entropy alloys. In Materials Science Forum Vol. 561, 1337–1339 (Trans Tech Publications, 2007).

  123. Huang, W., Martin, P. & Zhuang, H. L. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 169, 225–236 (2019).

    Article  Google Scholar 

  124. Pei, Z., Yin, J., Hawk, J. A., Alman, D. E. & Gao, M. C. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. npj Comput. Mater. 6, 50 (2020).

    Article  Google Scholar 

  125. Hume-Rothery, W. & Powell, H. M. On the theory of super-lattice structures in alloys. Z. Kristallogr. Cryst. Mater. 91, 23–47 (1935).

    Article  Google Scholar 

  126. Hume-Rothery, W. & Coles, B. R. Atomic Theory for Students of Metallurgy (The Institute of Metals, 1988).

  127. Saunders, N. & Miodownik, A. P. CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier, 1998).

  128. Rickman, J. M. et al. Materials informatics for the screening of multi-principal elements and high-entropy alloys. Nat. Commun. 10, 2618 (2019).

    Article  Google Scholar 

  129. Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Article  Google Scholar 

  130. Kaufmann, K. et al. Discovery of high-entropy ceramics via machine learning. npj Comput. Mater. 6, 42 (2020).

    Article  Google Scholar 

  131. Deffrennes, G., Terayama, K., Abe, T. & Tamura, R. A machine learning–based classification approach for phase diagram prediction. Mater. Des. 215, 110497 (2022).

    Article  Google Scholar 

  132. Nyshadham, C. et al. Machine-learned multi-system surrogate models for materials prediction. npj Comput. Mater. 5, 51 (2019).

    Article  Google Scholar 

  133. Huo, H. & Rupp, M. Unified representation of molecules and crystals for machine learning. Mach. Learn.: Sci. Technol. 3, 045017 (2022).

    Google Scholar 

  134. Gubaev, K., Podryabinkin, E. V., Hart, G. L. W. & Shapeev, A. V. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci. 156, 148–156 (2019).

    Article  Google Scholar 

  135. Rosenbrock, C. W. et al. Machine-learned interatomic potentials for alloys and alloy phase diagrams. npj Comput. Mater. 7, 24 (2021).

    Article  Google Scholar 

  136. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Article  Google Scholar 

  137. Zunger, A. Inverse design in search of materials with target functionalities. Nat. Rev. Chem. 2, 0121 (2018).

    Article  Google Scholar 

  138. Amsler, M., Hegde, V. I., Jacobsen, S. D. & Wolverton, C. Exploring the high-pressure materials genome. Phys. Rev. X 8, 041021 (2018).

    Google Scholar 

  139. Deringer, V. L., Pickard, C. J. & Csányi, G. Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018).

    Article  Google Scholar 

  140. Deringer, V. L., Proserpio, D. M., Csányi, G. & Pickard, C. J. Data-driven learning and prediction of inorganic crystal structures. Faraday Discuss. 211, 45–59 (2018).

    Article  Google Scholar 

  141. Miwa, K. Multibaric sampling for machine learning potential construction. Phys. Rev. B 103, 144106 (2021).

    Article  Google Scholar 

  142. Kaptay, G. Nano-CALPHAD: extension of the CALPHAD method to systems with nano-phases and complexions. J. Mater. Sci. 47, 8320–8335 (2012).

    Article  Google Scholar 

  143. Hegde, V. I., Aykol, M., Kirklin, S. & Wolverton, C. The phase stability network of all inorganic materials. Sci. Adv. 6, eaay5606 (2020).

    Article  Google Scholar 

  144. Wahl, C. B. et al. Machine learning-accelerated design and synthesis of polyelemental heterostructures. Sci. Adv. 7, eabj5505 (2021).

    Article  Google Scholar 

  145. Srinivasan, S. et al. Machine learning the metastable phase diagram of materials. Preprint at https://arxiv.org/abs/2004.08753 (2020).

  146. Zunger, A. Beware of plausible predictions of fantasy materials. Nature 566, 447–449 (2019).

    Article  Google Scholar 

  147. Bianchini, M. et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater. 19, 1088–1095 (2020).

    Article  Google Scholar 

  148. He, T. et al. Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature. Sci. Adv. 9, eadg8180 (2023).

    Article  Google Scholar 

  149. Jang, J., Gu, G. H., Noh, J., Kim, J. & Jung, Y. Structure-based synthesizability prediction of crystals using partially supervised learning. J. Am. Chem. Soc. 142, 18836–18843 (2020).

    Article  Google Scholar 

  150. Davariashtiyani, A., Kadkhodaie, Z. & Kadkhodaei, S. Predicting synthesizability of crystalline materials via deep learning. Commun. Mater. 2, 115 (2021).

    Article  Google Scholar 

  151. Oliynyk, A. O. et al. High-throughput machine-learning-driven synthesis of full-heusler compounds. Chem. Mater. 28, 7324–7331 (2016).

    Article  Google Scholar 

  152. Pilania, G., Balachandran, P. V., Kim, C. & Lookman, T. Finding new perovskite halides via machine learning. Front. Mater. 3, 19 (2016).

    Article  Google Scholar 

  153. Balachandran, P. V. et al. Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys. Rev. Mater. 2, 043802 (2018).

    Article  Google Scholar 

  154. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  Google Scholar 

  155. Lee, A. et al. Machine learned synthesizability predictions aided by density functional theory. Commun. Mater. 3, 73 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the US Department of Commerce and National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD) under award no. 70NANB19H005. We also acknowledge the Air Force Office of Scientific Research for support under award no. FA9550-18-1-0136. Y.X. gratefully acknowledges the start-up fund provided by Portland State University.

Author information

Authors and Affiliations

Authors

Contributions

S.D.G. conceived of and wrote the paper. Y.X. wrote much of the content regarding finite-temperature ML methods. C.W. supervised the work and provided critical feedback.

Corresponding author

Correspondence to Chris Wolverton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Wan-Jian Yin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griesemer, S.D., Xia, Y. & Wolverton, C. Accelerating the prediction of stable materials with machine learning. Nat Comput Sci 3, 934–945 (2023). https://doi.org/10.1038/s43588-023-00536-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00536-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing