Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exploring proton-coupled electron transfer at multiple scales

Abstract

The coupling of electron and proton transfer is critical for chemical and biological processes spanning a wide range of length and time scales and often occurring in complex environments. Thus, diverse modeling strategies, including analytical theories, quantum chemistry, molecular dynamics and kinetic modeling, are essential for a comprehensive understanding of such proton-coupled electron transfer reactions. Each of these computational methods provides one piece of the puzzle, and all these pieces must be viewed together to produce the full picture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computationally guided design of BIP molecules.
Fig. 2: Anthracene–phenol–pyridine triads that exhibit both PCET and PCEnT.
Fig. 3: PCET in SLO.
Fig. 4: PCET pathway in RNR and kinetic model to describe radical transfer along this pathway in a photoRNR with a Re photosensitizer ligated adjacent to Y356.
Fig. 5: Proposed photocycle of the Slr1694 BLUF photoreceptor protein based on non-equilibrium real-time dynamics simulations.

Similar content being viewed by others

References

  1. Huynh, M. H. V. & Meyer, T. J. Proton-coupled electron transfer. Chem. Rev. 107, 5004–5064 (2007).

    Google Scholar 

  2. Warren, J. J., Tronic, T. A. & Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2010).

    Google Scholar 

  3. Hammes-Schiffer, S. & Stuchebrukhov, A. A. Theory of coupled electron and proton transfer reactions. Chem. Rev. 110, 6939–6960 (2010).

    Google Scholar 

  4. Tyburski, R., Liu, T., Glover, S. D. & Hammarström, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 143, 560–576 (2021).

    Google Scholar 

  5. Warburton, R. E., Soudackov, A. V. & Hammes-Schiffer, S. Theoretical modeling of electrochemical proton-coupled electron transfer. Chem. Rev. 122, 10599–10650 (2022).

    Google Scholar 

  6. Gross, E. K. U. & Kohn, W. Time-dependent density-functional theory. Adv. Quantum Chem. 21, 255–291 (1990).

    Google Scholar 

  7. Lischka, H. et al. Multireference approaches for excited states of molecules. Chem. Rev. 118, 7293–7361 (2018).

    Google Scholar 

  8. Pettersson Rimgard, B. et al. Proton-coupled energy transfer in molecular triads. Science 377, 742–747 (2022).

    Google Scholar 

  9. Goings, J. J., Li, P., Zhu, Q. & Hammes-Schiffer, S. Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proc. Natl Acad. Sci. USA 117, 26626–26632 (2020).

    Google Scholar 

  10. Li, X., Tully, J. C., Schlegel, H. B. & Frisch, M. J. Ab initio Ehrenfest dynamics. J. Chem. Phys. 123, 084106 (2005).

    Google Scholar 

  11. Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Google Scholar 

  12. Soudackov, A. & Hammes-Schiffer, S. Multistate continuum theory for multiple charge transfer reactions in solution. J. Chem. Phys. 111, 4672–4687 (1999).

    Google Scholar 

  13. Soudackov, A. & Hammes-Schiffer, S. Derivation of rate expressions for nonadiabatic proton-coupled electron transfer reactions in solution. J. Chem. Phys. 113, 2385–2396 (2000).

    Google Scholar 

  14. Hammes-Schiffer, S. & Soudackov, A. V. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 14108–14123 (2008).

    Google Scholar 

  15. Marcus, R. A. & Sutin, N. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811, 265–322 (1985).

    Google Scholar 

  16. Stuchebrukhov, A. A. Electron transfer reactions coupled to proton translocation. Cytochrome oxidase, proton pumps, and biological energy transduction. J. Theor. Comput. Chem. 2, 91–118 (2003).

    Google Scholar 

  17. Klein, J. E. & Knizia, G. cPCET versus HAT: a direct theoretical method for distinguishing X–H bond‐activation mechanisms. Angew. Chem. Int. Ed. 57, 11913–11917 (2018).

    Google Scholar 

  18. Gaggioli, C. A., Sauer, J. & Gagliardi, L. Hydrogen atom or proton coupled electron transfer? C–H bond activation by transition-metal oxides. J. Am. Chem. Soc. 141, 14603–14611 (2019).

    Google Scholar 

  19. Camilo, S. R., Curtolo, F., Galassi, V. V. & Arantes, G. M. Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1. J. Chem. Inf. Model. 61, 1840–1849 (2021).

    Google Scholar 

  20. Tommos, C. & Babcock, G. T. Proton and hydrogen currents in photosynthetic water oxidation. Biochim. Biophys. Acta 1458, 199–219 (2000).

    Google Scholar 

  21. Hammarström, L. & Styring, S. Proton-coupled electron transfer of tyrosines in photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer. Energy Environ. Sci. 4, 2379–2388 (2011).

    Google Scholar 

  22. Huynh, M. T. et al. Concerted one-electron two-proton transfer processes in models inspired by the Tyr–His couple of photosystem II. ACS Cent. Sci. 3, 372–380 (2017).

    Google Scholar 

  23. Odella, E. et al. Controlling proton-coupled electron transfer in bioinspired artificial photosynthetic relays. J. Am. Chem. Soc. 140, 15450–15460 (2018).

    Google Scholar 

  24. Odella, E. et al. Proton-coupled electron transfer drives long-range proton translocation in bioinspired systems. J. Am. Chem. Soc. 141, 14057–14061 (2019).

    Google Scholar 

  25. Odella, E. et al. Managing the redox potential of PCET in Grotthuss-type proton wires. J. Am. Chem. Soc. 144, 15672–15679 (2022).

    Google Scholar 

  26. Rickert, K. W. & Klinman, J. P. Nature of hydrogen transfer in soybean lipoxygenase 1: separation of primary and secondary isotope effects. Biochemistry 38, 12218–12228 (1999).

    Google Scholar 

  27. Knapp, M. J., Rickert, K. W. & Klinman, J. P. Temperature dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc. 124, 3865–3874 (2002).

    Google Scholar 

  28. Hu, S. et al. Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C–H activation. J. Am. Chem. Soc. 136, 8157–8160 (2014).

    Google Scholar 

  29. Auer, B., Fernandez, L. E. & Hammes-Schiffer, S. Theoretical analysis of proton relays in electrochemical proton-coupled electron transfer. J. Am. Chem. Soc. 133, 8282–8292 (2011).

    Google Scholar 

  30. Goings, J. J. & Hammes-Schiffer, S. Nonequilibrium dynamics of proton-coupled electron transfer in proton wires: concerted but asynchronous mechanisms. ACS Cent. Sci. 6, 1594–1601 (2020).

    Google Scholar 

  31. Yoneda, Y. et al. Electron–nuclear dynamics accompanying proton-coupled electron transfer. J. Am. Chem. Soc. 143, 3104–3112 (2021).

    Google Scholar 

  32. Tao, Z., Yu, Q., Roy, S. & Hammes-Schiffer, S. Direct dynamics with nuclear–electronic orbital density functional theory. Acc. Chem. Res. 54, 4131–4141 (2021).

    Google Scholar 

  33. Parada, G. A. et al. Concerted proton-electron transfer reactions in the Marcus inverted region. Science 364, 471–475 (2019).

    Google Scholar 

  34. Marcus, R. A. Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation-reduction reactions involving electron transfer. Part 4.—A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss. Faraday Soc. 29, 21–31 (1960).

    Google Scholar 

  35. Closs, G. L. & Miller, J. R. Intramolecular long-distance electron transfer in organic molecules. Science 240, 440–447 (1988).

    Google Scholar 

  36. Edwards, S. J., Soudackov, A. V. & Hammes-Schiffer, S. Driving force dependence of rates for nonadiabatic proton and proton-coupled electron transfer: conditions for inverted region behavior. J. Phys. Chem. B 113, 14545–14548 (2009).

    Google Scholar 

  37. Goldsmith, Z. K., Soudackov, A. V. & Hammes-Schiffer, S. Theoretical analysis of the inverted region in photoinduced proton-coupled electron transfer. Faraday Discuss. 216, 363–378 (2019).

    Google Scholar 

  38. Sayfutyarova, E. R. & Hammes-Schiffer, S. Excited state molecular dynamics of photoinduced proton-coupled electron transfer in anthracene–phenol–pyridine triads. J. Phys. Chem. Lett. 11, 7109–7115 (2020).

    Google Scholar 

  39. Sayfutyarova, E. R. & Hammes-Schiffer, S. Substituent effects on photochemistry of anthracene–phenol–pyridine triads revealed by multireference calculations. J. Am. Chem. Soc. 142, 487–494 (2020).

    Google Scholar 

  40. Curchod, B. F. E. & Martínez, T. J. Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 118, 3305–3336 (2018).

    Google Scholar 

  41. Crespo-Otero, R. & Barbatti, M. Recent advances and perspectives on nonadiabatic mixed quantum–classical dynamics. Chem. Rev. 118, 7026–7068 (2018).

    Google Scholar 

  42. Glickman, M. H. & Klinman, J. P. Nature of rate-limiting steps in the soybean lipoxygenase-1 reaction. Biochemistry 34, 14077–14092 (1995).

    Google Scholar 

  43. Hatcher, E., Soudackov, A. V. & Hammes-Schiffer, S. Proton-coupled electron transfer in soybean lipoxygenase. J. Am. Chem. Soc. 126, 5763–5775 (2004).

    Google Scholar 

  44. Olsson, M. H. M., Siegbahn, P. E. M. & Warshel, A. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase. J. Am. Chem. Soc. 126, 2820–2828 (2004).

    Google Scholar 

  45. Tejero, I., Garcia-Viloca, M., Gonzalez-Lafont, A., Lluch, J. M. & York, D. M. Enzyme dynamics and tunneling enhanced by compression in the hydrogen abstraction catalyzed by soybean lipoxygenase-1. J. Phys. Chem. B 110, 24708–24719 (2006).

    Google Scholar 

  46. Hatcher, E., Soudackov, A. V. & Hammes-Schiffer, S. Proton-coupled electron transfer in soybean lipoxygenase: dynamical behavior and temperature dependence of kinetic isotope effects. J. Am. Chem. Soc. 129, 187–196 (2007).

    Google Scholar 

  47. Salna, B., Benabbas, A., Russo, D. & Champion, P. M. Tunneling kinetics and nonadiabatic proton-coupled electron transfer in proteins: the effect of electric fields and anharmonic donor–acceptor interactions. J. Phys. Chem. B 121, 6869–6881 (2017).

    Google Scholar 

  48. Li, P., Soudackov, A. V. & Hammes-Schiffer, S. Fundamental insights into proton-coupled electron transfer in soybean lipoxygenase from quantum mechanical/molecular mechanical free energy simulations. J. Am. Chem. Soc. 140, 3068–3076 (2018).

    Google Scholar 

  49. Rosta, E., Nowotny, M., Yang, W. & Hummer, G. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. J. Am. Chem. Soc. 133, 8934–8941 (2011).

    Google Scholar 

  50. Li, P., Soudackov, A. V. & Hammes-Schiffer, S. Impact of mutations on the binding pocket of soybean lipoxygenase: implications for proton-coupled electron transfer. J. Phys. Chem. Lett. 9, 6444–6449 (2018).

    Google Scholar 

  51. Soudackov, A. V. & Hammes-Schiffer, S. Probing nonadiabaticity in the proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase. J. Phys. Chem. Lett. 5, 3274–3278 (2014).

    Google Scholar 

  52. Zhao, L. et al. Real-time time-dependent nuclear−electronic orbital approach: dynamics beyond the Born–Oppenheimer approximation. J. Phys. Chem. Lett. 11, 4052–4058 (2020).

    Google Scholar 

  53. Zhao, L. et al. Excited state intramolecular proton transfer with nuclear–electronic orbital Ehrenfest dynamics. J. Phys. Chem. Lett. 12, 3497–3502 (2021).

    Google Scholar 

  54. Hammes-Schiffer, S. Nuclear–electronic orbital methods: foundations and prospects. J. Chem. Phys. 155, 030901 (2021).

    Google Scholar 

  55. Barragan, A. M. et al. Theoretical description of the primary proton-coupled electron transfer reaction in the cytochrome bc1 complex. J. Am. Chem. Soc. 143, 715–723 (2021).

    Google Scholar 

  56. Stubbe, J., Nocera, D. G., Yee, C. S. & Chang, M. C. Y. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 103, 2167–2202 (2003).

    Google Scholar 

  57. Minnihan, E. C., Nocera, D. G. & Stubbe, J. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc. Chem. Res. 46, 2524–2535 (2013).

    Google Scholar 

  58. Uhlin, U. & Eklund, H. Structure of ribonucleotide reductase protein R1. Nature 370, 533–539 (1994).

    Google Scholar 

  59. Siegbahn, P. E. M., Eriksson, L., Himo, F. & Pavlov, M. Hydrogen atom transfer in ribonucleotide reductase (RNR). J. Phys. Chem. B 102, 10622–10629 (1998).

    Google Scholar 

  60. Kaila, V. R. & Hummer, G. Energetics of direct and water-mediated proton-coupled electron transfer. J. Am. Chem. Soc. 133, 19040–19043 (2011).

    Google Scholar 

  61. Argirevic, T., Riplinger, C., Stubbe, J., Neese, F. & Bennati, M. Endor spectroscopy and DFT calculations: evidence for the hydrogen-bond network within α2 in the PCET of E. coli ribonucleotide reductase. J. Am. Chem. Soc. 134, 17661–17670 (2012).

    Google Scholar 

  62. Chen, X. et al. Water promoting electron hole transport between tyrosine and cysteine in proteins via a special mechanism: double proton coupled electron transfer. J. Am. Chem. Soc. 136, 4515–4524 (2014).

    Google Scholar 

  63. Kang, G., Taguchi, A. T., Stubbe, J. & Drennan, C. L. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 368, 424–427 (2020).

    Google Scholar 

  64. Reinhardt, C. R. et al. Conformational motions and water networks at the α/β interface in E. coli ribonucleotide reductase. J. Am. Chem. Soc. 142, 13768–13778 (2020).

    Google Scholar 

  65. Kasanmascheff, M., Lee, W., Nick, T. U., Stubbe, J. & Bennati, M. Radical transfer in E. coli ribonucleotide reductase: a NH2Y731/R411A-α mutant unmasks a new conformation of the pathway residue 731. Chem. Sci. 7, 2170–2178 (2016).

    Google Scholar 

  66. Greene, B. L., Taguchi, A. T., Stubbe, J. & Nocera, D. G. Conformationally dynamic radical transfer within ribonucleotide reductase. J. Am. Chem. Soc. 139, 16657–16665 (2017).

    Google Scholar 

  67. Reinhardt, C. R., Sayfutyarova, E. R., Zhong, J. & Hammes-Schiffer, S. Glutamate mediates proton-coupled electron transfer between tyrosines 730 and 731 in Escherichia coli ribonucleotide reductase. J. Am. Chem. Soc. 143, 6054–6059 (2021).

    Google Scholar 

  68. Zhong, J., Reinhardt, C. R. & Hammes-Schiffer, S. Role of water in proton-coupled electron transfer between tyrosine and cysteine in ribonucleotide reductase. J. Am. Chem. Soc. 144, 7208–7214 (2022).

    Google Scholar 

  69. Reinhardt, C. R., Konstantinovsky, D., Soudackov, A. V. & Hammes-Schiffer, S. Kinetic model for reversible radical transfer in ribonucleotide reductase. Proc. Natl Acad. Sci. USA 119, e2202022119 (2022).

    Google Scholar 

  70. Yuly, J. L., Zhang, P., Lubner, C. E., Peters, J. W. & Beratan, D. N. Universal free-energy landscape produces efficient and reversible electron bifurcation. Proc. Natl Acad. Sci. USA 117, 21045–21051 (2020).

    Google Scholar 

  71. van Wonderen, J. H. et al. Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme. Proc. Natl Acad. Sci. USA 118, e2107939118 (2021).

    Google Scholar 

  72. Olshansky, L., Pizano, A. A., Wei, Y., Stubbe, J. & Nocera, D. G. Kinetics of hydrogen atom abstraction from substrate by an active site thiyl radical in ribonucleotide reductase. J. Am. Chem. Soc. 136, 16210–16216 (2014).

    Google Scholar 

  73. Olshansky, L., Stubbe, J. & Nocera, D. G. Charge-transfer dynamics at the α/β subunit interface of a photochemical ribonucleotide reductase. J. Am. Chem. Soc. 138, 1196–1205 (2016).

    Google Scholar 

  74. Saunders, M. G. & Voth, G. A. Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2013).

    Google Scholar 

  75. Gauden, M. et al. Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor. Proc. Natl Acad. Sci. USA 103, 10895–10900 (2006).

    Google Scholar 

  76. Kennis, J. T. M. & Mathes, T. Molecular eyes: proteins that transform light into biological information. Interface Focus 3, 20130005 (2013).

    Google Scholar 

  77. Mathes, T., van Stokkum, I. H. & Kennis, J. Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods. Methods Mol. Biol. 1146, 401–442 (2014).

    Google Scholar 

  78. Sadeghian, K., Bocola, M. & Schutz, M. A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors. J. Am. Chem. Soc. 130, 12501–12513 (2008).

    Google Scholar 

  79. Domratcheva, T., Grigorenko, B. L., Schlichting, I. & Nemukhin, A. V. Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors. Biophys. J. 94, 3872–3879 (2008).

    Google Scholar 

  80. Khrenova, M. G., Nemukhin, A. V. & Domratcheva, T. Photoinduced electron transfer facilitates tautomerization of the conserved signaling glutamine side chain in BLUF protein light sensors. J. Phys. Chem. B 117, 2369–2377 (2013).

    Google Scholar 

  81. Domratcheva, T., Hartmann, E., Schlichting, I. & Kottke, T. Evidence for tautomerisation of glutamine in BLUF blue light receptors by vibrational spectroscopy and computational chemistry. Sci. Rep. 6, 22669 (2016).

    Google Scholar 

  82. Goyal, P. & Hammes-Schiffer, S. Role of active site conformational changes in photocycle activation of the AppA BLUF photoreceptor. Proc. Natl Acad. Sci. USA 114, 1480–1485 (2017).

    Google Scholar 

  83. Hashem, S. et al. From crystallographic data to the solution structure of photoreceptors: the case of the AppA BLUF domain. Chem. Sci. 12, 13331–13342 (2021).

    Google Scholar 

  84. Goings, J. J., Reinhardt, C. R. & Hammes-Schiffer, S. Propensity for proton relay and electrostatic impact of protein reorganization in Slr1694 BLUF photoreceptor. J. Am. Chem. Soc. 140, 15241–15251 (2018).

    Google Scholar 

  85. Sayfutyarova, E. R., Goings, J. J. & Hammes-Schiffer, S. Electron-coupled double proton transfer in the Slr1694 BLUF photoreceptor: a multireference electronic structure study. J. Phys. Chem. B 123, 439–447 (2018).

    Google Scholar 

  86. Goings, J. J. & Hammes-Schiffer, S. Early photocycle of Slr1694 blue-light using flavin photoreceptor unraveled through adiabatic excited-state quantum mechanical/molecular mechanical dynamics. J. Am. Chem. Soc. 141, 20470–20479 (2019).

    Google Scholar 

  87. Stelling, A. L., Ronayne, K. L., Nappa, J., Tonge, P. J. & Meech, S. R. Ultrafast structural dynamics in BLUF domains: transient infrared spectroscopy of AppA and its mutants. J. Am. Chem. Soc. 129, 15556–15564 (2007).

    Google Scholar 

  88. Masuda, S., Hasegawa, K., Ishii, A. & Ono, T. Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of Synechocystis sp. Pcc6803. Biochemistry 43, 5304–5313 (2004).

    Google Scholar 

  89. Kmiecik, S. et al. Coarse-grained protein models and their applications. Chem. Rev. 116, 7898–7936 (2016).

    Google Scholar 

  90. Tiwary, P. & van de Walle, A. in Multiscale Materials Modeling for Nanomechanics Springer Series in Materials Science Vol. 245 (eds Weinberger, C. R. & Tucker, G. J.) 195–221 (Springer, 2016).

  91. Wang, C.-I., Braza, M. K. E., Claudio, G. C., Nellas, R. B. & Hsu, C.-P. Machine learning for predicting electron transfer coupling. J. Phys. Chem. A 123, 7792–7802 (2019).

    Google Scholar 

  92. Sauceda, H. E., Chmiela, S., Poltavsky, I., Müller, K.-R. & Tkatchenko, A. Molecular force fields with gradient-domain machine learning: construction and application to dynamics of small molecules with coupled cluster forces. J. Chem. Phys. 150, 114102 (2019).

    MATH  Google Scholar 

  93. Brorsen, K. R. Reproducing global potential energy surfaces with continuous-filter convolutional neural networks. J. Chem. Phys. 150, 204104 (2019).

    Google Scholar 

  94. Secor, M., Soudackov, A. V. & Hammes-Schiffer, S. Artificial neural networks as mappings between proton potentials, wave functions, densities, and energy levels. J. Phys. Chem. Lett. 12, 2206–2212 (2021).

    Google Scholar 

  95. Daru, J., Forbert, H., Behler, J. & Marx, D. Coupled cluster molecular dynamics of condensed phase systems enabled by machine learning potentials: liquid water benchmark. Phys. Rev. Lett. 129, 226001 (2022).

    Google Scholar 

Download references

Acknowledgements

The writing of this Perspective was funded by the National Institutes of Health grant number R35GM139449 and the Air Force Office of Scientific Research under AFOSR Award No. FA9550-18-1-0134. I thank the following group members for their contributions to some of the previously published work discussed herein and assistance with the figures: M. T. Huynh, J. J. Goings, M. Secor, Z. K. Goldsmith, E. R. Sayfutyarova, Z. Tao, A. V. Soudackov, P. Li, C. R. Reinhardt, J. Zhong and D. Konstantinovsky. I am also grateful to our experimental collaborators in previously published work: T. A. Moore, A. L. Moore, J. M. Mayer, L. Hammarström, J. P. Klinman, J. Stubbe and C. L. Drennan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Hammes-Schiffer.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Chao-Ping Hsu and Guilherme Menegon Arantes for their contribution to the peer review of this work. Primary Handling Editor: Kaitlin McCardle, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammes-Schiffer, S. Exploring proton-coupled electron transfer at multiple scales. Nat Comput Sci 3, 291–300 (2023). https://doi.org/10.1038/s43588-023-00422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00422-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing