Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Biocarbon materials

Abstract

Biocarbons are carbonaceous solids derived from renewable and sustainable feedstocks and their combinations through thermochemical conversion at high temperatures (>350 °C) in the absence of oxygen or in limited oxygen. Expanding their applications from soil and fuel into advanced arenas of polymer composites, energy and environment is the key strategy to substitute for a wide range of conventional fossil-based carbon materials with the added benefits of sustainability and circularity. This Primer discusses biocarbon research, including feedstock selection, characterization, pyrolysis techniques, post-modification strategies, diversified applications and challenges. A critical assessment of carbon sequestration, waste reduction, economic impact, material sustainability and circularity and future perspectives is presented. This Primer mainly focuses on materials (polymer composites), energy (storage and conversion) and environmental remediation (wastewater treatment and CO2 capture). The hurdles that biocarbon-based materials must overcome are effective market propagation, industry-standard adherence and maintenance of a steady flow of feedstocks to guarantee continuous production. Maintenance of reproducibility of biocarbon materials with similar physicochemical and functional properties is another challenging task, which needs more investigation with the support of theoretical modelling and database generation. The Primer also delves into techno-economic analysis, which integrates biomass logistics and their industrial processing, which will enable a new manufacturing platform in biocarbon production for large-scale technological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biocarbon materials for composite, energy, environmental and other technological applications.
Fig. 2: Processing methods to produce biocarbon.
Fig. 3: Techno-economic and environmental assessment approaches for biocarbon evaluation.
Fig. 4: An overview of the various types of interaction of biocarbon in polymeric composites.
Fig. 5: A schematic overview of composite applications of biocarbon.
Fig. 6: Catalytic production of graphitic biocarbon and its application in energy storage devices.
Fig. 7: Mechanisms involved in adsorption of pollutants by biocarbon.

Similar content being viewed by others

References

  1. Liu, W.-J., Jiang, H. & Yu, H.-Q. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251–12285 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. He, M. et al. Waste-derived biochar for water pollution control and sustainable development. Nat. Rev. Earth Environ. 3, 444–460 (2022).

    Article  ADS  CAS  Google Scholar 

  3. Chang, B. P., Rodriguez-Uribe, A., Mohanty, A. K. & Misra, M. A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: current development and future opportunity. Renew. Sustain. Energy Rev. 152, 111666 (2021).

    Article  CAS  Google Scholar 

  4. Chen, N. & Pilla, S. A comprehensive review on transforming lignocellulosic materials into biocarbon and its utilization for composites applications. Compos. Part C: Open Access 7, 100225 (2022).

    CAS  Google Scholar 

  5. Weldekidan, H., Mohanty, A. K. & Misra, M. Upcycling of plastic wastes and biomass for sustainable graphitic carbon production: a critical review. ACS Environ. Au. 2, 510–522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, J. & Wang, S. Preparation, modification and environmental application of biochar: a review. J. Clean. Prod. 227, 1002–1022 (2019).

    Article  CAS  Google Scholar 

  7. Madhu, R., Periasamy, A. P., Schlee, P., Hérou, S. & Titirici, M.-M. Lignin: a sustainable precursor for nanostructured carbon materials for supercapacitors. Carbon 207, 172–197 (2023).

    Article  CAS  Google Scholar 

  8. Langhorst, A., Peczonczyk, S., Sun, H., Kiziltas, A. & Mielewski, D. Biocarbon: a lightweight, functional filler for under‐the‐hood automotive composites. Polym. Compos. 43, 2034–2046 (2022).

    Article  CAS  Google Scholar 

  9. Cuong, D. V. et al. A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renew. Sustain. Energy Rev. 145, 111029 (2021).

    Article  CAS  Google Scholar 

  10. Pistone, A. & Espro, C. Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications. Curr. Opin. Green Sustain. Chem. 26, 100374 (2020).

    Article  Google Scholar 

  11. Rawat, S., Wang, C.-T., Lay, C.-H., Hotha, S. & Bhaskar, T. Sustainable biochar for advanced electrochemical/energy storage applications. J. Energy Storage 63, 107115 (2023).

    Article  Google Scholar 

  12. Chakraborty, I., Sathe, S., Dubey, B. & Ghangrekar, M. Waste-derived biochar: applications and future perspective in microbial fuel cells. Bioresour. Technol. 312, 123587 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Chai, Y., Wan, C., Cheng, W., Li, X. & Wu, Y. Biomass-derived carbon for dye-sensitized solar cells: a review. J. Mater. Sci. 58, 6057–6075 (2023).

    Article  ADS  CAS  Google Scholar 

  14. Sunyoto, N. M., Zhu, M., Zhang, Z. & Zhang, D. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol. 219, 29–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Mohan, D., Sarswat, A., Ok, Y. S. & Pittman, C. U. Jr Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour. Technol. 160, 191–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Guo, S. et al. Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Sci. Technol. 4, 100059 (2022).

    Article  CAS  Google Scholar 

  17. Hu, Q. et al. Biochar industry to circular economy. Sci. Total. Environ. 757, 143820 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Foong, S. Y. et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem. Eng. J. 389, 124401 (2020).

    Article  CAS  Google Scholar 

  19. Xia, L. et al. Climate mitigation potential of sustainable biochar production in China. Renew. Sustain. Energy Rev. 175, 113145 (2023).

    Article  CAS  Google Scholar 

  20. Matovic, D. Biochar as a viable carbon sequestration option: global and Canadian perspective. Energy 36, 2011–2016 (2011).

    Article  CAS  Google Scholar 

  21. Tripathi, M., Sahu, J. N. & Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew. Sustain. Energy Rev. 55, 467–481 (2016).

    Article  CAS  Google Scholar 

  22. Zhang, M., Zhang, J., Ran, S., Sun, W. & Zhu, Z. Biomass-derived sustainable carbon materials in energy conversion and storage applications: status and opportunities. A mini review. Electrochem. Commun. 138, 107283 (2022).

    Article  CAS  Google Scholar 

  23. Ghodake, G. S. et al. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: state-of-the-art framework to speed up vision of circular bioeconomy. J. Clean. Prod. 297, 126645 (2021).

    Article  CAS  Google Scholar 

  24. Sun, J., Norouzi, O. & Mašek, O. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresour. Technol. 346, 126258 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Gul, E. et al. Production and use of biochar from lignin and lignin-rich residues (such as digestate and olive stones) for wastewater treatment. J. Anal. Appl. Pyrolysis 158, 105263 (2021).

    Article  CAS  Google Scholar 

  26. Mitchell, P. J., Dalley, T. S. & Helleur, R. J. Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. J. Anal. Appl. Pyrolysis 99, 71–78 (2013).

    Article  CAS  Google Scholar 

  27. Titirici, M. M. et al. Sustainable carbon materials. Chem. Soc. Rev. 44, 250–290 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Parthasarathy, P., Al-Ansari, T., Mackey, H. R., Narayanan, K. S. & McKay, G. A review on prominent animal and municipal wastes as potential feedstocks for solar pyrolysis for biochar production. Fuel 316, 123378 (2022).

    Article  CAS  Google Scholar 

  29. Yao, M. et al. Recent advances in lignin-based carbon materials and their applications: a review. Int. J. Biol. Macromol. 223, 980–1014 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y., Gupta, R. & You, S. Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass. Bioresour. Technol. 359, 127511 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H. & Al-Ansari, T. A review of pyrolysis technologies and feedstock: a blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 167, 112715 (2022).

    Article  CAS  Google Scholar 

  32. Wang, T., Zhai, Y., Zhu, Y., Li, C. & Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 90, 223–247 (2018).

    Article  CAS  Google Scholar 

  33. Khan, T. A. et al. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: a review. Biomass Bioenergy 130, 105384 (2019).

    Article  CAS  Google Scholar 

  34. Titirici, M.-M. & Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 39, 103–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Zhuang, X. et al. A review on the utilization of industrial biowaste via hydrothermal carbonization. Renew. Sustain. Energy Rev. 154, 111877 (2022).

    Article  CAS  Google Scholar 

  36. Xiang, W. et al. Biochar technology in wastewater treatment: a critical review. Chemosphere 252, 126539 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Li, Q. et al. Progress in catalytic pyrolysis of municipal solid waste. Energy Convers. Manage. 226, 113525 (2020).

    Article  CAS  Google Scholar 

  38. Yek, P. N. Y. et al. Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: a review. Renew. Sustain. Energy Rev. 151, 111645 (2021).

    Article  CAS  Google Scholar 

  39. Collard, F.-X. & Blin, J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sustain. Energy Rev. 38, 594–608 (2014).

    Article  CAS  Google Scholar 

  40. Patwardhan, P. R., Brown, R. C. & Shanks, B. H. Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem 4, 636–643 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, S., Pecha, B., van Kuppevelt, M., McDonald, A. G. & Garcia-Perez, M. Slow and fast pyrolysis of Douglas-fir lignin: importance of liquid-intermediate formation on the distribution of products. Biomass Bioenergy 66, 398–409 (2014).

    Article  CAS  Google Scholar 

  42. McGrath, T. E., Chan, W. G. & Hajaligol, M. R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J. Anal. Appl. Pyrolysis 66, 51–70 (2003).

    Article  CAS  Google Scholar 

  43. Neves, D., Thunman, H., Matos, A., Tarelho, L. & Gómez-Barea, A. Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 37, 611–630 (2011).

    Article  CAS  Google Scholar 

  44. Wei, L. et al. Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Process. Technol. 87, 863–871 (2006).

    Article  CAS  Google Scholar 

  45. French, R. & Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol. 91, 25–32 (2010).

    Article  CAS  Google Scholar 

  46. Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G. An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010).

    Article  CAS  Google Scholar 

  47. Vuppaladadiyam, A. K. et al. A critical review on biomass pyrolysis: reaction mechanisms, process modeling and potential challenges. J. Energy Inst. 108, 101236 (2023).

    Article  CAS  Google Scholar 

  48. Li, L., Long, A., Fossum, B. & Kaiser, M. Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: a meta‐analysis. Soil. Use Manage. 39, 43–52 (2023).

    Article  Google Scholar 

  49. Zhao, B. et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 174, 977–987 (2018).

    Article  CAS  Google Scholar 

  50. Kong, X. et al. Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chem. Eng. J. 399, 125808 (2020).

    Article  CAS  Google Scholar 

  51. Ghogia, A. C., Romero Millán, L. M., White, C. E. & Nzihou, A. Synthesis and growth of green graphene from biochar revealed by magnetic properties of iron catalyst. ChemSusChem 16, e202201864 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Dai, L. et al. Tuning oxygenated functional groups on biochar for water pollution control: a critical review. J. Hazard. Mater. 420, 126547 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Weber, K. & Quicker, P. Properties of biochar. Fuel 217, 240–261 (2018).

    Article  CAS  Google Scholar 

  54. Cheng, B.-H., Zeng, R. J. & Jiang, H. Recent developments of post-modification of biochar for electrochemical energy storage. Bioresour. Technol. 246, 224–233 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Foo, K. & Hameed, B. Coconut husk derived activated carbon via microwave induced activation: effects of activation agents, preparation parameters and adsorption performance. Chem. Eng. J. 184, 57–65 (2012).

    Article  CAS  Google Scholar 

  56. Gupta, R. K., Dubey, M., Kharel, P., Gu, Z. & Fan, Q. H. Biochar activated by oxygen plasma for supercapacitors. J. Power Sources 274, 1300–1305 (2015).

    Article  ADS  CAS  Google Scholar 

  57. Adhamash, E., Pathak, R., Qiao, Q., Zhou, Y. & McTaggart, R. Gamma-radiated biochar carbon for improved supercapacitor performance. RSC Adv. 10, 29910–29917 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sangtong, N. et al. Ultrahigh-surface-area activated biocarbon based on biomass residue as a supercapacitor electrode material: tuning pore structure using alkalis with different atom sizes. Microporous Mesoporous Mater. 326, 111383 (2021).

    Article  CAS  Google Scholar 

  59. Purkait, T., Singh, G., Singh, M., Kumar, D. & Dey, R. S. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci. Rep. 7, 15239 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Goswami, S., Banerjee, P., Datta, S., Mukhopadhayay, A. & Das, P. Graphene oxide nanoplatelets synthesized with carbonized agro-waste biomass as green precursor and its application for the treatment of dye rich wastewater. Process. Saf. Environ. Prot. 106, 163–172 (2017).

    Article  CAS  Google Scholar 

  61. Saliu, O., Adeniyi, A., Mamo, M., Ndungu, P. & Ramontja, J. Microwave exfoliation of a biochar obtained from updraft retort carbonization for supercapacitor fabrication. Electrochem. Commun. 139, 107308 (2022).

    Article  CAS  Google Scholar 

  62. Yan, Y., Manickam, S., Lester, E., Wu, T. & Pang, C. H. Synthesis of graphene oxide and graphene quantum dots from miscanthus via ultrasound-assisted mechano-chemical cracking method. Ultrason. Sonochem. 73, 105519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bukhari, Q. U. A. et al. Water-phase exfoliated biochar nanofibers from eucalyptus scraps for electrode modification and conductive film fabrication. ACS Sustain. Chem. Eng. 9, 13988–13998 (2021).

    Article  CAS  Google Scholar 

  64. Farid, M. A. A. & Andou, Y. A route towards graphene from lignocellulosic biomass: technicality, challenges, and their prospective applications. J. Clean. Prod. 388, 135090 (2022).

    Article  Google Scholar 

  65. Genovese, M., Jiang, J., Lian, K. & Holm, N. High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. J. Mater. Chem. A 3, 2903–2913 (2015).

    Article  CAS  Google Scholar 

  66. Chatterjee, R. et al. Ultrasound cavitation intensified amine functionalization: a feasible strategy for enhancing CO2 capture capacity of biochar. Fuel 225, 287–298 (2018).

    Article  CAS  Google Scholar 

  67. Qi, X. et al. A simple and recyclable molten-salt route to prepare superthin biocarbon sheets based on the high water-absorbent agaric for efficient lithium storage. Carbon 157, 286–294 (2020).

    Article  CAS  Google Scholar 

  68. Lu, J., Drzal, L. T., Worden, R. M. & Lee, I. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem. Mater. 19, 6240–6246 (2007).

    Article  CAS  Google Scholar 

  69. Escobar, B., Pérez-Salcedo, K., Alonso-Lemus, I., Pacheco, D. & Barbosa, R. N-doped porous carbon from Sargassum spp. as metal-free electrocatalysts for oxygen reduction reaction in alkaline media. Int. J. Hydrog. Energy 42, 30274–30283 (2017).

    Article  CAS  Google Scholar 

  70. Xia, C. et al. A sulfur self‐doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers. Carbon Energy 4, 491–505 (2022).

    Article  CAS  Google Scholar 

  71. Reimer, C. et al. Synthesis and characterization of novel nitrogen doped biocarbons from distillers dried grains with solubles (DDGS) for supercapacitor applications. Bioresour. Technol. Rep. 9, 100375 (2020).

    Article  Google Scholar 

  72. Marrakchi, F., Zafar, F. F., Wei, M., Cao, B. & Wang, S. N-doped mesoporous H3PO4–pyrocarbon from seaweed and melamine for batch adsorption of the endocrine disruptor bisphenol A. J. Mol. Liq. 345, 117040 (2022).

    Article  CAS  Google Scholar 

  73. Anstey, A., Vivekanandhan, S., Rodriguez-Uribe, A., Misra, M. & Mohanty, A. K. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass. Sci. Total. Environ. 550, 241–247 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Wang, Y. et al. Steam reforming of acetic acid over Ni/biochar catalyst treated with HNO3: impacts of the treatment on surface properties and catalytic behaviors. Fuel 278, 118341 (2020).

    Article  CAS  Google Scholar 

  75. Chen, H., Han, X. & Liu, Y. Gaseous hydrogen sulfide removal using macroalgae biochars modified synergistically by H2SO4/H2O2. Chem. Eng. Technol. 44, 698–709 (2021).

    Article  CAS  Google Scholar 

  76. Sizmur, T., Fresno, T., Akgül, G., Frost, H. & Moreno-Jiménez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Das, O., Sarmah, A. K. & Bhattacharyya, D. Structure–mechanics property relationship of waste derived biochars. Sci. Total. Environ. 538, 611–620 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Chen, H. et al. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Manage. 130, 82–92 (2021).

    Article  CAS  Google Scholar 

  79. Dewage, N. B., Fowler, R. E., Pittman, C. U., Mohan, D. & Mlsna, T. Lead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studies. RSC Adv. 8, 25368–25377 (2018).

    Article  ADS  Google Scholar 

  80. Xu, Y. et al. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). Environ. Sci. Pollut. Res. 23, 23606–23618 (2016).

    Article  CAS  Google Scholar 

  81. Saremi, F., Miroliaei, M. R., Nejad, M. S. & Sheibani, H. Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves. J. Mol. Liq. 318, 114126 (2020).

    Article  CAS  Google Scholar 

  82. Tomczyk, A. & Szewczuk-Karpisz, K. Effect of biochar modification by vitamin c, hydrogen peroxide or silver nanoparticles on its physicochemistry and tetracycline removal. Materials 15, 5379 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hosny, M., Fawzy, M. & Eltaweil, A. S. Phytofabrication of bimetallic silver-copper/biochar nanocomposite for environmental and medical applications. J. Environ. Manage. 316, 115238 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Tong, J. et al. Composite of FeCo alloy embedded in biocarbon derived from eggshell membrane with high performance for oxygen reduction reaction and supercapacitor. Electrochim. Acta 248, 388–396 (2017).

    Article  CAS  Google Scholar 

  85. Qian, C. et al. Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous Mesoporous Mater. 277, 45–51 (2019).

    Article  CAS  Google Scholar 

  86. Mahajan, H., Mohanan, K. U. & Cho, S. Facile synthesis of biocarbon-based MoS2 composite for high-performance supercapacitor application. Nano Lett. 22, 8161–8167 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, D. et al. High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni–Co layered double hydroxide. J. Alloys Compd. 837, 155529 (2020).

    Article  CAS  Google Scholar 

  88. Yang, X., Jiang, Z., Fei, B., Ma, J. & Liu, X. Graphene functionalized bio-carbon xerogel for achieving high-rate and high-stability supercapacitors. Electrochim. Acta 282, 813–821 (2018).

    Article  CAS  Google Scholar 

  89. Liang, C. et al. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65, 616–622 (2020).

    Article  CAS  Google Scholar 

  90. Yang, B.-J., Jiang, L.-L., Li, Y.-J., Cai, F.-G. & Zhang, Q.-Y. Three-dimensional porous biocarbon wrapped by graphene and polypyrrole composite as electrode materials for supercapacitor. J. Mater. Sci. Mater. Electron. 29, 2568–2572 (2018).

    Article  CAS  Google Scholar 

  91. Kaushal, I., Saharan, P., Kumar, V., Sharma, A. K. & Umar, A. Superb sono-adsorption and energy storage potential of multifunctional Ag-Biochar composite. J. Alloys Compd. 785, 240–249 (2019).

    Article  CAS  Google Scholar 

  92. Zhang, Y. et al. Synthesis of γ-Fe2O3-ZnO-biochar nanocomposites for rhodamine B removal. Appl. Surf. Sci. Adv. 501, 144217 (2020).

    Article  CAS  Google Scholar 

  93. Endler, L. W., Wolfart, F., Mangrich, A. S., Vidotti, M. & Marchesi, L. F. Facile method to prepare biochar–NiO nanocomposites as a promisor material for electrochemical energy storage devices. Chem. Pap. 74, 1471–1476 (2020).

    Article  CAS  Google Scholar 

  94. Chen, T. et al. Three dimensional hierarchical porous nickel cobalt layered double hydroxides (LDHs) and nitrogen doped activated biocarbon composites for high-performance asymmetric supercapacitor. J. Alloys Compd. 859, 158318 (2021).

    Article  CAS  Google Scholar 

  95. Mao, W., Zhang, Y., Luo, J., Chen, L. & Guan, Y. Novel co-polymerization of polypyrrole/polyaniline on ferrate modified biochar composites for the efficient adsorption of hexavalent chromium in water. Chemosphere 303, 135254 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Thomas, D., Fernandez, N. B., Mullassery, M. D. & Surya, R. Iron oxide loaded biochar/polyaniline nanocomposite: synthesis, characterization and electrochemical analysis. Inorg. Chem. Commun. 119, 108097 (2020).

    Article  CAS  Google Scholar 

  97. Thines, K., Abdullah, E., Mubarak, N. & Ruthiraan, M. In-situ polymerization of magnetic biochar–polypyrrole composite: a novel application in supercapacitor. Biomass Bioenergy 98, 95–111 (2017).

    Article  CAS  Google Scholar 

  98. Sigmund, G. et al. Cytotoxicity of biochar: a workplace safety concern? Environ. Sci. Technol. Lett. 4, 362–366 (2017).

    Article  CAS  Google Scholar 

  99. Zhang, J. et al. Chronic carbon black nanoparticles exposure increases lung cancer risk by affecting the cell cycle via circulatory inflammation. Environ. Pollut. 305, 119293 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Ogle, R. A. in Dust Explosion Dynamics ch. 1 (Elsevier, 2017).

  101. Center for Chemical Process Safety. Guidelines for Combustible Dust Hazard Analysis (Wiley, 2017).

  102. Zhao, M. Y., Enders, A. & Lehmann, J. Short-and long-term flammability of biochars. Biomass Bioenergy 69, 183–191 (2014).

    Article  CAS  Google Scholar 

  103. Restuccia, F., Mašek, O., Hadden, R. M. & Rein, G. Quantifying self-heating ignition of biochar as a function of feedstock and the pyrolysis reactor temperature. Fuel 236, 201–213 (2019).

    Article  CAS  Google Scholar 

  104. del Campo, B., Brumm, T. & Keren, N. Fast pyrolysis biochar flammability behavior for handling and storage. ACI Av. en. Cienc. e Ingenierías 13, 23 (2021).

    Article  Google Scholar 

  105. Enders, A. & Lehmann, J. in Biochar: A Guide to Analytical Methods (eds Singh, B., Camps-Arbestain, M. & Lehmann, J.) 9–22 (2017).

  106. Igalavithana, A. D. et al. Advances and future directions of biochar characterization methods and applications. Crit. Rev. Env. Sci. Technol. 47, 2275–2330 (2017).

    Article  CAS  Google Scholar 

  107. Li, S. & Chen, G. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Waste Manage. 78, 198–207 (2018).

    Article  CAS  Google Scholar 

  108. Singh, B., Fang, Y., Cowie, B. C. & Thomsen, L. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars. Org. Geochem. 77, 1–10 (2014).

    Article  ADS  CAS  Google Scholar 

  109. Nanda, S. et al. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 6, 663–677 (2013).

    Article  CAS  Google Scholar 

  110. Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 81, 687–711 (2017).

    Article  ADS  CAS  Google Scholar 

  111. Kang, S., Jung, J., Choe, J. K., Ok, Y. S. & Choi, Y. Effect of biochar particle size on hydrophobic organic compound sorption kinetics: applicability of using representative size. Sci. Total. Environ. 619, 410–418 (2018).

    Article  ADS  PubMed  Google Scholar 

  112. Khiari, Z., Alka, K., Kelloway, S., Mason, B. & Savidov, N. Integration of biochar filtration into aquaponics: effects on particle size distribution and turbidity removal. Agric. Water Manage. 229, 105874 (2020).

    Article  Google Scholar 

  113. Liao, W. & Thomas, S. C. Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Syst. 3, 14 (2019).

    Article  CAS  Google Scholar 

  114. Ma, X. et al. Study of biochar properties by scanning electron microscope–energy dispersive X-ray spectroscopy (SEM-EDX). Commun. Soil Sci. Plant Anal. 47, 593–601 (2016).

    Article  CAS  Google Scholar 

  115. Elkhalifa, S. et al. Biochar development from thermal TGA studies of individual food waste vegetables and their blended systems. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-022-02441-0 (2022).

    Article  Google Scholar 

  116. O’reilly, J. & Mosher, R. Functional groups in carbon black by FTIR spectroscopy. Carbon 21, 47–51 (1983).

    Article  Google Scholar 

  117. Xu, J. et al. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: a novel method for rapidly evaluating the biochar property. Energy 202, 117644 (2020).

    Article  CAS  Google Scholar 

  118. McBeath, A. V., Smernik, R. J., Krull, E. S. & Lehmann, J. The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass Bioenergy 60, 121–129 (2014).

    Article  CAS  Google Scholar 

  119. Mousavi-Avval, S. H., Sahoo, K., Nepal, P., Runge, T. & Bergman, R. Environmental impacts and techno-economic assessments of biobased products: a review. Renew. Sustain. Energy Rev. 180, 113302 (2023).

    Article  CAS  Google Scholar 

  120. Sahoo, K. et al. Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems. Int. J. Life Cycle Assess. 26, 189–213 (2021).

    Article  Google Scholar 

  121. Mishra, R. K., Kumar, D. J. P., Narula, A., Chistie, S. M. & Naik, S. U. Production and beneficial impact of biochar for environmental application: a review on types of feedstocks, chemical compositions, operating parameters, techno-economic study, and life cycle assessment. Fuel 343, 127968 (2023).

    Article  Google Scholar 

  122. Haeldermans, T. et al. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 318, 124083 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Fawzy, S. et al. Atmospheric carbon removal via industrial biochar systems: a techno-economic-environmental study. J. Clean. Prod. 371, 133660 (2022).

    Article  CAS  Google Scholar 

  124. Nematian, M., Keske, C. & Ng’ombe, J. N. A techno-economic analysis of biochar production and the bioeconomy for orchard biomass. Waste Manage. 135, 467–477 (2021).

    Article  Google Scholar 

  125. Alhashimi, H. A. & Aktas, C. B. Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour. Conserv. Recycl. 118, 13–26 (2017).

    Article  Google Scholar 

  126. Campbell, R. M., Anderson, N. M., Daugaard, D. E. & Naughton, H. T. Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Appl. Energy 230, 330–343 (2018).

    Article  ADS  Google Scholar 

  127. Shabangu, S., Woolf, D., Fisher, E. M., Angenent, L. T. & Lehmann, J. Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel 117, 742–748 (2014).

    Article  CAS  Google Scholar 

  128. Lehmann, J. A handful of carbon. Nature 447, 143–144 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Ibarrola, R., Shackley, S. & Hammond, J. Pyrolysis biochar systems for recovering biodegradable materials: a life cycle carbon assessment. Waste Manage. 32, 859–868 (2012).

    Article  CAS  Google Scholar 

  130. Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. & Lehmann, J. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ. Sci. Technol. 44, 827–833 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Hammond, J., Shackley, S., Sohi, S. & Brownsort, P. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 39, 2646–2655 (2011).

    Article  CAS  Google Scholar 

  132. Muñoz, E., Curaqueo, G., Cea, M., Vera, L. & Navia, R. Environmental hotspots in the life cycle of a biochar-soil system. J. Clean. Prod. 158, 1–7 (2017).

    Article  Google Scholar 

  133. George, J., Jung, D. & Bhattacharyya, D. Improvement of electrical and mechanical properties of PLA/PBAT composites using coconut shell biochar for antistatic applications. Appl. Sci. 13, 902 (2023).

    Article  CAS  Google Scholar 

  134. Poulose, A. M. et al. Date palm biochar-polymer composites: an investigation of electrical, mechanical, thermal and rheological characteristics. Sci. Total Environ. 619, 311–318 (2018).

    Article  ADS  PubMed  Google Scholar 

  135. Sobhan, A. et al. Development and characterization of a novel activated biochar-based polymer composite for biosensors. Int. J. Polym. Anal. Charact. 26, 544–560 (2021).

    Article  CAS  Google Scholar 

  136. Das, O., Sarmah, A. K. & Bhattacharyya, D. Nanoindentation assisted analysis of biochar added biocomposites. Compos. Part B 91, 219–227 (2016).

    Article  CAS  Google Scholar 

  137. Jurkiewicz, K. et al. Evolution of glassy carbon under heat treatment: correlation structure–mechanical properties. J. Mater. Sci. 53, 3509–3523 (2018).

    Article  ADS  CAS  Google Scholar 

  138. Zickler, G., Schöberl, T. & Paris, O. Mechanical properties of pyrolysed wood: a nanoindentation study. Philos. Mag. 86, 1373–1386 (2006).

    Article  ADS  CAS  Google Scholar 

  139. Das, O. et al. Flammability and mechanical properties of biochars made in different pyrolysis reactors. Biomass Bioenergy 152, 106197 (2021).

    Article  CAS  Google Scholar 

  140. Shanmugam, V. et al. A review on combustion and mechanical behaviour of pyrolysis biochar. Mater. Today Commun. 31, 103629 (2022).

    Article  CAS  Google Scholar 

  141. Das, O., Sarmah, A. K. & Bhattacharyya, D. Biocomposites from waste derived biochars: mechanical, thermal, chemical, and morphological properties. Waste Manage. 49, 560–570 (2016).

    Article  CAS  Google Scholar 

  142. Minugu, O. P., Gujjala, R., Shakuntala, O., Manoj, P. & Chowdary, M. S. Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites. Proc. Inst. Mech. Eng. Part. C: J. Mech. 235, 5626–5638 (2021).

    Article  CAS  Google Scholar 

  143. Jiang, C. et al. Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Manage. 102, 732–742 (2020).

    Article  CAS  Google Scholar 

  144. Tan, X. F. et al. Role of biochar surface characteristics in the adsorption of aromatic compounds: pore structure and functional groups. Chin. Chem. Lett. 32, 2939–2946 (2021).

    Article  CAS  Google Scholar 

  145. Zhang, Q. et al. Properties evaluation of biochar/high-density polyethylene composites: emphasizing the porous structure of biochar by activation. Sci. Total. Environ. 737, 139770 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  146. Zainal Abidin, Z., Mamauod, S. N. L., Romli, A. Z., Sarkawi, S. S. & Zainal, N. H. Synergistic effect of partial replacement of carbon black by palm kernel shell biochar in carboxylated nitrile butadiene rubber composites. Polymers 15, 943 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Janu, R. et al. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 4, 36–46 (2021).

    Article  CAS  Google Scholar 

  148. Das, O., Kim, N. K., Sarmah, A. K. & Bhattacharyya, D. Development of waste based biochar/wool hybrid biocomposites: flammability characteristics and mechanical properties. J. Clean. Prod. 144, 79–89 (2017).

    Article  CAS  Google Scholar 

  149. Liu, Z., Fei, B. & Jiang, Z. Combustion characteristics of bamboo-biochars. Bioresour. Technol. 167, 94–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Codou, A., Misra, M. & Mohanty, A. K. Sustainable biocarbon reinforced nylon 6/polypropylene compatibilized blends: effect of particle size and morphology on performance of the biocomposites. Compos. Part A 112, 1–10 (2018).

    Article  CAS  Google Scholar 

  151. Nagarajan, V., Mohanty, A. K. & Misra, M. Biocomposites with size-fractionated biocarbon: influence of the microstructure on macroscopic properties. ACS Omega 1, 636–647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ogunsona, E. O., Misra, M. & Mohanty, A. K. Sustainable biocomposites from biobased polyamide 6, 10 and biocarbon from pyrolyzed miscanthus fibers. J. Appl. Polym. Sci. 134, 44221 (2017).

    Article  Google Scholar 

  153. Ikram, S., Das, O. & Bhattacharyya, D. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites. Compos. Part A 91, 177–188 (2016).

    Article  CAS  Google Scholar 

  154. Jayabalakrishnan, D. et al. Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite. Polym. Compos. 43, 493–502 (2021).

    Google Scholar 

  155. Peterson, S. C. & Kim, S. Reducing biochar particle size with nanosilica and its effect on rubber composite reinforcement. J. Polym. Environ. 28, 317–322 (2020).

    Article  CAS  Google Scholar 

  156. DeVallance, D. B., Oporto, G. S. & Quigley, P. Investigation of hardwood biochar as a replacement for wood flour in wood–polypropylene composites. J. Elastomers Plast. 48, 510–522 (2016).

    Article  CAS  Google Scholar 

  157. Chang, B. P. et al. Effect of a small amount of synthetic fiber on performance of biocarbon‐filled nylon‐based hybrid biocomposites. Macromol. Mater. Eng. 306, 2000680 (2021).

    Article  CAS  Google Scholar 

  158. Alshahrani, H. & Prakash, V. A. Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-022-02801-w (2022).

  159. Greenough, S., Dumont, M.-J. & Prasher, S. The physicochemical properties of biochar and its applicability as a filler in rubber composites: a review. Mater. Today Commun. 29, 102912 (2021).

    Article  CAS  Google Scholar 

  160. Peterson, S. C. Utilization of low-ash biochar to partially replace carbon black in styrene–butadiene rubber composites. J. Elastomers Plast. 45, 487–497 (2013).

    Article  Google Scholar 

  161. Peterson, S. C., Chandrasekaran, S. R. & Sharma, B. K. Birchwood biochar as partial carbon black replacement in styrene–butadiene rubber composites. J. Elastomers Plast. 48, 305–316 (2016).

    Article  CAS  Google Scholar 

  162. Alhelal, A., Mohammed, Z., Jeelani, S. & Rangari, V. K. 3D printing of spent coffee ground derived biochar reinforced epoxy composites. J. Compos. Mater. 55, 3651–3660 (2021).

    Article  ADS  CAS  Google Scholar 

  163. Idrees, M., Jeelani, S. & Rangari, V. Three-dimensional-printed sustainable biochar-recycled PET composites. ACS Sustain. Chem. Eng. 6, 13940–13948 (2018).

    Article  CAS  Google Scholar 

  164. Mohammed, Z., Jeelani, S. & Rangari, V. Effective reinforcement of engineered sustainable biochar carbon for 3D printed polypropylene biocomposites. Compos. Part C: Open Access 7, 100221 (2022).

    CAS  Google Scholar 

  165. Behazin, E., Misra, M. & Mohanty, A. K. Compatibilization of toughened polypropylene/biocarbon biocomposites: a full factorial design optimization of mechanical properties. Polym. Test. 61, 364–372 (2017).

    Article  CAS  Google Scholar 

  166. Behazin, E., Misra, M. & Mohanty, A. K. Sustainable biocomposites from pyrolyzed grass and toughened polypropylene: structure–property relationships. ACS Omega 2, 2191–2199 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tadele, D. Environmental Life Cycle Assessment of Biomaterials and Bio-Composites for Automotive Components: A Comparison between Talc and Biochar Reinforced Polypropylene Composites. Thesis, Univ. Guelph (2019).

  168. Tadele, D., Roy, P., Defersha, F., Misra, M. & Mohanty, A. K. A comparative life-cycle assessment of talc-and biochar-reinforced composites for lightweight automotive parts. Clean Technol. Environ. Policy 22, 639–649 (2020).

    Article  CAS  Google Scholar 

  169. Wallace, C. A., Saha, G. C., Afzal, M. T. & Lloyd, A. Experimental and computational modeling of effective flexural/tensile properties of microwave pyrolysis biochar reinforced GFRP biocomposites. Compos. Part B 175, 107180 (2019).

    Article  CAS  Google Scholar 

  170. Huang, Y. et al. Multifunctional energy storage and conversion devices. Adv. Mater. 28, 8344–8364 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Rahman, M. Z., Edvinsson, T. & Kwong, P. Biochar for electrochemical applications. Curr. Opin. Green Sustain. Chem. 23, 25–30 (2020).

    Article  Google Scholar 

  172. Liu, W.-J., Jiang, H. & Yu, H.-Q. Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ. Sci. 12, 1751–1779 (2019).

    Article  CAS  Google Scholar 

  173. Yue, M. et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 146, 111180 (2021).

    Article  Google Scholar 

  174. Niaz, S., Manzoor, T. & Pandith, A. H. Hydrogen storage: materials, methods and perspectives. Renew. Sustain. Energy Rev. 50, 457–469 (2015).

    Article  CAS  Google Scholar 

  175. Chouikhi, N. et al. Valorization of agricultural waste as a carbon materials for selective separation and storage of CO2, H2 and N2. Biomass Bioenergy 155, 106297 (2021).

    Article  CAS  Google Scholar 

  176. Pedicini, R. et al. Posidonia oceanica and wood chips activated carbon as interesting materials for hydrogen storage. Int. J. Hydrog. Energy 45, 14038–14047 (2020).

    Article  CAS  Google Scholar 

  177. Liang, Y. et al. Preparation and hydrogen storage performance of poplar sawdust biochar with high specific surface area. Ind. Crop. Prod. 200, 116788 (2023).

    Article  CAS  Google Scholar 

  178. Klasson, K. T., Uchimiya, M. & Lima, I. M. Characterization of narrow micropores in almond shell biochars by nitrogen, carbon dioxide, and hydrogen adsorption. Ind. Crop. Prod. 67, 33–40 (2015).

    Article  CAS  Google Scholar 

  179. Stock, S. et al. Coffee waste-derived nanoporous carbons for hydrogen storage. ACS Appl. Energy Mater. 5, 10915–10926 (2022).

    Article  CAS  Google Scholar 

  180. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  181. Wu, Y., Rahm, E. & Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources 114, 228–236 (2003).

    Article  ADS  CAS  Google Scholar 

  182. Mullaivananathan, V., Sathish, R. & Kalaiselvi, N. Coir pith derived bio-carbon: demonstration of potential anode behavior in lithium-ion batteries. Electrochim. Acta 225, 143–150 (2017).

    Article  CAS  Google Scholar 

  183. Nagalakshmi, M. & Kalaiselvi, N. Mesoporous dominant cashewnut sheath derived bio-carbon anode for LIBs and SIBs. Electrochim. Acta 304, 175–183 (2019).

    Article  CAS  Google Scholar 

  184. Wang, Y., Chang, H., Ma, T., Deng, H. & Zha, Z. Effect of cotton stalk particle size on the structure of biochar and the performance of anode for lithium-ion battery. J. Phys. Chem. Solids 169, 110845 (2022).

    Article  CAS  Google Scholar 

  185. Xie, F., Xu, Z., Guo, Z. & Titirici, M.-M. Hard carbons for sodium-ion batteries and beyond. Prog. Energy 2, 042002 (2020).

    Article  ADS  Google Scholar 

  186. Senthil, C. & Lee, C. W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. Renew. Sustain. Energy Rev. 137, 110464 (2021).

    Article  CAS  Google Scholar 

  187. Rahman, M. A., Wang, X. & Wen, C. High energy density metal-air batteries: a review. J. Electrochem. Soc. 160, A1759 (2013).

    Article  CAS  Google Scholar 

  188. Qiao, Y. et al. Activated biochar derived from peanut shells as the electrode materials with excellent performance in zinc-air battery and supercapacitance. Waste Manage. 125, 257–267 (2021).

    Article  CAS  Google Scholar 

  189. Miao, W. et al. Cobalt (iron), nitrogen and carbon doped mushroom biochar for high-efficiency oxygen reduction in microbial fuel cell and Zn-air battery. J. Environ. Chem. Eng. 10, 108474 (2022).

    Article  CAS  Google Scholar 

  190. Han, S. et al. In situ exfoliated graphene-like carbon nanosheets strongly coupled with the biochar tube as the cathode for an application-ready Zn-air battery. ACS Appl. Energy Mater. 5, 14423–14432 (2022).

    Article  CAS  Google Scholar 

  191. Han, S. et al. Boosting the electrochemical performance of Zn-air battery with N/O co-doped biochar catalyst via a simple physical strategy of forced convection intensity. Chem. Eng. Sci. 272, 118615 (2023).

    Article  CAS  Google Scholar 

  192. Cao, R., Lee, J. S., Liu, M. & Cho, J. Recent progress in non‐precious catalysts for metal‐air batteries. Adv. Energy Mater. 2, 816–829 (2012).

    Article  CAS  Google Scholar 

  193. Lei, X. et al. Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries. J. Power Sources 365, 76–82 (2017).

    Article  ADS  CAS  Google Scholar 

  194. Sumangala Devi, N., Hariram, M. & Vivekanandhan, S. Modification techniques to improve the capacitive performance of biocarbon materials. J. Energy Storage 33, 101870 (2021).

    Article  Google Scholar 

  195. Yumak, T. et al. Comparison of the electrochemical properties of engineered switchgrass biomass-derived activated carbon-based EDLCs. Colloids Surf. A 586, 124150 (2020).

    Article  CAS  Google Scholar 

  196. Zhang, W. et al. Lignin derived porous carbons: synthesis methods and supercapacitor applications. Small Methods 5, 2100896 (2021).

    Article  CAS  Google Scholar 

  197. Zhu, H., Wang, X., Yang, F. & Yang, X. Promising carbons for supercapacitors derived from fungi. Adv. Mater. 23, 2745–2748 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Hou, Z. Q. et al. Algae-based carbons: design, preparation and recent advances in their use in energy storage, catalysis and adsorption. N. Carbon Mater. 36, 278–303 (2021).

    Article  CAS  Google Scholar 

  199. Naik, P. B. et al. Developing high-performance flexible zinc ion capacitors from agricultural waste-derived carbon sheets. ACS Sustain. Chem. Eng. 10, 1471–1481 (2022).

    Article  CAS  Google Scholar 

  200. Sennu, P., Arun, N., Madhavi, S., Aravindan, V. & Lee, Y.-S. All carbon based high energy lithium-ion capacitors from biomass: the role of crystallinity. J. Power Sources 414, 96–102 (2019).

    Article  ADS  CAS  Google Scholar 

  201. Payá, S., Díez, N. & Sevilla, M. Biomass-derived carbon sponges for use as sodium-ion capacitor electrodes. Sustain. Energy Fuels 7, 2378–2389 (2023).

    Article  Google Scholar 

  202. Codou, A., Pin, J.-M., Misra, M. & Mohanty, A. K. Impact of temperature and in situ FeCo catalysis on the architecture and Young’s modulus of model wood-based biocarbon. Green Chem. 23, 3015–3027 (2021).

    Article  CAS  Google Scholar 

  203. Kane, S., Storer, A., Xu, W., Ryan, C. & Stadie, N. P. Biochar as a renewable substitute for carbon black in lithium-ion battery electrodes. ACS Sustain. Chem. Eng. 10, 12226–12233 (2022).

    Article  CAS  Google Scholar 

  204. Weldekidan, H., Vivekanandhan, S., Tripathi, N., Mohanty, A. K. & Misra, M. Highly conductive biocarbon nanostructures from burlap waste as a sustainable additive for supercapacitor electrodes. Mater. Adv. 5, 1240–1250 (2024).

    Article  CAS  Google Scholar 

  205. Steele, B. C. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  206. Shen, Y. et al. Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. J. Energy Chem. 44, 106–114 (2020).

    Article  Google Scholar 

  207. Im, K., Choi, K. H., Park, B. J., Yoo, S. J. & Kim, J. Tofu-derived heteroatom-doped carbon for oxygen reduction reaction in an anion exchange membrane–fuel cell. Energy Convers. Manage. 265, 115754 (2022).

    Article  CAS  Google Scholar 

  208. Huang, T., Wei, J., Zhu, X. & Zhang, E. Soybean powder enables the synthesis of Fe–N–C catalysts with high ORR activities in microbial fuel cell applications. Int. J. Hydrog. Energy 46, 30334–30343 (2021).

    Article  CAS  Google Scholar 

  209. Noorasid, N. S. et al. Current advancement of flexible dye sensitized solar cell: a review. Optik 254, 168089 (2022).

    Article  ADS  CAS  Google Scholar 

  210. Briscoe, J., Marinovic, A., Sevilla, M., Dunn, S. & Titirici, M. Biomass‐derived carbon quantum dot sensitizers for solid‐state nanostructured solar cells. Angew. Chem. Int. Ed. 54, 4463–4468 (2015).

    Article  CAS  Google Scholar 

  211. Rezaei, B., Irannejad, N., Ensafi, A. A. & Kazemifard, N. The impressive effect of eco-friendly carbon dots on improving the performance of dye-sensitized solar cells. Sol. Energy 182, 412–419 (2019).

    Article  ADS  CAS  Google Scholar 

  212. Yoon, C. H., Chul, S. K., Ko, H. H., Yi, S. & Jeong, S. H. Enhanced performance of dye-sensitized solar cells with activated carbons. J. Nanosci. Nanotechnol. 13, 7875–7879 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Vivekanandhan, S. Recent developments and emerging opportunities for biomass derived carbon materials in dye sensitized solar energy conversion. ChemBioEngRev 10, 993–1005 (2023).

    Article  CAS  Google Scholar 

  214. Zhang, J., Yang, M., Zhao, W., Zhang, J. & Zang, L. Biohydrogen production amended with nitrogen-doped biochar. Energy Fuels 35, 1476–1487 (2021).

    Article  CAS  Google Scholar 

  215. Bhatia, S. K. et al. Trends in renewable energy production employing biomass-based biochar. Bioresour. Technol. 340, 125644 (2021).

    Article  Google Scholar 

  216. Bu, J., Wei, H.-L., Wang, Y.-T., Cheng, J.-R. & Zhu, M.-J. Biochar boosts dark fermentative H2 production from sugarcane bagasse by selective enrichment/colonization of functional bacteria and enhancing extracellular electron transfer. Water Res. 202, 117440 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Wu, J.-w, Pei, S.-z, Zhou, C.-s, Liu, B.-f & Cao, G.-l Assessment of potential biotoxicity induced by biochar-derived dissolved organic matters to biological fermentative H2 production. Sci. Total. Environ. 838, 156072 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  218. Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W. & Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 214, 836–851 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Enaime, G., Baçaoui, A., Yaacoubi, A. & Lübken, M. Biochar for wastewater treatment-conversion technologies and applications. Appl. Sci. 10, 3492 (2020).

    Article  CAS  Google Scholar 

  220. Zhao, M. et al. Mechanisms of Pb and/or Zn adsorption by different biochars: biochar characteristics, stability, and binding energies. Sci. Total. Environ. 717, 136894 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  221. Ihsanullah, I., Khan, M. T., Zubair, M., Bilal, M. & Sajid, M. Removal of pharmaceuticals from water using sewage sludge-derived biochar: a review. Chemosphere 289, 133196 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Li, J., Chen, X., Yu, S. & Cui, M. Removal of pristine and aged microplastics from water by magnetic biochar: adsorption and magnetization. Sci. Total. Environ. 875, 162647 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  223. Silvani, L. et al. Characterizing biochar as alternative sorbent for oil spill remediation. Sci. Rep. 7, 43912 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  224. Pallewatta, S., Samarasekara, S. M., Rajapaksha, A. U. & Vithanage, M. Oil spill remediation by biochar derived from bio-energy industries with a pilot-scale approach during the X-Press Pearl maritime disaster. Mar. Pollut. Bull. 189, 114813 (2023).

    Article  CAS  PubMed  Google Scholar 

  225. Sun, X. et al. Development of a new hydrophobic magnetic biochar for removing oil spills on the water surface. Biochar 4, 60 (2022).

    Article  ADS  CAS  Google Scholar 

  226. Navarathna, C. M. et al. Biochar adsorbents with enhanced hydrophobicity for oil spill removal. ACS Appl. Mater. Interfaces 12, 9248–9260 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Sankaranarayanan, S., Lakshmi, D. S., Vivekanandhan, S. & Ngamcharussrivichai, C. Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation. Sustain. Mater. Technol. 28, e00268 (2021).

    CAS  Google Scholar 

  228. Gao, X. et al. Carbonaceous materials as adsorbents for CO2 capture: synthesis and modification. Carbon Capture Sci. Technol. 3, 100039 (2022).

    Article  CAS  Google Scholar 

  229. Liu, S.-H. & Huang, Y.-Y. Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J. Clean. Prod. 175, 354–360 (2018).

    Article  CAS  Google Scholar 

  230. Cao, L. et al. Straw and wood based biochar for CO2 capture: adsorption performance and governing mechanisms. Sep. Purif. Technol. 287, 120592 (2022).

    Article  CAS  Google Scholar 

  231. Presser, V., McDonough, J., Yeon, S.-H. & Gogotsi, Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4, 3059–3066 (2011).

    Article  CAS  Google Scholar 

  232. Querejeta, N., Gil, M. V., Pevida, C. & Centeno, T. A. Standing out the key role of ultramicroporosity to tailor biomass-derived carbons for CO2 capture. J. CO2 Util. 26, 1–7 (2018).

    Article  CAS  Google Scholar 

  233. Ma, X. et al. Heteroatom-doped porous carbons exhibit superior CO2 capture and CO2/N2 selectivity: understanding the contribution of functional groups and pore structure. Sep. Purif. Technol. 259, 118065 (2021).

    Article  CAS  Google Scholar 

  234. Zhang, C., Sun, S., He, S. & Wu, C. Direct air capture of CO2 by KOH-activated bamboo biochar. J. Energy Inst. 105, 399–405 (2022).

    Article  CAS  Google Scholar 

  235. Vargas, D. P., Giraldo, L. & Moreno-Piraján, J. CO2 adsorption on granular and monolith carbonaceous materials. J. Anal. Appl. Pyrolysis 96, 146–152 (2012).

    Article  CAS  Google Scholar 

  236. Malode, S. J. et al. Biomass-derived carbon nanomaterials for sensor applications. J. Pharm. Biomed. Anal., 222, 115102 (2022).

    Article  PubMed  Google Scholar 

  237. Ouyang, C. & Wang, X. Recent progress in pyrolyzed carbon materials as electrocatalysts for the oxygen reduction reaction. Inorg. Chem. Front. 7, 28–36 (2020).

    Article  CAS  Google Scholar 

  238. Mian, M. M. & Liu, G. Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Adv. 8, 14237–14248 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  239. Cai, X. et al. Chlorine‐promoted nitrogen and sulfur co‐doped biocarbon catalyst for electrochemical carbon dioxide reduction. ChemElectroChem 7, 320–327 (2020).

    Article  CAS  Google Scholar 

  240. Wang, D. et al. Co-embedded N-doped hierarchical porous biocarbons: facile synthesis and used as highly efficient catalysts for levulinic acid hydrogenation. Fuel 329, 125364 (2022).

    Article  CAS  Google Scholar 

  241. Zhang, X. et al. Enhancing the activity of Zn, Fe, and Ni-embedded microporous biocarbon: towards efficiently catalytic fast co-pyrolysis/gasification of lignocellulosic and plastic wastes. Energy Convers. Manage.: X 13, 100176 (2022).

    CAS  Google Scholar 

  242. Wang, C. et al. Construction and synthesis of MoS2/biocarbon composites for efficient visible light-driven catalytic degradation of humic acid. Catalysts 12, 1423 (2022).

    Article  CAS  Google Scholar 

  243. Xiong, X. et al. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresour. Technol. 246, 254–270 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Aman, A. M. N., Selvarajoo, A., Lau, T. L. & Chen, W.-H. Biochar as cement replacement to enhance concrete composite properties: a review. Energies 15, 7662 (2022).

    Article  CAS  Google Scholar 

  245. Liu, J. et al. Application potential analysis of biochar as a carbon capture material in cementitious composites: a review. Constr. Build. Mater. 350, 128715 (2022).

    Article  CAS  Google Scholar 

  246. Cuthbertson, D., Berardi, U., Briens, C. & Berruti, F. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass Bioenergy 120, 77–83 (2019).

    Article  CAS  Google Scholar 

  247. Service, R. F. Electrified cement could turn houses and roads into nearly limitless batteries. Science, https://doi.org/10.1126/science.adk0583 (2023).

    Article  PubMed  Google Scholar 

  248. Sun, H., Hockaday, W. C., Masiello, C. A. & Zygourakis, K. Multiple controls on the chemical and physical structure of biochars. Ind. Eng. Chem. Res. 51, 3587–3597 (2012).

    Article  CAS  Google Scholar 

  249. Paula, A. J. et al. Machine learning and natural language processing enable a data-oriented experimental design approach for producing biochar and hydrochar from biomass. Chem. Mater. 34, 979–990 (2022).

    Article  CAS  Google Scholar 

  250. Kalak, T. Potential use of industrial biomass waste as a sustainable energy source in the future. Energies 16, 1783 (2023).

    Article  CAS  Google Scholar 

  251. Kamal Baharin, N. S. et al. Impact and effectiveness of bio-coke conversion from biomass waste as alternative source of coal coke in Southeast Asia. J. Mater. Cycles Waste Manage. 25, 17–36 (2023).

    Article  CAS  Google Scholar 

  252. Di Gruttola, F. & Borello, D. Analysis of the EU secondary biomass availability and conversion processes to produce advanced biofuels: use of existing databases for assessing a metric evaluation for the 2025 Perspective. Sustainability 13, 7882 (2021).

    Article  Google Scholar 

  253. Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  254. Don Taylor, G., English, J. R. & Graves, R. J. Designing new products: compatibility with existing production facilities and anticipated product mix. Integr. Manuf. Syst. 5, 13–21 (1994).

    Article  Google Scholar 

  255. Das, P., Banerjee, S. and Das, N. C. in Polymer Nanocomposites Containing Graphene (eds Rahaman, M., Lalatendu, N., Ibnelwaleed, A. H. & Das, N. C.) 683–711 (Elsevier, 2022).

  256. Tripathi, N., Uribe, A. R., Weldekidan, H., Misra, M. & Mohanty, A. K. Upcycling of waste jute biomass to advanced biocarbon materials: the effect of pyrolysis temperature on their physicochemical and electrical properties. Mater. Adv. 3, 9071–9082 (2022).

    Article  CAS  Google Scholar 

  257. Li, Y. et al. Biochar as a renewable source for high-performance CO2 sorbent. Carbon 107, 344–351 (2016).

    Article  ADS  CAS  Google Scholar 

  258. Hariram, M. et al. Novel puffball (Lycoperdon sp.) spores derived hierarchical nanostructured biocarbon: a preliminary investigation on thermochemical conversion and characterization for supercapacitor applications. Mater. Lett. 291, 129432 (2021).

    Article  CAS  Google Scholar 

  259. Sun, Q. et al. Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors. J. Power Sources 461, 228128 (2020).

    Article  CAS  Google Scholar 

  260. Chen, W., Luo, M., Yang, K. & Zhou, X. Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: microwave absorber and porogen. Microporous Mesoporous Mater. 300, 110178 (2020).

    Article  CAS  Google Scholar 

  261. García-Mateos, F. J. et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes. Sep. Purif. Technol. 241, 116724 (2020).

    Article  Google Scholar 

  262. Ma, X., Kolla, P., Zhao, Y., Smirnova, A. L. & Fong, H. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance. J. Power Sources 325, 541–548 (2016).

    Article  ADS  CAS  Google Scholar 

  263. Demir, M. et al. Lignin‐derived heteroatom‐doped porous carbons for supercapacitor and CO2 capture applications. Int. J. Energy Res. 42, 2686–2700 (2018).

    Article  CAS  Google Scholar 

  264. Yin, W. M. et al. Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor. Int. J. Biol. Macromol. 156, 988–996 (2020).

    Article  CAS  PubMed  Google Scholar 

  265. Zhang, K. et al. High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization. J. Mater. Chem. A 7, 26838–26848 (2019).

    Article  CAS  Google Scholar 

  266. Chen, F. et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem. 15, 3057–3063 (2013).

    Article  CAS  Google Scholar 

  267. Xu, J., Zhou, X., Chen, M., Shi, S. & Cao, Y. Preparing hierarchical porous carbon aerogels based on enzymatic hydrolysis lignin through ambient drying for supercapacitor electrodes. Microporous Mesoporous Mater. 265, 258–265 (2018).

    Article  CAS  Google Scholar 

  268. Wang, H. et al. Preparation of size-controlled all-lignin based carbon nanospheres and their electrochemical performance in supercapacitor. Ind. Crop. Prod. 179, 114689 (2022).

    Article  CAS  Google Scholar 

  269. Andooz, A., Eqbalpour, M., Kowsari, E., Ramakrishna, S. & Cheshmeh, Z. A. A comprehensive review on pyrolysis of E-waste and its sustainability. J. Clean. Prod. 333, 130191 (2022).

    Article  CAS  Google Scholar 

  270. Wunderlich, J., Armstrong, K., Buchner, G. A., Styring, P. & Schomäcker, R. Integration of techno-economic and life cycle assessment: defining and applying integration types for chemical technology development. J. Clean. Prod. 287, 125021 (2021).

    Article  CAS  Google Scholar 

  271. Li, W. et al. Regional techno‐economic and life‐cycle analysis of the pyrolysis‐bioenergy‐biochar platform for carbon‐negative energy. Biofuels Bioprod. Biorefin. 13, 1428–1438 (2019).

    Article  CAS  Google Scholar 

  272. Matykiewicz, D. Biochar as an effective filler of carbon fiber reinforced bio-epoxy composites. Processes 8, 724 (2020).

    Article  CAS  Google Scholar 

  273. Ho, M.-P., Lau, K.-T., Wang, H. & Hui, D. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos. Part B 81, 14–25 (2015).

    Article  CAS  Google Scholar 

  274. Zhang, Q. et al. Production of high-density polyethylene biocomposites from rice husk biochar: effects of varying pyrolysis temperature. Sci. Total Environ. 738, 139910 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  275. Das, O., Bhattacharyya, D., Hui, D. & Lau, K.-T. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos. Part B 106, 120–128 (2016).

    Article  CAS  Google Scholar 

  276. Romero Millan, L. M., Ghogia, A. C., White, C. E. & Nzihou, A. Iron nanoparticles to catalyze graphitization of cellulose for energy storage applications. ACS Appl. Nano Mater. 6, 3549–3559 (2023).

    Article  CAS  Google Scholar 

  277. Wang, L. et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Sci. Total Environ. 668, 1298–1309 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  278. Tran, H. N. et al. Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism. J. Hazard. Mater. 394, 122255 (2020).

    Article  CAS  PubMed  Google Scholar 

  279. Qiu, B., Shao, Q., Shi, J., Yang, C. & Chu, H. Application of biochar for the adsorption of organic pollutants from wastewater: modification strategies, mechanisms and challenges. Sep. Purif. Technol. 300, 121925 (2022).

    Article  CAS  Google Scholar 

  280. Serafin, J., Narkiewicz, U., Morawski, A. W., Wróbel, R. J. & Michalkiewicz, B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18, 73–79 (2017).

    Article  CAS  Google Scholar 

  281. Petrovic, B., Gorbounov, M. & Soltani, S. M. Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents. Carbon Capture Sci. Technol. 3, 100045 (2022).

    Article  CAS  Google Scholar 

  282. Das, O. & Bhattacharyya, D. in Interface/Interphase in Polymer Nanocomposites (eds Netravali, A. N. & Mittal, K. L.) 333–374 (Scrivener Publishing, 2016).

  283. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  ADS  CAS  Google Scholar 

  284. Bhushan, B. & Koinkar, V. N. Nanoindentation hardness measurements using atomic force microscopy. Appl. Phys. Lett. 64, 1653–1655 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ontario Research Fund, Research Excellence Program; Round 9 (ORF-RE09) Ontario Ministry of Colleges and Universities; the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)–University of Guelph–Ontario Agri-Food Innovation Alliance; the Natural Sciences and Engineering Research Council of Canada (NSERC); and the Agriculture and Agri-Food Canada (AAFC) through Bioindustrial Innovation Canada (BIC) Bioproducts AgSci Cluster Program for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of the article (A.K.M., M.M., O.D. and S.V.); Introduction (A.K.M., S.V. and O.D.); Experimentation (A.N., S.V., O.D., N.B.K., L.M.R.M. and M.M); Results (O.D., S.V., A.K.M., L.M.R.M., N.B.K., A.N. and M.M.); Applications (S.V., O.D., A.K.M., N.B.K., A.N., L.M.R.M. and M.M.); Reproducibility and data deposition (L.M.R.M., N.B.K., O.D. and S.V.); Limitations and optimizations (O.D., S.V., N.B.K., A.N. and M.M.); Outlook (S.V., O.D., A.N., A.K.M. and M.M); overview of the Primer (all authors).

Corresponding author

Correspondence to Amar K. Mohanty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Method Primers thanks Eric Singsaas, Zhihong Zhu and Jacek Andrzejewski for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Biochar Certificate (EBC): https://www.european-biochar.org/en

UC Davis Biochar Database: https://biochar.ucdavis.edu/

Supplementary information

Glossary

Biochar

A biocarbon variant produced by pyrolysis of biomass at temperatures ranging from 350 to 900 °C that results in an amorphous or turbostratic structure.

Conducting carbon

Highly conductive carbonaceous materials that are extensively used in batteries and supercapacitors to create electrical channels in electrode material.

Graphitization

The thermal treatment of amorphous or turbostratic carbon above 1,000 °C for prolonged residence times to transform carbon to a more ordered form.

Heteroatom doping

Replacement of carbon atoms in the carbon structure by heteroatoms such as nitrogen, sulfur, phosphorus, oxygen and boron.

Nanoindentation

A method to determine nano- and micro-scale mechanical properties of particulates, thin films, coatings and interfaces by applying a known load on a flat surface and measuring the indented area.

Reinforcement

Fibres or particulates in polymeric composite that effectively participate in stress transfer from polymeric to reinforcement phase.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, A.K., Vivekanandhan, S., Das, O. et al. Biocarbon materials. Nat Rev Methods Primers 4, 19 (2024). https://doi.org/10.1038/s43586-024-00297-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00297-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing