Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Adaptive immune receptor repertoire analysis

A Publisher Correction to this article was published on 16 February 2024

This article has been updated

Abstract

B cell and T cell receptor repertoires compose the adaptive immune receptor repertoire (AIRR) of an individual. The AIRR is a unique collection of antigen-specific receptors that drives adaptive immune responses, which in turn is imprinted in each individual AIRR. This supports the concept that the AIRR could determine disease outcomes, for example in autoimmunity, infectious disease and cancer. AIRR analysis could therefore assist the diagnosis, prognosis and treatment of human diseases towards personalized medicine. High-throughput sequencing, high-dimensional statistical analysis, computational structural biology and machine learning are currently employed to study the shaping and dynamics of the AIRR as a function of time and antigenic challenges. This Primer provides an overview of concepts and state-of-the-art methods that underlie experimental and computational AIRR analysis and illustrates the diversity of relevant applications. The Primer also addresses some of the outstanding challenges in AIRR analysis, such as sampling, sequencing depth, experimental variations and computational biases, while discussing prospects of future AIRR analysis applications for understanding and predicting adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AIR generation and structure.
Fig. 2: Shaping of AIR diversity.
Fig. 3: AIRR collection, preparation and sequencing.
Fig. 4: Bioinformatic downstream analyses of AIRR-seq data.
Fig. 5: Applications of AIRR analysis towards disease diagnostics and immunotherapy development.
Fig. 6: Current limitations and their workarounds in the field of AIRR-seq.

Similar content being viewed by others

Change history

References

  1. Rappazzo, C. G. et al. Defining and studying B cell receptor and TCR interactions. J. Immunol. 211, 311–322 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Schroeder, H. W. Jr & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125, S41–S52 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuhns, M. S., Davis, M. M. & Garcia, K. C. Deconstructing the form and function of the TCR/CD3 complex. Immunity 24, 133–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Ribot, J. C., Lopes, N. & Silva-Santos, B. γδ T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21, 221–232 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Boehme, L., Roels, J. & Taghon, T. Development of γδ T cells in the thymus — a human perspective. Semin. Immunol. 61–64, 101662 (2022).

    Article  PubMed  Google Scholar 

  6. Bosselut, R. A beginner’s guide to T cell development. Methods Mol. Biol. 2580, 3–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Deseke, M. & Prinz, I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell. Mol. Immunol. 17, 914–924 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willcox, B. E. & Willcox, C. R. γδ TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 20, 121–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Miller, J. F. Immunological function of the thymus. Lancet 2, 748–749 (1961).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, J. F. A. P. Effect of neonatal thymectomy on the immunological responsiveness of the mouse. Proc. R. Soc. Lond. 156, 415–428 (1962).

    ADS  Google Scholar 

  13. Cooper, M. D., Peterson, R. D. & Good, R. A. Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 205, 143–146 (1965).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Miller, J. F., Mitchell, G. F. & Weiss, N. S. Cellular basis of the immunological defects in thymectomized mice. Nature 214, 992–997 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chien, Y. et al. A third type of murine T-cell receptor gene. Nature 312, 31–35 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Alamyar, E., Giudicelli, V., Li, S., Duroux, P. & Lefranc, M.-P. IMGT/HighV-QUEST: the IMGT® web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing. Immunome Res. 8, 26 (2012).

    Google Scholar 

  18. Chaudhary, N. & Wesemann, D. R. Analyzing immunoglobulin repertoires. Front. Immunol. 9, 462 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chiffelle, J. et al. T-cell repertoire analysis and metrics of diversity and clonality. Curr. Opin. Biotechnol. 65, 284–295 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Marks, C. & Deane, C. M. Antibody H3 structure prediction. Comput. Struct. Biotechnol. J. 15, 222–231 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Xu, J. L. & Davis, M. M. Diversity in the CDR3 region of VH is sufficient for most antibody specificities. Immunity 13, 37–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. McKean, D. et al. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 81, 3180–3184 (1984).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hershberg, U. & Prak, E. T. L. The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140239 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Stavnezer, J., Guikema, J. E. J. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ng, J. C. F. et al. sciCSR infers B cell state transition and predicts class-switch recombination dynamics using single-cell transcriptomic data. Nat. Methods https://doi.org/10.1038/s41592-023-02060-1 (2023).

  28. Bradley, P. & Thomas, P. G. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu. Rev. Immunol. 37, 547–570 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Dupic, T., Marcou, Q., Walczak, A. M. & Mora, T. Genesis of the αβ T-cell receptor. PLoS Comput. Biol. 15, e1006874 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Elhanati, Y. et al. Inferring processes underlying B-cell repertoire diversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140243 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mora, T. & Walczak, A. M. Quantifying lymphocyte receptor diversity. Preprint at bioRxiv https://doi.org/10.1101/046870 (2016).

  32. Trepel, F. Number and distribution of lymphocytes in man. A critical analysis. Klin. Wochenschr. 52, 511–515 (1974).

    Article  CAS  PubMed  Google Scholar 

  33. Cosgrove, J., Hustin, L. S. P., de Boer, R. J. & Perié, L. Hematopoiesis in numbers. Trends Immunol. 42, 1100–1112 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Greiff, V. et al. Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development. Cell Rep. 19, 1467–1478 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khosravi-Maharlooei, M. et al. Crossreactive public TCR sequences undergo positive selection in the human thymic repertoire. J. Clin. Invest. 129, 2446–2462 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown, A. J. et al. Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires. Mol. Syst. Des. Eng. 4, 701–736 (2019).

    Article  CAS  Google Scholar 

  40. Arnaout, R. A., Prak, E. T. L., Schwab, N., Rubelt, F. & Adaptive Immune Receptor Repertoire Community. The future of blood testing is the immunome. Front. Immunol. 12, 626793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zinkernagel, R. M. On differences between immunity and immunological memory. Curr. Opin. Immunol. 14, 523–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Galson, J. D. et al. Analysis of B cell repertoire dynamics following hepatitis B vaccination in humans, and enrichment of vaccine-specific antibody sequences. EBioMedicine 2, 2070–2079 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Setliff, I. et al. Multi-donor longitudinal antibody repertoire sequencing reveals the existence of public antibody clonotypes in HIV-1 infection. Cell Host Microbe 23, 845–854.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sui, W. et al. Composition and variation analysis of the TCR β-chain CDR3 repertoire in systemic lupus erythematosus using high-throughput sequencing. Mol. Immunol. 67, 455–464 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Madi, A. et al. T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity. Genome Res. 24, 1603–1612 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Briney, B., Inderbitzin, A., Joyce, C. & Burton, D. R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566, 393–397 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Lee, J. et al. Persistent antibody clonotypes dominate the serum response to influenza over multiple years and repeated vaccinations. Cell Host Microbe 25, 367–376.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bournazos, S. et al. Antibody fucosylation predicts disease severity in secondary dengue infection. Science 372, 1102–1105 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emerson, R. O. et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat. Genet. 49, 659–665 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Cowell, L. G. The diagnostic, prognostic, and therapeutic potential of adaptive immune receptor repertoire profiling in cancer. Cancer Res 80, 643–654 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng. 5, 600–612 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Morrissey, K. A., Stammnitz, M. R., Murchison, E. & Miller, R. D. Comparative genomics of the T cell receptor μ locus in marsupials and monotremes. Immunogenetics 75, 507–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Parra, Z. E., Mitchell, K., Dalloul, R. A. & Miller, R. D. A second TCRδ locus in Galliformes uses antibody-like V domains: insight into the evolution of TCRδ and TCRμ genes in tetrapods. J. Immunol. 188, 3912–3919 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Ott, J. A., Harrison, J., Flajnik, M. F. & Criscitiello, M. F. Nurse shark T-cell receptors employ somatic hypermutation preferentially to alter α/δ variable segments associated with α constant region. Eur. J. Immunol. 50, 1307–1320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Castro, R. et al. Clonotypic IgH response against systemic viral infection in pronephros and spleen of a teleost fish. J. Immunol. 208, 2573–2582 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Castro, R. et al. Contrasted TCRβ diversity of CD8+ and CD8 T cells in rainbow trout. PLoS ONE 8, e60175 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Burnet, S. F. M. The Clonal Selection Theory of Acquired Immunity; The Abraham Flexner Lectures of Vanderbilt University (Cambridge Univ. Press, 1959).

  60. Liu, S. et al. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. Immunity 55, 1940–1952.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Faint, J. M. et al. Quantitative flow cytometry for the analysis of T cell receptor Vβ chain expression. J. Immunol. Methods 225, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Pannetier, C. et al. The sizes of the CDR3 hypervariable regions of the murine T-cell receptor β chains vary as a function of the recombined germ-line segments. Proc. Natl Acad. Sci. USA 90, 4319–4323 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pannetier, C., Even, J. & Kourilsky, P. T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol. Today 16, 176–181 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Weinstein, J. A., Jiang, N., White, R. A. III, Fisher, D. S. & Quake, S. R. High-throughput sequencing of the zebrafish antibody repertoire. Science 324, 807–810 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robins, H. S. et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boyd, S. D. et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci. Transl. Med. 1, 12ra23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rosati, E. et al. Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol. 17, 61 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barennes, P. et al. Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases. Nat. Biotechnol. 39, 236–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Vázquez Bernat, N. et al. High-quality library preparation for NGS-based immunoglobulin germline gene inference and repertoire expression analysis. Front. Immunol. 10, 660 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Genolet, R. et al. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs. Cell Rep. Methods 3, 100459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pai, J. A. & Satpathy, A. T. High-throughput and single-cell T cell receptor sequencing technologies. Nat. Methods 18, 881–892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Friedensohn, S., Khan, T. A. & Reddy, S. T. Advanced methodologies in high-throughput sequencing of immune repertoires. Trends Biotechnol. 35, 203–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, Y. et al. Multimodal single-cell and whole-genome sequencing of small, frozen clinical specimens. Nat. Genet. 55, 19–25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miron, M. et al. Maintenance of the human memory T cell repertoire by subset and tissue site. Genome Med. 13, 100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Quiniou, V. et al. Human thymopoiesis produces polyspecific CD8+ α/β T cells responding to multiple viral antigens. eLife 12, e81274 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Meng, W. et al. An atlas of B-cell clonal distribution in the human body. Nat. Biotechnol. 35, 879–884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, Y.-Y. et al. Characteristics and prognostic significance of profiling the peripheral blood T-cell receptor repertoire in patients with advanced lung cancer. Int. J. Cancer 145, 1423–1431 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Rossetti, M. et al. TCR repertoire sequencing identifies synovial Treg cell clonotypes in the bloodstream during active inflammation in human arthritis. Ann. Rheum. Dis. 76, 435–441 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Bashford-Rogers, R. J. M. et al. Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574, 122–126 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mastrokolias, A., den Dunnen, J. T., van Ommen, G. B., ’t Hoen, P. A. C. & van Roon-Mom, W. M. C. Increased sensitivity of next generation sequencing-based expression profiling after globin reduction in human blood RNA. BMC Genomics 13, 28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Valpione, S. et al. Immune-awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat. Cancer 1, 210–221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miljkovic, M. D. et al. Next-generation sequencing-based monitoring of circulating tumor DNA reveals clonotypic heterogeneity in untreated PTCL. Blood Adv. 5, 4198–4210 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Komech, E. A. et al. TCR repertoire profiling revealed antigen-driven CD8+ T cell clonal groups shared in synovial fluid of patients with spondyloarthritis. Front. Immunol. 13, 973243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Greenfield, A. L. et al. Longitudinally persistent cerebrospinal fluid B cells can resist treatment in multiple sclerosis. JCI Insight 4, e126599 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. Meednu, N. et al. Dynamic spectrum of ectopic lymphoid B cell activation and hypermutation in the RA synovium characterized by NR4A nuclear receptor expression. Cell Rep. 39, 110766 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bai, X. et al. Characteristics of tumor infiltrating lymphocyte and circulating lymphocyte repertoires in pancreatic cancer by the sequencing of T cell receptors. Sci. Rep. 5, 13664 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  90. Langerak, A. W. Immunogenetics (Springer US, 2022).

  91. Klein, U., Küppers, R. & Rajewsky, K. Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 89, 1288–1298 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Shi, W. et al. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat. Immunol. 16, 663–673 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Bergot, A.-S. et al. TCR sequences and tissue distribution discriminate the subsets of naïve and activated/memory Treg cells in mice. Eur. J. Immunol. 45, 1524–1534 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Muraro, P. A. et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J. Clin. Invest. 124, 1168–1172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bashford-Rogers, R. J. M. et al. Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res. 23, 1874–1884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ghraichy, M. et al. Different B cell subpopulations show distinct patterns in their IgH repertoire metrics. eLife 10, e73111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. King, H. W. et al. Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci Immunol 6, eabe6291 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Munson, D. J. et al. Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR. Proc. Natl Acad. Sci. USA 113, 8272–8277 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. He, B. et al. Rapid isolation and immune profiling of SARS-CoV-2 specific memory B cell in convalescent COVID-19 patients via LIBRA-seq. Signal. Transduct. Target. Ther. 6, 195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, S.-Q. et al. High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. https://doi.org/10.1038/nbt.4282 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Carlson, C. S. et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat. Commun. 4, 2680 (2013).

    Article  ADS  PubMed  Google Scholar 

  103. Bashford-Rogers, R. J. M. et al. Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunol. 15, 29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chovanec, P. et al. Unbiased quantification of immunoglobulin diversity at the DNA level with VDJ-seq. Nat. Protoc. 13, 1232–1252 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Trück, J. et al. Biological controls for standardization and interpretation of adaptive immune receptor repertoire profiling. eLife 10, e66274 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Menzel, U. et al. Comprehensive evaluation and optimization of amplicon library preparation methods for high-throughput antibody sequencing. PLoS ONE 9, e96727 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  107. Ford, E. E. et al. FLAIRR-seq: a method for single-molecule resolution of near full-length antibody H chain repertoires. J. Immunol. 210, 1607–1619 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mamedov, I. Z. et al. Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling. Front. Immunol. 4, 456 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Khan, T. A. et al. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting. Sci. Adv. 2, e1501371 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  110. Liu, X. et al. Systematic comparative evaluation of methods for investigating the TCRβ repertoire. PLoS ONE 11, e0152464 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schaefer, B. C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal. Biochem. 227, 255–273 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Lin, Y.-H. et al. Dissecting efficiency of a 5′ rapid amplification of cDNA ends (5′-RACE) approach for profiling T-cell receptor β repertoire. PLoS ONE 15, e0236366 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ellefson, J. W. et al. Synthetic evolutionary origin of a proofreading reverse transcriptase. Science 352, 1590–1593 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Wang, C. et al. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc. Natl Acad. Sci. USA 107, 1518–1523 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Heather, J. M. et al. Dynamic perturbations of the T-cell receptor repertoire in chronic HIV infection and following antiretroviral therapy. Front. Immunol. 6, 644 (2015).

    PubMed  Google Scholar 

  116. Douek, D. C. et al. A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J. Immunol. 168, 3099–3104 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Turchaninova, M. A. et al. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat. Protoc. 11, 1599–1616 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Scheijen, B. et al. Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS. Leukemia 33, 2227–2240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Baker, A.-M. et al. FUME-TCRseq: sensitive and accurate sequencing of the T-cell receptor from limited input of degraded RNA. Preprint at bioRxiv https://doi.org/10.1101/2023.04.24.538037 (2023).

  120. Gupta, N. et al. Single-cell analysis and tracking of antigen-specific T cells: integrating paired chain AIRR-seq and transcriptome sequencing: a method by the AIRR community. Methods Mol. Biol. 2453, 379–421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fan, H. C., Fu, G. K. & Fodor, S. P. A. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015).

    Article  PubMed  Google Scholar 

  122. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049–14049 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Yamawaki, T. M. et al. Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling. BMC Genomics 22, 66 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nadeu, F. et al. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat. Med. 28, 1662–1671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ostendorf, B. N. et al. Common human genetic variants of APOE impact murine COVID-19 mortality. Nature 611, 346–351 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kebschull, J. M. & Zador, A. M. Sources of PCR-induced distortions in high-throughput sequencing data sets. Nucleic Acids Res. 43, e143 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Pääbo, S., Irwin, D. M. & Wilson, A. C. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265, 4718–4721 (1990).

    Article  PubMed  Google Scholar 

  131. Eugster, A. et al. AIRR community guide to planning and performing AIRR-seq experiments. Methods Mol. Biol. 2453, 261–278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Koraichi, M. B., Touzel, M. P., Mazzolini, A., Mora, T. & Walczak, A. M. NoisET: noise learning and expansion detection of T-cell receptors. J. Phys. Chem. 126, 7407–7414 (2022).

    Article  CAS  Google Scholar 

  133. Rosenfeld, A. M. et al. Computational evaluation of B-cell clone sizes in bulk populations. Front. Immunol. 9, 1472 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Friedensohn, S. et al. Synthetic standards combined with error and bias correction improve the accuracy and quantitative resolution of antibody repertoire sequencing in human naïve and memory B cells. Front. Immunol. 9, 1401 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Vollmers, C., Sit, R. V., Weinstein, J. A., Dekker, C. L. & Quake, S. R. Genetic measurement of memory B-cell recall using antibody repertoire sequencing. Proc. Natl Acad. Sci. USA 110, 13463–13468 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–655 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Egorov, E. S. et al. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers. J. Immunol. 194, 6155–6163 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Gupta, N. et al. Bulk sequencing from mRNA with UMI for evaluation of B-cell isotype and clonal evolution: a method by the AIRR community. Methods Mol. Biol. 2453, 345–377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Subas Satish, H. P. et al. NAb-seq: an accurate, rapid, and cost-effective method for antibody long-read sequencing in hybridoma cell lines and single B cells. mAbs 14, 2106621 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rodriguez, O. L., Silver, C. A., Shields, K., Smith, M. L. & Watson, C. T. Targeted long-read sequencing facilitates phased diploid assembly and genotyping of the human T cell receptor α, δ, and β loci. Cell Genom. 2, 100228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Brochu, H. N. et al. Systematic profiling of full-length Ig and TCR repertoire diversity in rhesus macaque through long read transcriptome sequencing. J. Immunol. 204, 3434–3444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  143. Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Schanz, M. et al. High-throughput sequencing of human immunoglobulin variable regions with subtype identification. PLoS ONE 9, e111726 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  145. Quý, K. L. et al. Benchmarking and integrating human B-cell receptor genomic and antibody proteomic profiling.Preprint at bioRxiv https://doi.org/10.1101/2023.11.01.565093 (2023).

  146. Chaara, W. et al. RepSeq data representativeness and robustness assessment by Shannon entropy. Front. Immunol. 9, 1038 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Shugay, M. et al. Huge overlap of individual TCR β repertoires. Front. Immunol. 4, 466 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Soto, C. et al. High frequency of shared clonotypes in human B cell receptor repertoires. Nature 566, 398–402 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. MacConaill, L. E. et al. Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics 19, 30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Costello, M. et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics 19, 332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Goods, B. A. et al. Blood handling and leukocyte isolation methods impact the global transcriptome of immune cells. BMC Immunol. 19, 30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Knecht, H. et al. Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS. Leukemia 33, 2254–2265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L. & Rice, P. M. The sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38, 1767–1771 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Greiff, V., Miho, E., Menzel, U. & Reddy, S. T. Bioinformatic and statistical analysis of adaptive immune repertoires. Trends Immunol. 36, 738–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Pennell, M., Rodriguez, O. L., Watson, C. T. & Greiff, V. The evolutionary and functional significance of germline immunoglobulin gene variation. Trends Immunol. 44, 7–21 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. deCamp, A. C. et al. Human immunoglobulin gene allelic variation impacts germline-targeting vaccine priming. Preprint at medRxiv https://doi.org/10.1101/2023.03.10.23287126 (2023).

  158. Mikocziova, I., Greiff, V. & Sollid, L. M. Immunoglobulin germline gene variation and its impact on human disease. Genes. Immun. 22, 205–217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Omer, A. et al. T cell receptor β germline variability is revealed by inference from repertoire data. Genome Med. 14, 2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ohlin, M. et al. Inferred allelic variants of immunoglobulin receptor genes: a system for their evaluation, documentation, and naming. Front. Immunol. 10, 435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Watson, C. T., Glanville, J. & Marasco, W. A. The individual and population genetics of antibody immunity. Trends Immunol. 38, 459–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mikelov, A. et al. Ultrasensitive allele inference from immune repertoire sequencing data with MiXCR. Preprint at bioRxiv https://doi.org/10.1101/2023.10.10.561703 (2023).

  163. Corcoran, M. M. et al. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity. Nat. Commun. 7, 13642 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gadala-Maria, D., Yaari, G., Uduman, M. & Kleinstein, S. H. Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles. Proc. Natl Acad. Sci. USA 112, E862–E870 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ralph, D. K. & Matsen, F. A. IV Using B cell receptor lineage structures to predict affinity. PLoS Comput. Biol. 16, e1008391 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vázquez Bernat, N. et al. Rhesus and cynomolgus macaque immunoglobulin heavy-chain genotyping yields comprehensive databases of germline VDJ alleles. Immunity 54, 355–366.e4 (2021).

    Article  PubMed  Google Scholar 

  167. Rodriguez, O. L. et al. Genetic variation in the immunoglobulin heavy chain locus shapes the human antibody repertoire. Nat. Commun. 14, 4419 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gidoni, M. et al. Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping. Nat. Commun. 10, 628 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mikocziova, I. et al. Germline polymorphisms and alternative splicing of human immunoglobulin light chain genes. iScience 24, 103192 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rubelt, F. et al. Adaptive immune receptor repertoire community recommendations for sharing immune-repertoire sequencing data. Nat. Immunol. 18, 1274–1278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Vander Heiden, J. A. et al. AIRR community standardized representations for annotated immune repertoires. Front. Immunol. 9, 2206 (2018).

    Article  Google Scholar 

  172. Song, L. et al. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat. Methods 18, 627–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rubio, T. et al. A Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data. ImmunoInformatics 6, 100012 (2022).

    Article  CAS  Google Scholar 

  174. Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Glanville, J. et al. Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc. Natl Acad. Sci. USA 108, 20066–20071 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Weber, C. R. et al. Reference-based comparison of adaptive immune receptor repertoires. Cell Rep. Methods 2, 100269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ritvo, P.-G. et al. High-resolution repertoire analysis reveals a major bystander activation of TFH and TFR cells. Proc. Natl Acad. Sci. USA 115, 9604–9609 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mhanna, V. et al. Impaired activated/memory regulatory T cell clonal expansion instigates diabetes in NOD mice. Diabetes 70, 976–985 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Olson, B. J. et al. sumrep: a summary statistic framework for immune receptor repertoire comparison and model validation. Front. Immunol. 10, 2533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Weber, C. R. et al. immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking. Bioinformatics 36, 3594–3596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Greiff, V. et al. A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status. Genome Med. 7, 49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Rényi, A. in Proc. Fourth Berkeley Symp. Mathematical Statistics and Probability Vol. 1: Contributions to the Theory of Statistics Vol. 4.1 (ed. Neyman, J.) 547–562 (Univ. of California Press, 1961).

  183. Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    Article  ADS  Google Scholar 

  184. Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article  Google Scholar 

  185. Dorfman, R. A formula for the Gini coefficient. Rev. Econ. Stat. 61, 146–149 (1979).

    Article  MathSciNet  Google Scholar 

  186. Magurran, A. E. in Ecological Diversity and Its Measurement (ed. Magurran, A. E.) 61–80 (Springer Netherlands, 1988).

  187. Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article  ADS  Google Scholar 

  188. Nolan, K. A. & Callahan, J. E. Beachcomber biology: The Shannon-Weiner Species Diversity Index. in Tested Studies for Laboratory Teaching. Proceedings of the 27th Workshop/Conference of the Association for Biology Laboratory Education Vol. 27 (ed. O'Donnell, M. A.) 334–338 (Association for Biology Laboratory Education, 2006).

  189. Somerfield, P. J., Clarke, K. R. & Warwick, R. M. in Encyclopedia of Ecology (eds Jorgensen, S. V. & Fath, B.) 3252–3255 (Elsevier, 2008).

  190. Kaplinsky, J. & Arnaout, R. Robust estimates of overall immune-repertoire diversity from high-throughput measurements on samples. Nat. Commun. 7, 11881 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  191. Miho, E. et al. Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front. Immunol. 9, 224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Marquez, S. et al. Adaptive immune receptor repertoire (AIRR) community guide to repertoire analysis. Methods Mol. Biol. 2453, 297–316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Alon, U., Mokryn, O. & Hershberg, U. Using domain based latent personal analysis of B cell clone diversity patterns to identify novel relationships between the B cell clone populations in different tissues. Front. Immunol. 12, 642673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Strauli, N. B. & Hernandez, R. D. Statistical inference of a convergent antibody repertoire response to influenza vaccine. Genome Med. 8, 60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Vujović, M., Marcatili, P., Chain, B., Kaplinsky, J. & Andresen, T. L. Signatures of T cell immunity revealed using sequence similarity with TCRDivER algorithm. Commun. Biol. 6, 357 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Miho, E., Roškar, R., Greiff, V. & Reddy, S. T. Large-scale network analysis reveals the sequence space architecture of antibody repertoires. Nat. Commun. 10, 1321 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  197. Arora, R. & Arnaout, R. Repertoire-scale measures of antigen binding. Proc. Natl Acad. Sci. USA 119, e2203505119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Csardi, G. & Nepusz, T. The igraph software package for complex network research. Interj. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  199. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring Network Structure, Dynamics, and Function using NetworkX. in Proc. 7th Python in Science Conf. (SciPy2008) (eds Varoquaux, G., Vaught, T. & Millman, J.) 11–15 (Proceedings of the Python in Science Conference, 2008).

  200. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating. Networks. ICWSM 3, 361–362 (2009).

    Article  Google Scholar 

  201. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Madi, A. et al. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. eLife Sci. 6, e22057 (2017).

    Article  Google Scholar 

  203. Amoriello, R. et al. TCR repertoire diversity in multiple sclerosis: high-dimensional bioinformatics analysis of sequences from brain, cerebrospinal fluid and peripheral blood. EBioMedicine 68, 103429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Albert, R., Jeong, H. & Barabasi, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  205. Barabási, A.-L. & Márton, P. Network Science (Cambridge Univ. Press, 2016).

  206. Akbar, R. et al. A compact vocabulary of paratope–epitope interactions enables predictability of antibody–antigen binding. Cell Rep. 34, 108856 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Ostmeyer, J., Christley, S., Toby, I. T. & Cowell, L. G. Biophysicochemical motifs in T-cell receptor sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue. Cancer Res. 79, 1671–1680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Valkiers, S., Van Houcke, M., Laukens, K. & Meysman, P. ClusTCR: a Python interface for rapid clustering of large sets of CDR3 sequences with unknown antigen specificity. Bioinformatics 37, 4865–4867 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Mayer-Blackwell, K. et al. TCR meta-clonotypes for biomarker discovery with tcrdist3 enabled identification of public, HLA-restricted clusters of SARS-CoV-2 TCRs. eLife 10, e68605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang, H., Zhan, X. & Li, B. GIANA allows computationally-efficient TCR clustering and multi-disease repertoire classification by isometric transformation. Nat. Commun. 12, 4699 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang, Z. et al. Interpreting the B-cell receptor repertoire with single-cell gene expression using Benisse. Nat. Mach. Intell. 4, 596–604 (2022).

    Article  Google Scholar 

  212. Zhang, Z., Xiong, D., Wang, X., Liu, H. & Wang, T. Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics. Nat. Methods 18, 92–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Schattgen, S. A. et al. Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph analysis (CoNGA). Nat. Biotechnol. 40, 54–63 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Hoehn, K. B., Fowler, A., Lunter, G. & Pybus, O. G. The diversity and molecular evolution of B-cell receptors during infection. Mol. Biol. Evol. 33, 1147–1157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Yermanos, A. D., Dounas, A. K., Stadler, T., Oxenius, A. & Reddy, S. T. Tracing antibody repertoire evolution by systems phylogeny. Front. Immunol. 9, 2149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Abdollahi, N. et al. A multi-objective based clustering for inferring BCR clonal lineages from high-throughput B cell repertoire data. PLoS Comput. Biol. 18, e1010411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Nouri, N. & Kleinstein, S. H. A spectral clustering-based method for identifying clones from high-throughput B cell repertoire sequencing data. Bioinformatics 34, i341–i349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yermanos, A. et al. Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim). Bioinformatics 33, 3938–3946 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Davidsen, K. & Matsen, F. A. 4th Benchmarking tree and ancestral sequence inference for B cell receptor sequences. Front. Immunol. 9, 2451 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Zhang, C., Bzikadze, A. V., Safonova, Y. & Mirarab, S. A scalable model for simulating multi-round antibody evolution and benchmarking of clonal tree reconstruction methods. Front. Immunol. 13, 1014439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Yaari, G. et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front. Immunol. 4, 358 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Hoehn, K. B. et al. Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. Proc. Natl Acad. Sci. USA 116, 22664–22672 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hoehn, K. B., Pybus, O. G. & Kleinstein, S. H. Phylogenetic analysis of migration, differentiation, and class switching in B cells. PLoS Comput. Biol. 18, e1009885 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jensen, C. G., Sumner, J. A., Kleinstein, S. H. & Hoehn, K. B. Inferring B cell phylogenies from paired heavy and light chain BCR sequences with Dowser. Preprint at bioRxiv https://doi.org/10.1101/2023.09.29.560187 (2023).

  225. Ralph, D. K. & Matsen, F. A. IV Inference of B cell clonal families using heavy/light chain pairing information. PLoS Comput. Biol. 18, e1010723 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhou, J. Q. & Kleinstein, S. H. Cutting edge: Ig H chains are sufficient to determine most B cell clonal relationships. J. Immunol. 203, 1687–1692 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. DeWitt, W. S. III, Mesin, L., Victora, G. D., Minin, V. N. & Matsen, F. A. IV Using genotype abundance to improve phylogenetic inference. Mol. Biol. Evol. 35, 1253–1265 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Abdollahi, N., Jeusset, L., de Septenville, A., Davi, F. & Bernardes, J. S. Reconstructing B cell lineage trees with minimum spanning tree and genotype abundances. BMC Bioinformatics 24, 70 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zaragoza-Infante, L. et al. IgIDivA: immunoglobulin intraclonal diversification analysis. Brief. Bioinform. 23, bbac349 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Foglierini, M., Pappas, L., Lanzavecchia, A., Corti, D. & Perez, L. AncesTree: an interactive immunoglobulin lineage tree visualizer. PLoS Comput. Biol. 16, e1007731 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  231. Jeusset, L. et al. ViCloD, an interactive web tool for visualizing B cell repertoires and analyzing intraclonal diversities: application to human B-cell tumors. NAR Genom. Bioinform. https://doi.org/10.1093/nargab/lqad064 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Lees, W. D. Tools for adaptive immune receptor repertoire sequencing. Curr. Opin. Syst. Biol. 24, 86–92 (2020).

    Article  Google Scholar 

  233. Greiff, V. et al. Learning the high-dimensional immunogenomic features that predict public and private antibody repertoires. J. Immunol. 199, 2985–2997 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Venturi, V. et al. Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination. Proc. Natl Acad. Sci. USA 103, 18691–18696 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  235. Quigley, M. F. et al. Convergent recombination shapes the clonotypic landscape of the naive T-cell repertoire. Proc. Natl Acad. Sci. USA 107, 19414–19419 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  236. Elhanati, Y., Murugan, A., Callan, C. G. Jr, Mora, T. & Walczak, A. M. Quantifying selection in immune receptor repertoires. Proc. Natl Acad. Sci. USA 111, 9875–9880 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pogorelyy, M. V. et al. Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins. Proc. Natl Acad. Sci. USA 115, 12704–12709 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  238. Galson, J. D. et al. Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent immune signatures. Front. Immunol. 11, 605170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Gomez-Tourino, I., Kamra, Y., Baptista, R., Lorenc, A. & Peakman, M. T cell receptor β-chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nat. Commun. 8, 1792 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  240. Jaccard, P. The distribution of the flora in the alpine zone.1. N. Phytol. 11, 37–50 (1912).

    Article  Google Scholar 

  241. Amoriello, R. et al. The TCR repertoire reconstitution in multiple sclerosis: comparing one-shot and continuous immunosuppressive therapies. Front. Immunol. 11, 559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Rognes, T., Scheffer, L., Greiff, V. & Sandve, G. K. CompAIRR: ultra-fast comparison of adaptive immune receptor repertoires by exact and approximate sequence matching. Bioinformatics 38, 4230–4232 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Morisita, M. Measuring of the dispersion and analysis of distribution patterns, Memoires of the Faculty of Science, Kyushu University. Series E. Biology. Sci. Rep. 2, 215–235 (1995).

    Google Scholar 

  244. Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37, 145–151 (1991).

    Article  MathSciNet  Google Scholar 

  245. Bolen, C. R., Rubelt, F., Vander Heiden, J. A. & Davis, M. M. The repertoire dissimilarity index as a method to compare lymphocyte receptor repertoires. BMC Bioinformatics 18, 155 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Raybould, M. I. J. et al. Public baseline and shared response structures support the theory of antibody repertoire functional commonality. PLoS Comput. Biol. 17, e1008781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Arora, R., Burke, H. M. & Arnaout, R. Immunological diversity with similarity. Preprint at bioRxiv https://doi.org/10.1101/483131 (2018).

  248. Ruffolo, J. A., Sulam, J. & Gray, J. J. Antibody structure prediction using interpretable deep learning. Patterns 3, 100406 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Abanades, B. et al. ImmuneBuilder: deep-learning models for predicting the structures of immune proteins. Commun. Biol. 6, 575 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Marks, C. & Deane, C. M. How repertoire data are changing antibody science. J. Biol. Chem. 295, 9823–9837 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Krawczyk, K. et al. Structurally mapping antibody repertoires. Front. Immunol. 9, 1698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Kovaltsuk, A. et al. How B-cell receptor repertoire sequencing can be enriched with structural antibody data. Front. Immunol. 8, 1753 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Shcherbinin, D. S., Karnaukhov, V. K., Zvyagin, I. V., Chudakov, D. M. & Shugay, M. Large-scale template-based structural modeling of T-cell receptors with known antigen specificity reveals complementarity features. Front. Immunol. 14, 1224969 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Sela-Culang, I., Kunik, V. & Ofran, Y. The structural basis of antibody–antigen recognition. Front. Immunol. 4, 302 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Richardson, E. et al. A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies. mAbs 13, 1869406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Imkeller, K. & Wardemann, H. Assessing human B cell repertoire diversity and convergence. Immunol. Rev. 284, 51–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Wong, W. K. et al. Ab-Ligity: identifying sequence-dissimilar antibodies that bind to the same epitope. MAbs 13, 1873478 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89–93 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ruffolo, J. A., Guerra, C., Mahajan, S. P., Sulam, J. & Gray, J. J. Geometric potentials from deep learning improve prediction of CDR H3 loop structures. Bioinformatics 36, i268–i275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Fernández-Quintero, M. L. et al. Challenges in antibody structure prediction. MAbs 15, 2175319 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Greiff, V., Yaari, G. & Cowell, L. G. Mining adaptive immune receptor repertoires for biological and clinical information using machine learning. Curr. Opin. Syst. Biol. 24, 109–119 (2020).

    Article  Google Scholar 

  262. Chakravarthi Kanduri et al. simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods. GigaScience 12, giag074 (2022).

    Article  Google Scholar 

  263. Chernigovskaya, M. et al. Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning. Preprint at bioRxiv https://doi.org/10.1101/2023.10.20.562936 (2023).

  264. Mariotti-Ferrandiz, E. et al. A TCRβ repertoire signature can predict experimental cerebral malaria. PLoS ONE 11, e0147871 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Six, A. et al. The past, present, and future of immune repertoire biology — the rise of next-generation repertoire analysis. Front. Immunol. 4, 413 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Pertseva, M., Gao, B., Neumeier, D., Yermanos, A. & Reddy, S. T. Applications of machine and deep learning in adaptive immunity. Annu. Rev. Chem. Biomol. Eng. 12, 39–62 (2021).

    Article  CAS  PubMed  Google Scholar 

  267. Hummer, A. M., Abanades, B. & Deane, C. M. Advances in computational structure-based antibody design. Curr. Opin. Struct. Biol. 74, 102379 (2022).

    Article  CAS  PubMed  Google Scholar 

  268. Hudson, D., Fernandes, R. A., Basham, M., Ogg, G. & Koohy, H. Can we predict T cell specificity with digital biology and machine learning? Nat. Rev. Immunol. 23, 511–521 (2023).

    Article  CAS  PubMed  Google Scholar 

  269. Gielis, S. et al. Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires. Front. Immunol. 10, 2820 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Luo, J. et al. Quantitative annotations of T-cell repertoire specificity. Brief. Bioinform. 24, bbad175 (2023).

    Article  PubMed  Google Scholar 

  271. Widrich, M. et al. Modern hopfield networks and attention for immune repertoire classification. Adv. Neural Inf. Process. Syst. 33, 18832–18845 (2020).

    Google Scholar 

  272. Sidhom, J.-W., Larman, H. B., Pardoll, D. M. & Baras, A. S. DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires. Nat. Commun. 12, 1605 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  273. Robert, P. A. et al. Unconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity prediction. Nat. Comput. Sci. 2, 845–865 (2022).

    Article  PubMed  Google Scholar 

  274. Thomas, N. et al. Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence. Bioinformatics 30, 3181–3188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Leem, J., Mitchell, L. S., Farmery, J. H. R., Barton, J. & Galson, J. D. Deciphering the language of antibodies using self-supervised learning. Patterns 3, 100513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Vu, M. H. et al. Linguistically inspired roadmap for building biologically reliable protein language models. Nat. Mach. Intell. 5, 485–496 (2023).

    Article  Google Scholar 

  277. Vu, M. H. et al. ImmunoLingo: linguistics-based formalization of the antibody language. Preprint at https://doi.org/10.48550/arXiv.2209.12635 (2022).

  278. Ruffolo, J. A., Chu, L.-S., Mahajan, S. P. & Gray, J. J. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat. Commun. 14, 2389 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  279. Wang, M., Patsenker, J., Li, H., Kluger, Y. & Kleinstein, S. Language model-based B cell receptor sequence embeddings can effectively encode receptor specificity. Preprint at bioRxiv https://doi.org/10.1101/2023.06.21.545145 (2023).

  280. Hie, B. L. et al. Efficient evolution of human antibodies from general protein language models. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01763-2 (2023).

    Article  PubMed  Google Scholar 

  281. Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Zhang, P, Bang, S., Cai, M & Lee, H. Context-aware amino acid embedding advances analysis of TCR–epitope interactions. eLife 12, RP88837 (2023).

    Google Scholar 

  283. Peng, X. et al. Characterizing the interaction conformation between T-cell receptors and epitopes with deep learning. Nat. Mach. Intell. 5, 395–407 (2023).

    Article  Google Scholar 

  284. Drost, F. et al. Integrating T-cell receptor and transcriptome for large-scale single-cell immune profiling analysis. Preprint at bioRxiv https://doi.org/10.1101/2021.06.24.449733 (2022).

  285. Kuhn, M. & Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models (CRC, 2019).

  286. Sokolova, M. & Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45, 427–437 (2009).

    Article  Google Scholar 

  287. Pavlović, M. et al. The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires. Nat. Mach. Intell. 3, 936–944 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Kanduri, C. et al. Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification. Gigascience 11, giac046 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Katayama, Y. & Kobayashi, T. J. Comparative study of repertoire classification methods reveals data efficiency of k-mer feature extraction. Front. Immunol. 13, 797640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Marcou, Q., Mora, T. & Walczak, A. M. High-throughput immune repertoire analysis with IGoR. Nat. Commun. 9, 561 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  291. Murugan, A., Mora, T., Walczak, A. M. & Callan, C. G. Jr Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc. Natl Acad. Sci. USA 109, 16161–16166 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  292. Slabodkin, A. et al. Individualized VDJ recombination predisposes the available Ig sequence space. Genome Res. 31, 2209–2224 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Russell, M. L. et al. Combining genotypes and T cell receptor distributions to infer genetic loci determining V(D)J recombination probabilities. eLife 11, e73475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Neumeier, D. et al. Phenotypic determinism and stochasticity in antibody repertoires of clonally expanded plasma cells. Proc. Natl Acad. Sci. USA 119, e2113766119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Salou, M., Nicol, B., Garcia, A. & Laplaud, D.-A. Involvement of CD8+ T cells in multiple sclerosis. Front. Immunol. 6, 604 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Codina-Busqueta, E. et al. TCR bias of in vivo expanded T cells in pancreatic islets and spleen at the onset in human type 1 diabetes. J. Immunol. 186, 3787–3797 (2011).

    Article  CAS  PubMed  Google Scholar 

  297. Seay, H. R. et al. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 1, e88242 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Kovaltsuk, A. et al. Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice. PLoS Comput. Biol. 16, e1007636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Hoehn, K. B. et al. Dynamics of immunoglobulin sequence diversity in HIV-1 infected individuals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 2014 (2015).

    Article  Google Scholar 

  300. Chang, C.-M. et al. Profiling of T cell repertoire in SARS-CoV-2-infected COVID-19 patients between mild disease and pneumonia. J. Clin. Immunol. 41, 1131–1145 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Priel, A., Gordin, M., Philip, H., Zilberberg, A. & Efroni, S. Network representation of T-cell repertoire — a novel tool to analyze immune response to cancer formation. Front. Immunol. 9, 2913 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Pogorelyy, M. V. et al. Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLoS Biol. 17, e3000314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Minervina, A. A. et al. Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T-cell memory formation after mild COVID-19 infection. eLife 10, e63502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 94–98 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  305. Pogorelyy, M. V. et al. Resolving SARS-CoV-2 CD4+ T cell specificity via reverse epitope discovery. Cell Rep. Med. 3, 100697 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Simnica, D. et al. Landscape of T-cell repertoires with public COVID-19-associated T-cell receptors in pre-pandemic risk cohorts. Clin. Transl. Immunol. 10, e1340 (2021).

    Article  CAS  Google Scholar 

  307. Servaas, N. H. et al. Longitudinal analysis of T-cell receptor repertoires reveals persistence of antigen-driven CD4+ and CD8+ T-cell clusters in systemic sclerosis. J. Autoimmun. 117, 102574 (2021).

    Article  CAS  PubMed  Google Scholar 

  308. Komech, E. A. et al. CD8+ T cells with characteristic T cell receptor β motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients. Rheumatology 57, 1097–1104 (2018).

    Article  CAS  PubMed  Google Scholar 

  309. Chiou, S.-H. et al. Global analysis of shared T cell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity 54, 586–602.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Joshi, K. et al. Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer. Nat. Med. 25, 1549–1559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Hoehn, K. B. et al. Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving. eLife 10, e70873 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  312. de Bourcy, C. F. A. et al. Phylogenetic analysis of the human antibody repertoire reveals quantitative signatures of immune senescence and aging. Proc. Natl Acad. Sci. USA 114, 1105–1110 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  313. Stern, J. N. H. et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl Med. 6, 248ra107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Park, J.-E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay33224 (2020).

    Article  Google Scholar 

  315. Trück, J. et al. Identification of antigen-specific B cell receptor sequences using public repertoire analysis. J.Immunol. 194, 252–261 (2015).

    Article  PubMed  Google Scholar 

  316. Jackson, K. J. L. et al. Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe 16, 105–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Dong, L., Li, P., Oenema, T., McClurkan, C. L. & Koelle, D. M. Public TCR use by herpes simplex virus-2-specific human CD8 CTLs. J. Immunol. 184, 3063–3071 (2010).

    Article  CAS  PubMed  Google Scholar 

  318. Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med. 16, 1147–1151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Eugster, A. et al. High diversity in the TCR repertoire of GAD65 autoantigen-specific human CD4+ T cells. J. Immunol. 194, 2531–2538 (2015).

    Article  CAS  PubMed  Google Scholar 

  320. Musters, A. et al. In rheumatoid arthritis, synovitis at different inflammatory sites is dominated by shared but patient-specific T cell clones. J. Immunol. 201, 417–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  321. Krasik, S. V. et al. Systematic evaluation of intratumoral and peripheral BCR repertoires in three cancers. Preprint at bioRxiv https://doi.org/10.1101/2023.04.16.537028 (2023).

  322. Aran, A. et al. Analysis of tumor infiltrating CD4+ and CD8+ CDR3 sequences reveals shared features putatively associated to the anti-tumor immune response. Front. Immunol. 14, 1227766 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Dunn-Walters, D. K. The ageing human B cell repertoire: a failure of selection? Clin. Exp. Immunol. 183, 50–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  324. Britanova, O. V. et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–2698 (2014).

    Article  CAS  PubMed  Google Scholar 

  325. Minervina, A. A. et al. Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. eLife 9, e53704 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Mikelov, A. et al. Memory persistence and differentiation into antibody-secreting cells accompanied by positive selection in longitudinal BCR repertoires. eLife 11, e79254 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Galson, J. D. et al. In-depth assessment of within-individual and inter-individual variation in the B cell receptor repertoire. Front. Immunol. 6, 531 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  328. De Neuter, N. et al. Memory CD4+ T cell receptor repertoire data mining as a tool for identifying cytomegalovirus serostatus. Genes. Immun. 20, 255–260 (2019).

    Article  PubMed  Google Scholar 

  329. Liu, X. et al. T cell receptor β repertoires as novel diagnostic markers for systemic lupus erythematosus and rheumatoid arthritis. Ann. Rheum. Dis. 78, 1070–1078 (2019).

    Article  CAS  PubMed  Google Scholar 

  330. Snyder, T. M. et al. Magnitude and dynamics of the T-cell response to SARS-CoV-2 infection at both individual and population levels. Preprint at medRxiv https://doi.org/10.1101/2020.07.31.20165647 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  331. Zaslavsky, M. E. et al. Disease diagnostics using machine learning of immune receptors. Preprint at bioRxiv https://doi.org/10.1101/2022.04.26.489314 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Akbar, R. et al. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. Abs 14, 2008790 (2022).

    Google Scholar 

  333. Wilman, W. et al. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief. Bioinform. 23, bbac267(2022).

    Article  PubMed  PubMed Central  Google Scholar 

  334. Valkiers, S. et al. Recent advances in T-cell receptor repertoire analysis: bridging the gap with multimodal single-cell RNA sequencing. ImmunoInformatics 5, 100009 (2022).

    Article  CAS  Google Scholar 

  335. Katayama, Y., Yokota, R., Akiyama, T. & Kobayashi, T. J. Machine learning approaches to TCR repertoire analysis. Front. Immunol. 13, 858057 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Weber, A., Born, J. & Rodriguez Martínez, M. TITAN: T-cell receptor specificity prediction with bimodal attention networks. Bioinformatics 37, i237–i244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Montemurro, A., Jessen, L. E. & Nielsen, M. NetTCR-2.1: lessons and guidance on how to develop models for TCR specificity predictions. Front. Immunol. 13, 1055151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Springer, I., Besser, H., Tickotsky-Moskovitz, N., Dvorkin, S. & Louzoun, Y. Prediction of specific TCR-peptide binding from large dictionaries of TCR–peptide pairs. Front. Immunol. 11, 1803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Dens, C., Bittremieux, W., Affaticati, F., Laukens, K. & Meysman, P. Interpretable deep learning to uncover the molecular binding patterns determining TCR–epitope interactions. ImmunoInformatics 11, 100027 (2023).

    Article  CAS  Google Scholar 

  340. Bradley, P. Structure-based prediction of T cell receptor:peptide–MHC interactions. eLife 12, e82813 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Perez, M. A. S. et al. TCRpcDist: estimating TCR physico-chemical similarity to analyze repertoires and predict specificities. Preprint at bioRxiv https://doi.org/10.1101/2023.06.15.545077 (2023).

  342. Sethna, Z., Elhanati, Y., Callan, C. G., Walczak, A. M. & Mora, T. OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics 35, 2974–2981 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Pavlović, M. et al. Improving generalization of machine learning-identified biomarkers with causal modeling: an investigation into immune receptor diagnostics. Preprint at arXiv https://doi.org/10.48550/arXiv.2204.09291 (2022).

  344. Swindells, M. B. et al. abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J. Mol. Biol. 429, 356–364 (2017).

    Article  CAS  PubMed  Google Scholar 

  345. Ferdous, S. & Martin, A. C. R. AbDb: antibody structure database — a database of PDB-derived antibody structures. Database 2018, bay040 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  347. Mahajan, S. et al. Epitope specific antibodies and T cell receptors in the immune epitope database. Front. Immunol. 9, 2688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Shugay, M. et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res 46, D419–D427 (2018).

    Article  CAS  PubMed  Google Scholar 

  349. Dorigatti, E.et al. Predicting T cell receptor functionality against mutant epitopes. Preprine at bioRxiv https://doi.org/10.1101/2023.05.10.540189 (2023).

  350. Taft, J. M. et al. Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain. Cell 185, 4008–4022.e14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Straub, A. et al. Recruitment of epitope-specific T cell clones with a low-avidity threshold supports efficacy against mutational escape upon re-infection. Immunity 56, 1269–1284.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  352. Mayer, A. & Callan, C. G. Jr Measures of epitope binding degeneracy from T cell receptor repertoires. Proc. Natl Acad. Sci. USA 120, e2213264120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Chronister, W. D. et al. TCRMatch: predicting T-cell receptor specificity based on sequence similarity to previously characterized receptors. Front. Immunol. 12, 640725 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. De Neuter, N. et al. On the feasibility of mining CD8+ T cell receptor patterns underlying immunogenic peptide recognition. Immunogenetics 70, 159–168 (2018).

    Article  PubMed  Google Scholar 

  355. Elias, G. et al. Preexisting memory CD4 T cells in naïve individuals confer robust immunity upon hepatitis B vaccination. eLife 11, e68388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Vujkovic, A. et al. Diagnosing viral infections through T cell receptor sequencing of activated CD8+ T cells. J. Infect. Dis. 3, jiad430 (2023).

    Google Scholar 

  357. Davidsen, K. et al. Deep generative models for T cell receptor protein sequences. eLife 8, e46935 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  358. Akbar, R. et al. In silico proof of principle of machine learning-based antibody design at unconstrained scale. mAbs 14, 2031482 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  359. Saka, K. et al. Antibody design using LSTM based deep generative model from phage display library for affinity maturation. Sci. Rep. 11, 5852 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  360. Amimeur, T. et al. Designing feature-controlled humanoid antibody discovery libraries using generative adversarial networks. Preprint at bioRxiv https://doi.org/10.1101/2020.04.12.024844 (2020).

  361. Breden, F. et al. Reproducibility and reuse of adaptive immune receptor repertoire data. Front. Immunol. 8, 1418 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Corrie, B. D. et al. iReceptor: a platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories. Immunol. Rev. 284, 24–41 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Christley, S. et al. VDJServer: a cloud-based analysis portal and data commons for immune repertoire sequences and rearrangements. Front. Immunol. 9, 976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  364. Brüggemann, M. et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia 33, 2241–2253 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  365. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  366. Huang, Y.-N. et al. Data availability of open T-cell receptor repertoire data, a systematic assessment. Front. Syst. Biol. 2, 918792 (2022).

    Article  Google Scholar 

  367. Bukhari, S. A. C. et al. The CAIRR pipeline for submitting standards-compliant B and T cell receptor repertoire sequencing studies to the National Center for Biotechnology Information repositories. Front. Immunol. 9, 1877 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  368. Christley, S. et al. The ADC API: a web API for the programmatic query of the AIRR Data Commons. Front. Big Data 3, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  369. Tickotsky, N., Sagiv, T., Prilusky, J., Shifrut, E. & Friedman, N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33, 2924–2929 (2017).

    Article  CAS  PubMed  Google Scholar 

  370. Raybould, M. I. J., Kovaltsuk, A., Marks, C. & Deane, C. M. CoV-AbDab: the coronavirus antibody database. Bioinformatics 37, 734–735 (2021).

    Article  CAS  PubMed  Google Scholar 

  371. Li, R. et al. A novel statistical method for decontaminating T-cell receptor sequencing data. Brief. Bioinform. 24, bbad230 (2023).

    Article  PubMed  Google Scholar 

  372. Smirnova, A. O. et al. The use of non-functional clonotypes as a natural calibrator for quantitative bias correction in adaptive immune receptor repertoire profiling. Elife 12, e69157 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  373. Greiff, V. et al. Quantitative assessment of the robustness of next-generation sequencing of antibody variable gene repertoires from immunized mice. BMC Immunol. 15, 40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Koraichi, M. B., Touzel, M. P., Mazzolini, A., Mora, T. & Walczak, A. M. NoisET: noise learning and expansion detection of T-cell receptors. J. Phys. Chem. A 126, 7407–7414 (2022).

    Article  CAS  PubMed  Google Scholar 

  375. Chen, L. et al. GMPR: a robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ 6, e4600 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  376. Jaffe, D. B. et al. Functional antibodies exhibit light chain coherence. Nature 611, 352–357 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  377. Holec, P. V., Berleant, J., Bathe, M. & Birnbaum, M. E. A Bayesian framework for high-throughput T cell receptor pairing. Bioinformatics 35, 1318–1325 (2019).

    Article  CAS  PubMed  Google Scholar 

  378. Howie, B. et al. High-throughput pairing of T cell receptor α and β sequences. Sci. Transl. Med. 7, 301ra131 (2015).

    Article  PubMed  Google Scholar 

  379. DeKosky, B. J. et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 21, 86–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  380. Tanno, H. et al. Determinants governing T cell receptor α/β-chain pairing in repertoire formation of identical twins. Proc. Natl Acad. Sci. USA 117, 532–540 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  381. Grigaityte, K. et al. Single-cell sequencing reveals αβ chain pairing shapes the T cell repertoire. Preprint at bioRxiv https://doi.org/10.1101/213462 (2017).

  382. Shcherbinin, D. S., Belousov, V. A. & Shugay, M. Comprehensive analysis of structural and sequencing data reveals almost unconstrained chain pairing in TCRαβ complex. PLoS Comput. Biol. 16, e1007714 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  383. Moris, P. et al. Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification. Brief. Bioinform. 22, bbaa318 (2021).

    Article  PubMed  Google Scholar 

  384. Shemesh, O., Polak, P., Lundin, K. E. A., Sollid, L. M. & Yaari, G. Machine learning analysis of naïve B-cell receptor repertoires stratifies celiac disease patients and controls. Front. Immunol. 12, 627813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Liu, S., Bradley, P. & Sun, W. Neural network models for sequence-based TCR and HLA association prediction. PLoS Comput. Biol 19, e1011664 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  386. DeWitt, W. S. III et al. Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. eLife 7, e38358 (2018).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  387. Ishigaki, K. et al. HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. Nat. Genet. 54, 393–402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Peng, K. et al. Diversity in immunogenomics: the value and the challenge. Nat. Methods 18, 588–591 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Deng, L. et al. Performance comparison of TCR–pMHC prediction tools reveals a strong data dependency. Front. Immunol. 14, 1128326 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Dens, C., Laukens, K., Bittremieux, W. & Meysman, P. The pitfalls of negative data bias for the T-cell epitope specificity challenge. Nat. Mach. Intell. 5, 1063–1065 (2023).

    Article  Google Scholar 

  391. Meysman, P. et al. Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report. ImmunoInformatics 9, 100024 (2023).

    Article  CAS  Google Scholar 

  392. Papadopoulou, I., Nguyen, A.-P., Weber, A. & Martínez, M. R. DECODE: a computational pipeline to discover T cell receptor binding rules. Bioinformatics 38, i246–i254 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  393. Tomsett, R., Harborne, D., Chakraborty, S., Gurram, P. & Preece, A. Sanity checks for saliency metrics. AAAI 34, 6021–6029 (2020).

    Article  Google Scholar 

  394. Sandve, G. K. & Greiff, V. Access to ground truth at unconstrained size makes simulated data as indispensable as experimental data for bioinformatics methods development and benchmarking. Bioinformatics 38, 4994–4996 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Chen, V. et al. Best practices for interpretable machine learning in computational biology. Preprint at bioRxiv https://doi.org/10.1101/2022.10.28.513978 (2022).

  396. Snapkov, I. et al. Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends Biotechnol. 40, 463–481 (2021).

    Article  PubMed  Google Scholar 

  397. Ionov, S. & Lee, J. An immunoproteomic survey of the antibody landscape: insights and opportunities revealed by serological repertoire profiling. Front. Immunol. 13, 832533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Curtis, N. C. et al. Characterization of SARS-CoV-2 convalescent patients’ serological repertoire reveals high prevalence of Iso-RBD antibodies. Preprint at bioRxiv https://doi.org/10.1101/2023.09.08.556349 (2023).

  399. Lee, J. et al. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat. Med. 22, 1456–1464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. de Graaf, S. C., Hoek, M., Tamara, S. & Heck, A. J. R. A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies. mAbs 14, 2079449 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  401. Yilmaz, M., Fondrie, W. E., Bittremieux, W. & Oh, S. De novo mass spectrometry peptide sequencing with a transformer model. Preprint at bioRxiv https://doi.org/10.1101/2022.02.07.479481 (2022).

  402. Setliff, I. et al. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179, 1636–1646.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Eyer, K. et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 35, 977–982 (2017).

    Article  CAS  PubMed  Google Scholar 

  404. Ma, K.-Y. et al. High-throughput and high-dimensional single-cell analysis of antigen-specific CD8+ T cells. Nat. Immunol. 22, 1590–1598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Bentzen, A. K. et al. Large-scale detection of antigen-specific T cells using peptide–MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037–1045 (2016).

    Article  CAS  PubMed  Google Scholar 

  406. Minervina, A. A. et al. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells. Nat. Immunol. 23, 781–790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Gérard, A. et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 38, 715–721 (2020).

    Article  PubMed  Google Scholar 

  408. Malissen, M. et al. Regulation of TCR α and β gene allelic exclusion during T-cell development. Immunol. Today 13, 315–322 (1992).

    Article  CAS  PubMed  Google Scholar 

  409. Padovan, E. et al. Expression of two T cell receptor α chains: dual receptor T cells. Science 262, 422–424 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  410. Schuldt, N. J. & Binstadt, B. A. Dual TCR T cells: identity crisis or multitaskers? J. Immunol. 202, 637–644 (2019).

    Article  CAS  PubMed  Google Scholar 

  411. Zhu, L. et al. scRNA-Seq revealed the special TCR β & α V(D)J allelic inclusion rearrangement and the high proportion dual (or more) TCR-expressing cells. Cell Death Dis. 14, 487 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Croce, G. et al. Deep learning predictions of TCR–epitope interactions reveal epitope-specific chains in dual α T cells. Preprint at bioRxiv https://doi.org/10.1101/2023.09.13.557561 (2023).

  413. Robert, P. A., Marschall, A. L. & Meyer-Hermann, M. Induction of broadly neutralizing antibodies in germinal centre simulations. Curr. Opin. Biotechnol. 51, 137–145 (2018).

    Article  CAS  PubMed  Google Scholar 

  414. Mashiko, S. et al. Broad responses to chemical adducts shape the natural antibody repertoire in early infancy. Sci. Adv. 9, eade8872 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Harvey, E. P. et al. An in silico method to assess antibody fragment polyreactivity. Nat. Commun. 13, 7554 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  416. Sakhnini, L., Lorenzen, N., Sormanni, P., Vendruscolo, M. & Granata, D. Development of machine learning models for prediction of antibody non-specificity. Biophys. J. 122, 463a (2023).

    Article  ADS  Google Scholar 

  417. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical assessment of methods of protein structure prediction (CASP) — tound XIV. Proteins 89, 1607–1617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Lensink, M. F., Velankar, S. & Wodak, S. J. Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins 85, 359–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  419. Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

    Article  MathSciNet  Google Scholar 

  420. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  421. Armer, C. et al. The protein engineering tournament: an open science benchmark for protein modeling and design. Preprint at arXiv arxiv-2309.09955 (2023).

  422. Lingwood, D. et al. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489, 566–570 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  423. Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  424. Sangesland, M. et al. Allelic polymorphism controls autoreactivity and vaccine elicitation of human broadly neutralizing antibodies against influenza virus. Immunity 55, 1693–1709.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  425. Lee, J. H. et al. Vaccine genetics of IGHV1-2 VRC01-class broadly neutralizing antibody precursor naïve human B cells. NPJ Vaccines 6, 113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  427. Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  428. Zinkernagel, R. M. & Doherty, P. C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 251, 547–548 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  429. Ashby, K. M. & Hogquist, K. A. A guide to thymic selection of T cells. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00911-8 (2023).

    Article  PubMed  Google Scholar 

  430. Brown, A. et al. MHC heterozygosity reduces the T cell receptor repertoire. Cell https://doi.org/10.2139/ssrn.4555926 (2023).

  431. Xu, J. et al. T cell receptor β repertoires in patients with COVID-19 reveal disease severity signatures. Front. Immunol. 14, 1190844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Park, J. J. et al. Machine learning identifies T cell receptor repertoire signatures associated with COVID-19 severity. Commun. Biol. 6, 76 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Pedrioli, A. & Oxenius, A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol. 42, 1143–1158 (2021).

    Article  CAS  PubMed  Google Scholar 

  434. Raybould, M. I. J. et al. Five computational developability guidelines for therapeutic antibody profiling. Proc. Natl Acad. Sci. USA 116, 4025–4030 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  435. Shuai, R. W., Ruffolo, J. A. & Gray, J. J. IgLM: infilling language modeling for antibody sequence design. Cell Syst. 14, 979–989.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  436. Bachas, S. et al. Antibody optimization enabled by artificial intelligence predictions of binding affinity and naturalness. Preprint at bioRxiv https://doi.org/10.1101/2022.08.16.504181 (2022).

  437. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  438. Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  439. Shafer, P., Kelly, L. M. & Hoyos, V. Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects. Front. Immunol. 13, 835762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Yang, J., Chen, Y., Jing, Y., Green, M. R. & Han, L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat. Rev. Clin. Oncol. 20, 211–228 (2023).

    Article  CAS  PubMed  Google Scholar 

  441. Joshi, K., Milighetti, M. & Chain, B. M. Application of T cell receptor (TCR) repertoire analysis for the advancement of cancer immunotherapy. Curr. Opin. Immunol. 74, 1–8 (2022).

    Article  CAS  PubMed  Google Scholar 

  442. Castellanos-Rueda, R., Di Roberto, R. B., Schlatter, F. S. & Reddy, S. T. Leveraging single-cell sequencing for chimeric antigen receptor T cell therapies. Trends Biotechnol. 39, 1308–1320 (2021).

    Article  CAS  PubMed  Google Scholar 

  443. Stucchi, A., Maspes, F., Montee-Rodrigues, E. & Fousteri, G. Engineered Treg cells: the heir to the throne of immunotherapy. J. Autoimmun. https://doi.org/10.1016/j.jaut.2022.102986 (2023).

  444. Raffin, C. et al. Development of citrullinated-vimentin-specific CAR for targeting Tregs to treat autoimmune rheumatoid arthritis. J. Immunol. 200, 176.17 (2018).

    Article  Google Scholar 

  445. Venturi, V., Kedzierska, K., Turner, S. J., Doherty, P. C. & Davenport, M. P. Methods for comparing the diversity of samples of the T cell receptor repertoire. J. Immunol. Methods 321, 182–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  446. Mayer, A., Balasubramanian, V., Mora, T. & Walczak, A. M. How a well-adapted immune system is organized. Proc. Natl Acad. Sci. USA 112, 5950–5955 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  447. Schnaack, O. H. & Nourmohammad, A. Optimal evolutionary decision-making to store immune memory. eLife 10, e61346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  448. Vieira, M. C. et al. Germline-encoded specificities and the predictability of the B cell response. PLoS Pathog. 19, e1011603 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Giudicelli, V., Chaume, D. & Lefranc, M.-P. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 33 (Suppl. 1), D256–D261 (2004).

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (E.M.-F., V.G. and V.M.); Experimentation (K.L.Q., P.B. and V.M.); Results (H.B., K.L.Q., P.R., V.G. and V.M.); Applications (E.M.-F., H.B., V.G. and V.M.); Reproducibility and data deposition (E.M.-F., H.B., V.G. and V.M.); Limitations and optimizations (H.B., V.G. and V.M.); Outlook (E.M.-F. and V.G.); Overview of the Primer (E.M.-F. and V.G.).

Corresponding authors

Correspondence to Victor Greiff or Encarnita Mariotti-Ferrandiz.

Ethics declarations

Competing interests

V.G. declares advisory board positions in aiNET GmbH, Enpicom B.V, Specifica Inc., Adaptyv Biosystems, EVQLV, Omniscope, Diagonal Therapeutics and Absci; and is a consultant for Roche/Genentech, immunai, Proteinea and LabGenius. P.B. is now an employee of Parean Biotechnologies. E.M.-F., H.B., K.L.Q., P.R. and V.M. declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks B. Chain, S. Efroni, J. Harris, K. Rodgers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AIRR-compliant software tools: https://docs.airr-community.org/en/stable/swtools/airr_swtools_compliant.html

Guidance for AIRR software tools: https://docs.airr-community.org/en/stable/swtools/airr_swtools_standard.html

Guide for submission of AIRR-seq data to NCBI: https://docs.airr-community.org/en/stable/miairr/guide_miairr_ncbi.html

iReceptor gateway: https://gateway.ireceptor.org/login

MiAIRR: https://docs.airr-community.org/en/stable/miairr/introduction_miairr.html

Supplementary information

Glossary

Adaptive immune receptor repertoire

(AIRR). The collection of adaptive immune receptors in a single individual at a single point in time.

Adaptive immune receptors

(AIRs). B cell receptors, antibodies and T cell receptors.

Class-switch recombinations

Processes by which proliferating B cells change their antibody production by rearranging the constant region genes in the immunoglobulin heavy chain (IgH) locus to switch from expressing one class of immunoglobulin to another. The produced isotype retains the same antigen specificity but has different effector properties.

Clonotypes

Definitions range from the exact amino acid complementary determining region 3 (CDR3) to clusters of sequences to the sequence of entire variable chain regions. The debate on what constitutes a clonotype is ongoing and beyond the scope of this Primer.

Epitope

The specific part of an antigen that is contacted and recognized by an adaptive immune receptor (AIR).

Generation probability

Probability for observing a given recombined adaptive immune receptor sequence.

Germline alleles

Variants of variable (V), diversity (D) and joining (J) genes, representing the building blocks of recombined variable regions of a B cell receptor/T cell receptor.

Ground truth

An environment where any parameter (and the value thereof) that contributed to training data generation is known and controlled.

Paratope

The set of amino acids in an adaptive immune receptor (AIR) that contribute to antigen/epitope binding and are in direct contact with the epitope during binding.

Peptide–MHC complex

(pMHC). The major histocompatibility complex (MHC) is a highly polymorphic region of the genome that encodes MHC cell surface proteins that present antigenic peptides. T cell receptors recognize and bind peptides that are presented by the MHC. We denote a peptide when presented by the MHC as a pMHC.

Private clonotypes

Adaptive immune receptor sequences that occur exclusively in the adaptive immune receptor repertoire of a single individual.

Public clonotypes

Adaptive immune receptor (AIR) sequences that occur more than n times (n > 1) across a set of adaptive immune receptor repertoires (AIRRs) collected from different individuals.

Sequencing depth

The number of sequencing reads for a given sample.

Somatic hypermutations

(SHMs). Processes that lead to mutation(s) in the variable, (diversity) and joining (V(D)J) recombined B cell receptor (BCR) sequences, taking place predominantly in anatomical locales called germinal centres, and may be associated with the selection for improved BCR binding of a specific antigen.

Unique dual indexes

Unique pairs of i5 and i7 index primers used for filtering out index-hopped or misassigned reads post sequencing.

Unique molecular identifiers

(UMIs). Short sequences added to DNA/RNA fragments in some high-throughput sequencing library preparation protocols to identify the input DNA/RNA molecule, used to reduce errors and quantitative bias introduced by PCR amplification.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhanna, V., Bashour, H., Lê Quý, K. et al. Adaptive immune receptor repertoire analysis. Nat Rev Methods Primers 4, 6 (2024). https://doi.org/10.1038/s43586-023-00284-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00284-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research