Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Modeling excited-state molecular dynamics beyond the Born–Oppenheimer regime

Nonadiabatic molecular dynamics is the method of choice for modeling a wide range of excited-state phenomena. Although much progress has been made in improving the usability and efficiency of ground-state calculations, there are still challenges in translating this advance to the excited state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic flow of NAMD development.

References

  1. Nelson, T. R. et al. Chem. Rev. 120, 2215–2287 (2020).

    Article  Google Scholar 

  2. Nikitin, E. E. Annu. Rev. Phys. Chem. 50, 1–21 (1999).

    Article  Google Scholar 

  3. Tully, J. C. J. Chem. Phys. 93, 1061 (1990).

    Article  Google Scholar 

  4. Tully, J. C. J. Chem. Phys. 137, 22A301 (2012).

    Article  Google Scholar 

  5. Barbatti, M., Aquino, A. J. A., Szymczak, J. J. & Lischka, H. Proc. Nat. Acad. Sci. 107, 21453–21458 (2010).

    Article  Google Scholar 

  6. Zobel, J. P. & González, L. J. Am. Chem. Soc. 1, 1116–1140 (2021).

    Google Scholar 

  7. Subotnik, J. E. et al. Annu. Rev. Phys. Chem. 67, 387–417 (2016).

    Article  Google Scholar 

  8. Wang, L., Akimov, A. & Prezhdo, O. V. J. Phys. Chem. Lett. 7, 2100–2112 (2016).

    Article  Google Scholar 

  9. Crespo-Otero, R. & Barbatti, M. Chem. Rev. 118, 7026–7068 (2018).

    Article  Google Scholar 

  10. Curchod, B. F. E. & Martínez, T. J. Chem. Rev. 118, 3305–3336 (2018).

    Article  Google Scholar 

  11. Freixas, V. M. et al. J. Phys. Chem. Lett. 12, 2970–2982 (2021).

    Article  Google Scholar 

  12. Agostini, F. & Gross, E. K. U. Eur. Phys. J. B 94, 179 (2021).

    Article  Google Scholar 

  13. Worth, G. A., Meyer, H.-D., Köppel, H., Cederbaum, L. S. & Burghardt, I. Int. Rev. Phys. Chem. 27, 569–606 (2008).

    Article  Google Scholar 

  14. Keefer, D. et al. Chem. Sci. 12, 5286–5294 (2021).

    Article  Google Scholar 

  15. Agostini, F., Tavernelli, I. & Ciccotti, G. Eur. Phys. J. B 91, 139 (2018).

    Article  Google Scholar 

  16. Marenich, A. V. et al. Chem. Sci. 2, 2143 (2011).

    Article  Google Scholar 

  17. Vincent, J. C. et al. J. Phys. Chem. Lett. 7, 4185–4190 (2016).

    Article  Google Scholar 

  18. Zhang, Y., Nelson, T. & Tretiak, S. J. Chem. Phys. 151, 154109 (2019).

    Article  Google Scholar 

  19. Gelin, M. F. et al. J. Chem. Theory Comput. 17, 2394–2408 (2021).

    Article  Google Scholar 

  20. Morzan, U. N. et al. Chem. Rev. 118, 4071–4113 (2018).

    Article  Google Scholar 

  21. Smith, J. S., Isayev, O. & Roitberg, A. E. Chem. Sci. 8, 3192–3203 (2017).

    Article  Google Scholar 

  22. Zhou, G., Lubbers, N., Barros, K., Tretiak, S. & Nebgen, B. Proc. Nat. Acad. Sci. 119, e2120333119 (2022).

    Article  Google Scholar 

  23. Li, H. et al. Nat. Comput. Sci. 2, 367–377 (2022).

    Article  Google Scholar 

  24. Seritan, S. et al. WIREs Comput Mol Sci. 11, e1494 (2020).

    Google Scholar 

  25. Jumper, J. et al. Nature 596, 583–589 (2021).

    Article  Google Scholar 

  26. Lubbers, N. et al. J. Chem. Phys. 148, 241715 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The work at Los Alamos National Laboratory (LANL) was supported by the LANL Directed Research and Development Funds (LDRD) and the Center for Integrated Nanotechnologies (CINT), a US Department of Energy, Office of Science user facility at LANL. S.F.-A. was supported by CONICET, UNQ, and ANPCyT (grant no. PICT-2018-02360). LANL is operated by Triad National Security, LLC, for the US Department of Energy National Nuclear Security Administration under contract no. 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Contributions

All authors developed the core manuscript content and outline, wrote the manuscript, and provided revisions. T.R.N. wrote the first manuscript draft. S.T. proposed the illustration concept and T.R.N. created the illustration.

Corresponding author

Correspondence to Sergei Tretiak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, T.R., Fernandez-Alberti, S. & Tretiak, S. Modeling excited-state molecular dynamics beyond the Born–Oppenheimer regime. Nat Comput Sci 2, 689–692 (2022). https://doi.org/10.1038/s43588-022-00357-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-022-00357-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing