Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

In vivo NMR spectroscopy

Abstract

Understanding biological processes at the molecular level is a pillar of modern science, and unique insight can be gained by studying living organisms in real time. As a non-destructive and non-targeted technique, NMR spectroscopy is uniquely capable of characterizing the chemical profile of living organisms during biochemical processes or in response to an applied stressor. In vivo NMR spectroscopy — the study of living organisms by NMR — is discussed here, including the most common and state-of-the-art experimental approaches spanning both solution-state and magic-angle spinning NMR. Key information that can be obtained and important applications — primarily monitoring biochemical processes such as growth and stress responses — are also examined. To date, in vivo NMR has been used in metabolomics studies of microorganisms, plants and invertebrates but it also has potential for medical and pharmaceutical research. Current limitations, best practices for reproducibility and optimizations are also described, including experiments and technologies capable of improving in vivo analysis. This Primer is designed to form a solid foundation for those looking to better understand or incorporate in vivo NMR studies into their own research as well as to shed light on the future of in vivo NMR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The basis of in vivo NMR spectroscopy.
Fig. 2: Overview of the different experimental equipment and approaches used for in vivo NMR.
Fig. 3: Demonstration of the improved spectral dispersion offered by multidimensional NMR.
Fig. 4: Overview of the chemical information that can be obtained using spectral editing in CMP NMR.
Fig. 5: Advanced NMR experiments used to target specific bonds in vivo.
Fig. 6: Example uses of in vivo NMR for the study of toxicity processes.
Fig. 7: Example of in vivo NMR used to study biochemical processes.
Fig. 8: Techniques paving the future of in vivo NMR.

Similar content being viewed by others

References

  1. Keeler, J. Understanding NMR Spectroscopy (John Wiley & Sons, Ltd, 2010).

  2. Hiller, S., Wasmer, C., Wider, G. & Wüthrich, K. Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J. Am. Chem. Soc. 129, 10823–10828 (2007).

    Article  Google Scholar 

  3. Żerko, S. & Koźmiński, W. Six- and seven-dimensional experiments by combination of sparse random sampling and projection spectroscopy dedicated for backbone resonance assignment of intrinsically disordered proteins. J. Biomol. NMR 63, 283–290 (2015).

    Article  Google Scholar 

  4. Levitt, M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance (John Wiley & Sons, Ltd, 2008).

  5. Kwan, A. H., Mobli, M., Gooley, P. R., King, G. F. & Mackay, J. P. Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J. 278, 687–703 (2011).

    Article  Google Scholar 

  6. Bieri, M. et al. Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination. FEBS J. 278, 704–715 (2011).

    Article  Google Scholar 

  7. Luchinat, E., Cremonini, M. & Banci, L. Radio signals from live cells: the coming of age of in-cell solution NMR. Chem. Rev. 122, 9267–9306 (2022). An excellent review of state-of-the-art in-cell NMR techniques.

    Article  Google Scholar 

  8. Hubbard, J. A., MacLachlan, L. K., King, G. W., Jones, J. J. & Fosberry, A. P. Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli. Mol. Microbiol. 49, 1191–1200 (2003).

    Article  Google Scholar 

  9. Dedmon, M. M., Patel, C. N., Young, G. B. & Pielak, G. J. FlgM gains structure in living cells. Proc. Natl. Acad. Sci. 99, 12681–12684 (2002).

    Article  ADS  Google Scholar 

  10. Binolfi, A., Theillet, F.-X. & Selenko, P. Bacterial in-cell NMR of human α-synuclein: a disordered monomer by nature? Biochem. Soc. Trans. 40, 950–954 (2012).

    Article  Google Scholar 

  11. Sani, M.-A., Zhu, S., Hofferek, V. & Separovic, F. Nitroxide spin-labeled peptides for DNP-NMR in-cell studies. FASEB J. 33, 11021–11027 (2019).

    Article  Google Scholar 

  12. Separovic, F., Hofferek, V., Duff, A. P., McConville, M. J. & Sani, M.-A. In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide. J. Struct. Biol. X 6, 100074 (2022).

    Google Scholar 

  13. Sharaf, N. G., Barnes, C. O., Charlton, L. M., Young, G. B. & Pielak, G. J. A bioreactor for in-cell protein NMR. J. Magn. Reson. 202, 140–146 (2010).

    Article  ADS  Google Scholar 

  14. Mercatelli, E., Barbieri, L., Luchinat, E. & Banci, L. Direct structural evidence of protein redox regulation obtained by in-cell NMR. Biochim. Biophys. Acta Mol. Cell Res. 1863, 198–204 (2016).

    Article  Google Scholar 

  15. Sakai, T. et al. In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J. Biomol. NMR 36, 179–188 (2006).

    Article  Google Scholar 

  16. Ye, Y. et al. Labeling strategy and signal broadening mechanism of protein NMR spectroscopy in Xenopus laevis oocytes. Chem. Eur. J. 21, 8686–8690 (2015).

    Article  Google Scholar 

  17. Krafcikova, M., Hänsel-Hertsch, R., Trantirek, L. & Foldynova-Trantirkova, S. In G-Quadruplex Nucleic Acids: Methods and Protocols (eds. Yang, D. & Lin, C.) 397–405 (Springer, 2019).

  18. Arnold, A. A. et al. Whole cell solid-state NMR study of Chlamydomonas reinhardtii microalgae. J. Biomol. NMR 70, 123–131 (2018).

    Article  Google Scholar 

  19. Arnold, A. A. et al. Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim. Biophys. Acta Biomembr. 1848, 369–377 (2015).

    Article  Google Scholar 

  20. Poulhazan, A., Arnold, A. A., Warschawski, D. E. & Marcotte, I. Unambiguous ex situ and in cell 2D 13C solid-state NMR characterization of starch and its constituents. Int. J. Mol. Sci. 19, 3817 (2018).

    Article  Google Scholar 

  21. Zhang, S. et al. In-cell NMR study of tau and MARK2 phosphorylated tau. Int. J. Mol. Sci. 20, 90 (2019).

    Article  ADS  Google Scholar 

  22. Kadavath, H., Cecilia Prymaczok, N., Eichmann, C., Riek, R. & Gerez, J. A. Multi-dimensional structure and dynamics landscape of proteins in mammalian cells revealed by in-cell NMR. Angew. Chem. Int. Ed. 62, e202213976 (2023).

    Article  Google Scholar 

  23. Luchinat, E., Barbieri, L., Cremonini, M. & Banci, L. Protein in-cell NMR spectroscopy at 1.2 GHz. J. Biomol. NMR 75, 97–107 (2021).

    Article  Google Scholar 

  24. Schlagnitweit, J. et al. Observing an antisense drug complex in intact human cells by in-cell NMR spectroscopy. ChemBioChem 20, 2474–2478 (2019).

    Article  Google Scholar 

  25. Luchinat, E., Secci, E., Cencetti, F. & Bruni, P. Sequential protein expression and selective labeling for in-cell NMR in human cells. Biochim. Biophys. Acta Gen. Subj. 1860, 527–533 (2016).

    Article  Google Scholar 

  26. Primikyri, A. et al. Probing the interaction of a quercetin bioconjugate with Bcl-2 in living human cancer cells with in-cell NMR spectroscopy. FEBS Lett. 592, 3367–3379 (2018).

    Article  Google Scholar 

  27. Hembram, D. S. S. et al. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca2+ concentration in HeLa cells. Biochem. Biophys. Res. Commun. 438, 653–659 (2013).

    Article  Google Scholar 

  28. Fonseca, C. et al. Use of in vivo 13C nuclear magnetic resonance spectroscopy to elucidate L-arabinose metabolism in yeasts. Appl. Environ. Microbiol. 74, 1845–1855 (2008).

    Article  ADS  Google Scholar 

  29. Bouillaud, D. et al. Using benchtop NMR spectroscopy as an online non-invasive in vivo lipid sensor for microalgae cultivated in photobioreactors. Process. Biochem. 93, 63–68 (2020).

    Article  Google Scholar 

  30. Dulermo, T. et al. Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. New Phytol. 183, 1149–1162 (2009).

    Article  Google Scholar 

  31. Schiller, P., Hartung, W. & Ratcliffe, R. G. Intracellular pH stability in the aquatic resurrection plant Chamaegigas intrepidus in the extreme environmental conditions that characterize its natural habitat. New Phytol. 140, 1–7 (1998).

    Article  Google Scholar 

  32. Liaghati Mobarhan, Y. et al. In vivo ultraslow MAS 2H/13C NMR emphasizes metabolites in dynamic flux. ACS Omega 3, 17023–17035 (2018).

    Article  Google Scholar 

  33. Dang, M., Fogley, R. & Zon, L. Cancer and zebrafish: mechanisms, techniques, and models: chemical genetics. Adv. Exp. Med. Biol. 916, 103–124 (2016).

    Article  Google Scholar 

  34. Tabatabaei Anaraki, M., Simpson, M. J. & Simpson, A. J. Reducing impacts of organism variability in metabolomics via time trajectory in vivo NMR. Magn. Reson. Chem. 56, 1117–1123 (2018).

    Article  Google Scholar 

  35. Lane, D. et al. Selective amino acid-only in vivo NMR: a powerful tool to follow stress processes. ACS Omega 4, 9017–9028 (2019).

    Article  Google Scholar 

  36. Lane, D. et al. Targeting the lowest concentration of a toxin that induces a detectable metabolic response in living organisms: time-resolved in vivo 2D NMR during a concentration ramp. Anal. Chem. 92, 9856–9865 (2020).

    Article  Google Scholar 

  37. Viant, M. R., Pincetich, C. A., Hinton, D. E. & Tjeerdema, R. S. Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics. Aquat. Toxicol. 76, 329–342 (2006).

    Article  Google Scholar 

  38. Shofer, S. L. & Tjeerdema, R. S. Sublethal effects of pentachlorophenol in Abalone (Haliotis rufescens) veliger larvae as measured by 31P-NMR. Ecotoxicol. Environ. Saf. 51, 155–160 (2002).

    Article  Google Scholar 

  39. Waller, W. T. & Sherry, A. D. Whole organism 31P nuclear magnetic resonance spectroscopy: a potential application in aquatic toxicity evaluations. Bull. Environ. Contam. Toxicol. 26, 73–76 (1981). One of the earliest in vivo NMR studies of a whole living organism sustained in a flow system.

    Article  Google Scholar 

  40. Tabatabaei Anaraki, M. et al. Development and application of a low-volume flow system for solution-state in vivo NMR. Anal. Chem. 90, 7912–7921 (2018).

    Article  Google Scholar 

  41. Jenne, A. et al. A holistic NMR framework to understand environmental impact: examining the impacts of superparamagnetic iron oxide nanoparticles (SPIONs) in Daphnia magna via imaging, spectroscopy, and metabolomics. Magn. Reson. Chem. https://doi.org/10.1002/mrc.5315 (2022).

    Article  Google Scholar 

  42. Soong, R. et al. Flow-based in vivo NMR spectroscopy of small aquatic organisms. Magn. Reson. Chem. 58, 411–426 (2020). A tutorial that gives detailed practical information for the setup and application of flow-based solution-state in vivo NMR.

    Article  Google Scholar 

  43. Liaghati Mobarhan, Y., Soong, R., Lane, D. & Simpson, A. J. In vivo comprehensive multiphase NMR. Magn. Reson. Chem. 58, 427–444 (2020). A tutorial for in vivo comprehensive multiphase NMR, including details on spectral editing and experimental setup.

    Article  Google Scholar 

  44. Stagg, C. & Rothman, D. Magnetic Resonance Spectroscopy: Tools for Neuroscience Research and Emerging Clinical Applications (Academic Press, 2013).

  45. Mlynárik, V. Introduction to nuclear magnetic resonance. Anal. Biochem. 529, 4–9 (2017).

    Article  Google Scholar 

  46. van de Weijer, T. & Schrauwen-Hinderling, V. B. Application of magnetic resonance spectroscopy in metabolic research. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 741–748 (2019).

    Article  Google Scholar 

  47. Henning, A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: a review. NeuroImage 168, 181–198 (2018).

    Article  Google Scholar 

  48. Westbrook, C. & Talbot, J. MRI in Practice (John Wiley & Sons, 2018).

  49. Westbrook, C. Handbook of MRI Technique (John Wiley & Sons, 2022).

  50. Plewes, D. B. & Kucharczyk, W. Physics of MRI: a primer. J. Magn. Reson. Imaging 35, 1038–1054 (2012).

    Article  Google Scholar 

  51. Kovermann, M., Rogne, P. & Wolf-Watz, M. Protein dynamics and function from solution state NMR spectroscopy. Q. Rev. Biophys. 49, e6 (2016).

    Article  Google Scholar 

  52. Duer, M. J. Solid State NMR Spectroscopy: Principles and Applications (John Wiley & Sons, 2008).

  53. Slichter, C. P. Principles of Magnetic Resonance Vol. 1 (Springer, 1990).

  54. Watts, A. Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat. Rev. Drug Discov. 4, 555–568 (2005).

    Article  Google Scholar 

  55. Klinowski, J. New Techniques in Solid-State NMR Vol. 246 (Springer, 2005).

  56. Polenova, T., Gupta, R. & Goldbourt, A. Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal. Chem. 87, 5458–5469 (2015).

    Article  Google Scholar 

  57. Pereira, H. et al. Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labelling experiments. Water Res. 30, 2128–2138 (1996).

    Article  Google Scholar 

  58. Lyngstad, M. & Grasdalen, H. A new NMR airlift bioreactor used in 31P-NMR studies of itaconic acid producing Aspergillus terreus. J. Biochem. Biophys. Methods 27, 105–116 (1993).

    Article  Google Scholar 

  59. Bouillaud, D. et al. Benchtop flow NMR spectroscopy as an online device for the in vivo monitoring of lipid accumulation in microalgae. Algal Res. 43, 101624 (2019).

    Article  Google Scholar 

  60. Santos, M. M., Lemos, P. C., Reis, M. A. M. & Santos, H. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus. Appl. Environ. Microbiol. 65, 3920–3928 (1999).

    Article  ADS  Google Scholar 

  61. Callies, R., Altenburger, R., Mayer, A., Grimme, L. H. & Leibfritz, D. A new illumination system for in vivo NMR spectroscopy. J. Magn. Reson. 90, 561–566 (1990).

    ADS  Google Scholar 

  62. Walter, L. et al. In vivo NMR spectroscopy: in situ 15N pulse labelling NMR spectroscopy with photoautotrophic microorganisms. Isot. Environ. Health Stud. 28, 73–80 (1992).

    Google Scholar 

  63. Roberts, J. K. M. & Xia, J.-H. in Methods in Cell Biology Vol. 49, Ch. 17 (eds. Galbraith, D. W., Bohnert, H. J. & Bourque, D. P.) 245–258 (Academic Press, 1995).

  64. Ratcliffe, G., Roscher, A. & Shachar-Hill, Y. Plant NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 39, 267–300 (2001). An excellent review showcasing the techniques used and information that can be obtained through in vivo NMR of plants.

    Article  Google Scholar 

  65. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Article  ADS  Google Scholar 

  66. de Moel, H. et al. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences 6, 1917–1925 (2009).

    Article  ADS  Google Scholar 

  67. Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).

    Article  Google Scholar 

  68. Mobarhan, Y. L. et al. Comprehensive multiphase NMR applied to a living organism. Chem. Sci. 7, 4856–4866 (2016).

    Article  Google Scholar 

  69. Mobarhan, Y. L., Struppe, J., Fortier-McGill, B. & Simpson, A. J. Effective combined water and sideband suppression for low-speed tissue and in vivo MAS NMR. Anal. Bioanal. Chem. 409, 5043–5055 (2017).

    Article  Google Scholar 

  70. Ning, P. et al. Expanding current applications and permitting the analysis of larger intact samples by means of a 7 mm CMP–NMR probe. Analyst 146, 4461–4472 (2021).

    Article  ADS  Google Scholar 

  71. Zhang, R., Mroue, K. H. & Ramamoorthy, A. Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy. Acc. Chem. Res. 50, 1105–1113 (2017).

    Article  Google Scholar 

  72. Beckonert, O. et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 5, 1019–1032 (2010).

    Article  Google Scholar 

  73. Antzutkin, O. N. Sideband manipulation in magic-angle-spinning nuclear magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 35, 203–266 (1999).

    Article  Google Scholar 

  74. Antzutkin, O. N. & Levitt, M. H. Centerband phase shift in the TOSS spectra of a magic-angle-spinning single crystal. J. Magn. Reson. Ser. A 118, 295–298 (1996).

    Article  ADS  Google Scholar 

  75. Hong, J. & Harbison, G. S. Magic-angle spinning sideband elimination by temporary interruption of the chemical shift. J. Magn. Reson. Ser. A 105, 128–136 (1993).

    Article  ADS  Google Scholar 

  76. Madhu, P. K., Pratima, R. & Kumar, A. Suppression of sidebands by variable speed magic angle sample spinning in solid state NMR. Chem. Phys. Lett. 256, 87–89 (1996).

    Article  ADS  Google Scholar 

  77. Mahesh, T. S., Ajithkumar, T. G., Nagaraja, C. S., Bodenhausen, G. & Kumar, A. Suppression of sidebands in two-dimensional exchange and MQMAS spectroscopies in solids by variable-speed magic-angle sample spinning. Chem. Phys. Lett. 319, 278–282 (2000).

    Article  ADS  Google Scholar 

  78. Separovic, F., Keizer, D. W. & Sani, M.-A. In-cell solid-state NMR studies of antimicrobial peptides.Front. Med. Technol. 2, 610203 (2020).

    Article  Google Scholar 

  79. Terskikh, V. V. et al. In vivo 13C NMR metabolite profiling: potential for understanding and assessing conifer seed quality. J. Exp. Bot. 56, 2253–2265 (2005).

    Article  Google Scholar 

  80. Rutar, V., Kovac, M. & Lahajnar, G. Nondestructive study of liquids in single fir seeds using nuclear magnetic resonance and magic angle sample spinning. J. Am. Oil Chem. Soc. 66, 961–965 (1989).

    Article  Google Scholar 

  81. Terskikh, V. V. et al. Deterioration of western redcedar (Thuja plicata Donn ex D. Don) seeds: protein oxidation and in vivo NMR monitoring of storage oils. J. Exp. Bot. 59, 765–777 (2008).

    Article  Google Scholar 

  82. Augustijn, D., de Groot, H. J. M. & Alia, A. HR-MAS NMR applications in plant metabolomics. Molecules 26, 931 (2021).

    Article  Google Scholar 

  83. Ronda, K. et al. Exploring proton-only NMR experiments and filters for daphnia in vivo: potential and limitations. Molecules 28, 4863 (2023).

    Article  Google Scholar 

  84. Bastawrous, M., Jenne, A., Tabatabaei Anaraki, M. & Simpson, A. J. In-vivo NMR spectroscopy: a powerful and complimentary tool for understanding environmental toxicity. Metabolites 8, 35 (2018). Review providing a general introduction to in vivo NMR, including the techniques used, information that can be gained and associated challenges.

    Article  Google Scholar 

  85. Bunescu, A. et al. In vivo proton HR-MAS NMR metabolic profile of the freshwater cladoceran Daphnia magna. Mol. Biosyst. 6, 121–125 (2010). One of the earliest studies employing HR-MAS NMR to study intact living organisms, including details on survival under different spinning rates.

    Article  Google Scholar 

  86. Li, W. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells. Analyst 131, 777–781 (2006).

    Article  ADS  Google Scholar 

  87. Wu, Y., Judge, M. T., Edison, A. S. & Arnold, J. Uncovering in vivo biochemical patterns from time-series metabolic dynamics. PLoS ONE 17, e0268394 (2022).

    Article  Google Scholar 

  88. Judge, M. T. et al. Continuous in vivo metabolism by NMR. Front. Mol. Biosci. 6, 26 (2019). An example of using in vivo NMR for the time-resolved study of metabolic pathways.

    Article  Google Scholar 

  89. Soong, R. et al. In vivo NMR spectroscopy: toward real time monitoring of environmental stress. Magn. Reson. Chem. 53, 774–779 (2015).

    Article  ADS  Google Scholar 

  90. Bastawrous, M. et al. Inverse or direct detect experiments and probes: which are “best” for in-vivo NMR research of 13C enriched organisms? Anal. Chim. Acta 1138, 168–180 (2020).

    Article  Google Scholar 

  91. Ghosh Biswas, R. et al. Exploring the applications of carbon-detected NMR in living and dead organisms using a 13C-optimized comprehensive multiphase NMR probe. Anal. Chem. 94, 8756–8765 (2022).

    Article  Google Scholar 

  92. Bodenhausen, G. & Ruben, D. J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185–189 (1980).

    Article  ADS  Google Scholar 

  93. Freeman, R. & Morris, G. A. Experimental chemical shift correlation maps in nuclear magnetic resonance spectroscopy. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39780000684 (1978).

  94. Davis, D. G. & Bax, A. Assignment of complex proton NMR spectra via two-dimensional homonuclear Hartmann-Hahn spectroscopy. J. Am. Chem. Soc. 107, 2820–2821 (1985).

    Article  Google Scholar 

  95. Aue, W. P., Bartholdi, E. & Ernst, R. R. Two‐dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229–2246 (1976).

    Article  ADS  Google Scholar 

  96. Anaraki, M. T. et al. NMR assignment of the in vivo Daphnia magna metabolome. Analyst 145, 5787–5800 (2020). Likely the first study outlining a thorough assignment of the in vivo metabolome of D. magna, providing detailed information on the experiment types used for assignment as well as an operating procedure for confident metabolite assignment.

    Article  ADS  Google Scholar 

  97. Dass, R. et al. Fast 2D NMR spectroscopy for in vivo monitoring of bacterial metabolism in complex mixtures. Front. Microbiol. 8, 1306 (2017).

    Article  Google Scholar 

  98. Fan, T. W.-M., Higashi, R. M. & Lane, A. N. Temperature dependence of arginine kinase reaction in the tail muscle of live Sycionia ingentis as measured in vivo by 31P-NMR driven saturation transfer. Biochim. Biophys. Acta Mol. Cell Res. 1135, 44–49 (1992).

    Article  Google Scholar 

  99. van den Thillart, G., van Waarde, A., Muller, H. J., Erkelens, C. & Lugtenburg, J. Determination of high-energy phosphate compounds in fish muscle: 31P-NMR spectroscopy and enzymatic methods. Comp. Biochem. Physiol. Part B Comp. Biochem. 95, 789–795 (1990).

    Article  Google Scholar 

  100. Harris, R. K., Becker, E. D., Cabral de Menezes, S. M., Goodfellow, R. & Granger, P. NMR nomenclature. Nuclear spin properties and conventions for chemical shifts. Pure Appl. Chem. 73, 1795–1818 (2001).

    Article  Google Scholar 

  101. Pincetich, C. A., Viant, M. R., Hinton, D. E. & Tjeerdema, R. S. Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 140, 103–113 (2005).

    Article  Google Scholar 

  102. Van Waarde, A., Van den Thillart, G., Erkelens, C., Addink, A. & Lugtenburg, J. Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. An in vivo 31P NMR study. J. Biol. Chem. 265, 914–923 (1990).

    Article  Google Scholar 

  103. Butler, K. W. et al. 31P nuclear magnetic resonance studies of crayfish (Orconectes virilis). Eur. J. Biochem. 149, 79–83 (1985).

    Article  Google Scholar 

  104. Murphy, C. D. The application of 19F nuclear magnetic resonance to investigate microbial biotransformations of organofluorine compounds. OMICS J. Integr. Biol. 11, 314–324 (2007).

    Article  Google Scholar 

  105. Sutrisno, A. & Simpson, A. J. Metals in the environment. eMagRes 2, 467–476 (2013).

    Google Scholar 

  106. Hassan, Q. et al. Improvements in lipid suppression for 1H NMR-based metabolomics: applications to solution-state and HR-MAS NMR in natural and in vivo samples. Magn. Reson. Chem. 57, 69–81 (2019).

    Article  Google Scholar 

  107. Levitt, M. H. Long live the singlet state! J. Magn. Reson. 306, 69–74 (2019).

    Article  ADS  Google Scholar 

  108. Carravetta, M. & Levitt, M. H. Long-lived nuclear spin states in high-field solution NMR. J. Am. Chem. Soc. 126, 6228–6229 (2004).

    Article  Google Scholar 

  109. Levitt, M. H. Singlet nuclear magnetic resonance. Annu. Rev. Phys. Chem. 63, 89–105 (2012).

    Article  ADS  Google Scholar 

  110. Lysak, D. H. et al. In vivo singlet state filtered nuclear magnetic resonance: towards monitoring toxic responses inside living organisms. Chem. Sci. 14, 1413–1418 (2023).

    Article  Google Scholar 

  111. van der Star, W. R. L. et al. An intracellular pH gradient in the anammox bacterium Kuenenia stuttgartiensis as evaluated by 31P NMR. Appl. Microbiol. Biotechnol. 86, 311–317 (2010).

    Article  Google Scholar 

  112. Azurmendi, H. F. et al. Extracellular structure of polysialic acid explored by on cell solution NMR. Proc. Natl Acad. Sci. 104, 11557–11561 (2007).

    Article  ADS  Google Scholar 

  113. Serber, Z., Ledwidge, R., Miller, S. M. & Dötsch, V. Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J. Am. Chem. Soc. 123, 8895–8901 (2001).

    Article  Google Scholar 

  114. Oh, J. S., Choi, M. H. & Yoon, S. In vivo 13C-NMR spectroscopic study of polyhydroxyalkanoic acid degradation kinetics in bacteria. J. Microbiol. Biotechnol. 15, 1330–1336 (2005).

    Google Scholar 

  115. Bouhlel, Z. et al. Labelling strategy and membrane characterization of marine bacteria Vibrio splendidus by in vivo 2H NMR. Biochim. Biophys. Acta Biomembr. 1861, 871–878 (2019).

    Article  Google Scholar 

  116. Tesch, M., de Graaf, A. A. & Sahm, H. In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Appl. Environ. Microbiol. 65, 1099–1109 (1999).

    Article  ADS  Google Scholar 

  117. Nami, F., Ferraz, M. J., Bakkum, T., Aerts, J. M. F. G. & Pandit, A. Real-time NMR recording of fermentation and lipid metabolism processes in live microalgae cells. Angew. Chem. Int. Ed. 61, e202117521 (2022).

    Article  ADS  Google Scholar 

  118. Fredlund, E., Broberg, A., Boysen, M. E., Kenne, L. & Schnürer, J. Metabolite profiles of the biocontrol yeast Pichia anomala J121 grown under oxygen limitation. Appl. Microbiol. Biotechnol. 64, 403–409 (2004).

    Article  Google Scholar 

  119. Cheng, K.-T. et al. The interactions between the antimicrobial peptide P-113 and living Candida albicans cells shed light on mechanisms of antifungal activity and resistance. Int. J. Mol. Sci. 21, 2654 (2020).

    Article  Google Scholar 

  120. Pfeffer, P. E., Bago, B. & Shachar-Hill, Y. Exploring mycorrhizal function with NMR spectroscopy. New Phytol. 150, 543–553 (2001). Review of the exploration of mycorrhizal metabolism using in vivo NMR.

    Article  Google Scholar 

  121. Le Guerneve, C. et al. In vivo and in vitro 31P-NMR study of the phosphate transport and polyphosphate metabolism in hebeloma cylindrosporum in response to plant roots signals. Bio Protoc. 8, e2973 (2018).

    Article  Google Scholar 

  122. Torres-Aquino, M. et al. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and 31P NMR spectroscopy study. Plant. Cell Env. 40, 190–202 (2017).

    Article  Google Scholar 

  123. Viereck, N., Hansen, P. E. & Jakobsen, I. Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopy. New Phytol. 162, 783–794 (2004).

    Article  Google Scholar 

  124. Rasmussen, N., Lloyd, D. C., Ratcliffe, R. G., Hansen, P. E. & Jakobsen, I. 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant. Soil. 226, 245–253 (2000).

    Article  Google Scholar 

  125. Kikuchi, J., Shinozaki, K. & Hirayama, T. Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant. Cell Physiol. 45, 1099–1104 (2004).

    Article  Google Scholar 

  126. Gambhir, P. N., Pande, P. C. & Ratcliffe, R. G. An in vivo 31P NMR study of the phosphorus metabolites in developing seeds of wheat, soybean and mustard. Magn. Reson. Chem. 35, S125–S132 (1997).

    Article  Google Scholar 

  127. Schaefer, J., Stejskal, E. O. & Beard, C. F. Carbon-13 nuclear magnetic resonance analysis of metabolism in soybean labeled by 13CO2. Plant. Physiol. 55, 1048–1053 (1975).

    Article  Google Scholar 

  128. Gerendás, J., Ratcliffe, R. G. & Sattelmacher, B. The influence of nitrogen and potassium supply on the ammonium content of maize (Zea mays L.) leaves including a comparison of measurements made in vivo and in vitro. Plant Soil 173, 11–20 (1995).

    Article  Google Scholar 

  129. Aarnes, H., Eriksen, A. B. & Southon, T. E. Metabolism of nitrate and ammonium in seedlings of Norway spruce (Picea abies) measured by in vivo 14N and 15N NMR spectroscopy. Physiol. Plant 94, 384–390 (1995).

    Article  Google Scholar 

  130. Fan, T. W.-M., Lane, A. N. & Higashi, R. M. In vivo and in vitro metabolomic analysis of anaerobic rice coleoptiles revealed unexpected pathways. Russ. J. Plant Physiol. 50, 787–793 (2003).

    Article  Google Scholar 

  131. Fan, T. W.-M., Higashi, R. M. & Lane, A. N. An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots. Arch. Biochem. Biophys. 266, 592–606 (1988).

    Article  Google Scholar 

  132. Lee, R. B., Purves, J. V., Ratcliffe, R. G. & Saker, L. R. Nitrogen assimilation and the control of ammonium and nitrate absorption by maize roots. J. Exp. Bot. 43, 1385–1396 (1992).

    Article  Google Scholar 

  133. Lundberg, P. & Lundquist, P.-O. Primary metabolism in N2-fixing Alnus incanaFrankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy. Planta 219, 661–672 (2004).

    Article  Google Scholar 

  134. Lee, R. B. & Ratcliffe, R. G. Observations on the subcellular distribution of the ammonium ion in maize root tissue using in-vivo 14N-nuclear magnetic resonance spectroscopy. Planta 183, 359–367 (1991).

    Article  Google Scholar 

  135. Gerendás, J. & Ratcliffe, R. G. Intracellular pH regulation in maize root tips exposed to ammonium at high external pH. J. Exp. Bot. 51, 207–219 (2000).

    Article  Google Scholar 

  136. Fan, T. W.-M., Higashi, R. M., Lane, A. N. & Jardetzky, O. Combined use of 1H-NMR and GC-MS for metabolite monitoring and in vivo 1H-NMR assignments. Biochim. Biophys. Acta Gen. Subj. 882, 154–167 (1986).

    Article  Google Scholar 

  137. Fan, T. W.-M., Higashi, R. M. & Lane, A. N. Monitoring of hypoxic metabolism in superfused plant tissues by in vivo 1H NMR. Arch. Biochem. Biophys. 251, 674–687 (1986).

    Article  Google Scholar 

  138. Hinse, C., Richter, C., Provenzani, A. & Stöckigt, J. In vivo monitoring of alkaloid metabolism in hybrid plant cell cultures by 2D cryo-NMR without labelling. Bioorg. Med. Chem. 11, 3913–3919 (2003).

    Article  Google Scholar 

  139. Lutterbach, R. & Stöckigt, J. In vivo investigation of plant-cell metabolism by means of natural-abundance 13C-NMR spectroscopy. Helv. Chim. Acta 77, 2153–2161 (1994).

    Article  Google Scholar 

  140. Schroeder, C., Sommer, J., Humpfer, E. & Stöckigt, J. Inverse correlated 1H-13C in vivo NMR as a probe to follow the metabolism of unlabeled vanillin by plant cell cultures. Tetrahedron 53, 927–934 (1997).

    Article  Google Scholar 

  141. Carroll, A. D. et al. Ammonium assimilation and the role of [gamma]-aminobutyric acid in pH homeostasis in carrot cell suspensions. Plant Physiol. 106, 513–520 (1994).

    Article  Google Scholar 

  142. Gout, E., Bligny, R., Douce, R., Boisson, A.-M. & Rivasseau, C. Early response of plant cell to carbon deprivation: in vivo 31P-NMR spectroscopy shows a quasi-instantaneous disruption on cytosolic sugars, phosphorylated intermediates of energy metabolism, phosphate partitioning, and intracellular pHs. New Phytol. 189, 135–147 (2011).

    Article  Google Scholar 

  143. Ebert, D. A genome for the environment. Science 331, 539–540 (2011).

    Article  ADS  Google Scholar 

  144. Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K. & Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci. Total. Environ. 763, 143038 (2021).

    Article  ADS  Google Scholar 

  145. Guilhermino, L., Diamantino, T., Carolina Silva, M. & Soares, A. M. V. M. Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity? Ecotoxicol. Environ. Saf. 46, 357–362 (2000).

    Article  Google Scholar 

  146. Persoone, G. et al. Review on the acute Daphnia magna toxicity test — evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowl. Manag. Aquat. Ecosyst. https://doi.org/10.1051/kmae/2009012 (2009).

    Article  Google Scholar 

  147. Borgmann, U. & Munawar, M. A new standardized sediment bioassay protocol using the amphipod Hyalella azteca (Saussure). Hydrobiologia 188, 425–431 (1989).

    Article  Google Scholar 

  148. Ingersoll, C. G. et al. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: a review of methods and applications. Environ. Toxicol. Chem. 14, 1885–1894 (1995).

    Google Scholar 

  149. Environmental Protection Agency. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates (EPA, 2000).

  150. Lieschke, G. J. & Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  Google Scholar 

  151. Dooley, K. & Zon, L. I. Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 10, 252–256 (2000).

    Article  Google Scholar 

  152. Bournele, D. & Beis, D. Zebrafish models of cardiovascular disease. Heart Fail. Rev. 21, 803–813 (2016).

    Article  Google Scholar 

  153. Stoletov, K. & Klemke, R. Catch of the day: zebrafish as a human cancer model. Oncogene 27, 4509–4520 (2008).

    Article  Google Scholar 

  154. Amatruda, J. F., Shepard, J. L., Stern, H. M. & Zon, L. I. Zebrafish as a cancer model system. Cancer Cell 1, 229–231 (2002).

    Article  Google Scholar 

  155. Patton, E. E., Zon, L. I. & Langenau, D. M. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat. Rev. Drug Discov. 20, 611–628 (2021).

    Article  Google Scholar 

  156. Wang, X., Zhang, J.-B., He, K.-J., Wang, F. & Liu, C.-F. Advances of zebrafish in neurodegenerative disease: from models to drug discovery. Front. Pharmacol. 12, 713963 (2021).

    Article  Google Scholar 

  157. Lam, P.-Y. & Peterson, R. T. Developing zebrafish disease models for in vivo small molecule screens. Curr. Opin. Chem. Biol. 50, 37–44 (2019).

    Article  Google Scholar 

  158. van den Thillart, G., Körner, F., van Waarde, A., Erkelens, C. & Lugtenburg, J. A flow-through probe for in vivo 31P NMR spectroscopy of unanesthetized aquatic vertebrates at 9.4 Tesla. J. Magn. Reson. 84, 573–579 (1989).

    ADS  Google Scholar 

  159. van Ginneken, V., van den Thillart, G., Addink, A. & Erkelens, C. Fish muscle energy metabolism measured during hypoxia and recovery: an in vivo 31P-NMR study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 268, R1178–R1187 (1995).

    Article  Google Scholar 

  160. van Ginneken, V., van den Thillart, G., Addink, A. & Erkelens, C. Synergistic effect of acidification and hypoxia: in vivo 31P-NMR and respirometric study in fishes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 271, R1746–R1752 (1996).

    Article  Google Scholar 

  161. van den Thillart, G. et al. Fish muscle energy metabolism measured by in vivo 31P-NMR during anoxia and recovery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 256, R922–R929 (1989).

    Article  Google Scholar 

  162. Wishart, D. S. et al. NMR and metabolomics — a roadmap for the future. Metabolites 12, 678 (2022).

    Article  Google Scholar 

  163. Debik, J., Sangermani, M., Wang, F., Madssen, T. S. & Giskeødegård, G. F. Multivariate analysis of NMR-based metabolomic data. NMR Biomed. 35, e4638 (2022).

    Article  Google Scholar 

  164. Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. R Soc. Math. Phys. Eng. Sci. 374, 20150202 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  165. Courtier-Murias, D. et al. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples. J. Magn. Reson. 217, 61–76 (2012).

    Article  ADS  Google Scholar 

  166. Kolodziejski, W. & Klinowski, J. Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem. Rev. 102, 613–628 (2002).

    Article  Google Scholar 

  167. Stark, R. E. et al. Environmental NMR: high-resolution magic-angle spinning. eMagRes 2, 377–388 (2013).

    Google Scholar 

  168. Lane, D. et al. Understanding the fate of environmental chemicals inside living organisms: NMR-based 13C isotopic suppression selects only the molecule of interest within 13C-enriched organisms. Anal. Chem. 91, 15000–15008 (2019).

    Article  Google Scholar 

  169. Krewski, D. et al. Toxicity testing in the 21st century: a vision and a strategy. J. Toxicol. Environ. Health Part B 13, 51–138 (2010).

    Article  Google Scholar 

  170. Erhirhie, E. O., Ihekwereme, C. P. & Ilodigwe, E. E. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol. 11, 5–12 (2018).

    Article  Google Scholar 

  171. Domínguez-Rodríguez, V. I., Adams, R. H., Sánchez-Madrigal, F., de los S Pascual-Chablé, J. & Gómez-Cruz, R. Soil contact bioassay for rapid determination of acute toxicity with Eisenia foetida. Heliyon 6, e03131 (2020).

    Article  Google Scholar 

  172. Anaraki, M. T. et al. NMR spectroscopy of wastewater: a review, case study, and future potential. Prog. Nucl. Magn. Reson. Spectrosc. 126–127, 121–180 (2021).

    Article  Google Scholar 

  173. Fischer, I., Milton, C. & Wallace, H. Toxicity testing is evolving! Toxicol. Res. 9, 67–80 (2020).

    Article  Google Scholar 

  174. Bastawrous, M. et al. From hemolymph to in-vivo: the potential of a 1 mm microlitre flow probe with separate lock chamber for NMR metabolomics in mass limited environmental samples. J. Magn. Reson. Open 12–13, 100079 (2022).

    Article  Google Scholar 

  175. Paerl, H. W. & Piehler, M. F. In Nitrogen in the Marine Environment 2nd edn Ch. 11 (eds. Capone, D. G., Bronk, D. A., Mulholland, M. R. & Carpenter, E. J.) 529–567 (Academic Press, 2008).

  176. Kamp, G., Juretschke, H.-P., Thiel, U. & Englisch, H. In vivo nuclear magnetic resonance studies on the lugworm Arenicola marina. I. Free inorganic phosphate and free adenylmonophosphate concentrations in the body wall and their dependence on hypoxia. J. Comp. Physiol. B 165, 143–152 (1995).

    Article  Google Scholar 

  177. Naidu, R. et al. Chemical pollution: a growing peril and potential catastrophic risk to humanity. Environ. Int. 156, 106616 (2021).

    Article  Google Scholar 

  178. Tjeerdema, R. S., Fan, T. W.-M., Higashi, R. M. & Crosby, D. G. Sublethal effects of pentachlorophenol in the abalone (Haliotis rufescens) as measured by in vivo 31P NMR spectroscopy. J. Biochem. Toxicol. 6, 45–56 (1991). An early example of in vivo NMR used to monitor toxic responses to an environmental pollutant and also showcases post-exposure recovery.

    Article  Google Scholar 

  179. Akhter, M. et al. Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells. Anal. Bioanal. Chem. 408, 4357–4370 (2016).

    Article  Google Scholar 

  180. Fugariu, I., Bermel, W., Lane, D., Soong, R. & Simpson, A. J. In-phase ultra high-resolution in vivo NMR. Angew. Chem. Int. Ed. 56, 6324–6328 (2017).

    Article  Google Scholar 

  181. Lysak, D. H. et al. Cutting without a knife: a slice-selective 2D 1H–13C HSQC NMR sequence for the analysis of inhomogeneous samples. Anal. Chem. 95, 14392–14401 (2023).

    Article  Google Scholar 

  182. Wheeler, H. L. et al. Comprehensive multiphase NMR: a promising technology to study plants in their native state. Magn. Reson. Chem. 53, 735–744 (2015).

    Article  Google Scholar 

  183. Fortier-McGill, B. E. et al. Comprehensive multiphase (CMP) NMR monitoring of the structural changes and molecular flux within a growing seed. J. Agric. Food Chem. 65, 6779–6788 (2017).

    Article  Google Scholar 

  184. Juretschke, H. P. & Kamp, G. In vivo nuclear magnetic resonance studies on the lugworm Arenicola marina. II Seasonal changes of metabolism. J. Comp. Physiol. B 165, 153–160 (1995).

    Article  Google Scholar 

  185. Constantinou, C. et al. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury. Int. J. Mol. Med. 37, 299–308 (2015).

    Article  Google Scholar 

  186. Singh, H., Shukla, M. R., Chary, K. V. R. & Rao, B. J. Acetate and bicarbonate assimilation and metabolite formation in Chlamydomonas reinhardtii: a 13C-NMR study. PLoS ONE 9, e106457 (2014).

    Article  ADS  Google Scholar 

  187. Markley, J. L. et al. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 43, 34–40 (2017).

    Article  Google Scholar 

  188. Emwas, A.-H. et al. NMR spectroscopy for metabolomics research. Metabolites 9, 123 (2019).

    Article  Google Scholar 

  189. Gonzalez-Dominguez, A. et al. An overview on the importance of combining complementary analytical platforms in metabolomic research. Curr. Top. Med. Chem. 17, 3289–3295 (2017).

    Article  Google Scholar 

  190. Stavarache, C. et al. A real-life reproducibility assessment for NMR metabolomics. Diagnostics 12, 559 (2022).

    Article  Google Scholar 

  191. Viant, M. R. et al. International NMR-based environmental metabolomics intercomparison exercise. Environ. Sci. Technol. 43, 219–225 (2009).

    Article  ADS  Google Scholar 

  192. Ghosh Biswas, R. et al. Ex vivo comprehensive multiphase NMR of whole organisms: a complementary tool to in vivo NMR. Anal. Chim. Acta X 6, 100051 (2020).

    Google Scholar 

  193. Viant, M. R. et al. Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nat. Commun. 10, 3041 (2019).

    Article  ADS  Google Scholar 

  194. Kovacs, H., Moskau, D. & Spraul, M. Cryogenically cooled probes — a leap in NMR technology. Prog. Nucl. Magn. Reson. Spectrosc. 46, 131–155 (2005).

    Article  Google Scholar 

  195. Bastawrous, M. et al. Comparing the potential of Helmholtz and planar NMR microcoils for analysis of intact biological samples. Anal. Chem. 94, 8523–8532 (2022).

    Article  Google Scholar 

  196. Jones, C. J. & Larive, C. K. Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem. 402, 61–68 (2012).

    Article  Google Scholar 

  197. Fugariu, I. et al. Towards single egg toxicity screening using microcoil NMR. Analyst 142, 4812–4824 (2017).

    Article  ADS  Google Scholar 

  198. Massin, C. et al. High-Q factor RF planar microcoils for micro-scale NMR spectroscopy. Sens. Actuators Phys. 97–98, 280–288 (2002).

    Article  Google Scholar 

  199. Spengler, N. et al. Heteronuclear micro-Helmholtz coil facilitates µm-range spatial and sub-Hz spectral resolution NMR of nL-volume samples on customisable microfluidic chips. PLoS ONE 11, e0146384 (2016).

    Article  Google Scholar 

  200. Jenne, A. et al. DREAMTIME NMR spectroscopy: targeted multi-compound selection with improved detection limits. Angew. Chem. Int. Ed. 61, e202110044 (2022).

    Article  Google Scholar 

  201. Downey, K. et al. Targeted compound selection with increased sensitivity in 13C-enriched biological and environmental samples using 13C-DREAMTIME in both high-field and low-field NMR. Anal. Chem. 95, 6709–6717 (2023).

    Article  Google Scholar 

  202. Plainchont, B., Berruyer, P., Dumez, J.-N., Jannin, S. & Giraudeau, P. Dynamic nuclear polarization opens new perspectives for NMR spectroscopy in analytical chemistry. Anal. Chem. 90, 3639–3650 (2018).

    Article  Google Scholar 

  203. Bethell, D. & Brinkman, M. R. Chemically induced dynamic nuclear spin polarization and its applications. Adv. Phys. Org. Chem. 10, 53–128 (1973).

    Google Scholar 

  204. Morozova, O. B. & Ivanov, K. L. Time-resolved chemically induced dynamic nuclear polarization of biologically important molecules. ChemPhysChem 20, 197–215 (2019).

    Article  Google Scholar 

  205. Goez, M. in Annual Reports on NMR Spectroscopy Vol. 66, Ch. 3 (ed. Webb, G. A.) 77–147 (Academic Press, 2009).

  206. Kuhn, L. T. In Hyperpolarization Methods in NMR Spectroscopy (ed. Kuhn, L. T.) 229–300 (Springer, 2013).

  207. Grisi, M. et al. NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes. Sci. Rep. 7, 44670 (2017). A study showcasing the potential of CMOS microcoils for in vivo analysis of microscopic samples such as individual eggs or tiny organisms.

    Article  ADS  Google Scholar 

  208. Grisi, M. & Conley, G. M. CMOS-based sensors as new standard for micro-NMR: magnetic resonance at the embryo scale. eMagRes 9, 259–266 (2020).

    Google Scholar 

  209. Anders, J., Chiaramonte, G., SanGiorgio, P. & Boero, G. A single-chip array of NMR receivers. J. Magn. Reson. 201, 239–249 (2009).

    Article  ADS  Google Scholar 

  210. Fratila, R. M., Gomez, M. V., Sýkora, S. & Velders, A. H. Multinuclear nanoliter one-dimensional and two-dimensional NMR spectroscopy with a single non-resonant microcoil. Nat. Commun. 5, 3025 (2014).

    Article  ADS  Google Scholar 

  211. Lysak, D. H. et al. Exploring the potential of broadband complementary metal oxide semiconductor micro-coil nuclear magnetic resonance for environmental research. Molecules 28, 5080 (2023).

    Article  Google Scholar 

  212. Kupče, Ē., Frydman, L., Webb, A. G., Yong, J. R. J. & Claridge, T. D. W. Parallel nuclear magnetic resonance spectroscopy. Nat. Rev. Methods Primers 1, 27 (2021).

    Article  Google Scholar 

  213. Kupče, Ē., Yong, J. R. J., Widmalm, G. & Claridge, T. D. W. Parallel NMR supersequences: ten spectra in a single measurement. JACS Au 1, 1892–1897 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) (Alliance (ALLRP 549399), Alliance (ALLRP 555452) and Discovery Programs (RGPIN-2019-04165)), the Canada Foundation for Innovation (CFI), the Ontario Ministry of Research and Innovation (MRI), and the Krembil Foundation for providing funding and the Government of Ontario for an Early Researcher Award.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (K.D., D.H.L., A.J.S., L.S.C. and W.B.); Experimentation (D.H.L., K.D., A.J.S., L.S.C. and W.B.); Results (D.H.L., K.D., A.J.S., L.S.C. and W.B.); Applications (D.H.L., K.D., A.J.S., L.S.C. and W.B.); Reproducibility and data deposition (K.D., D.H.L., A.J.S., L.S.C. and W.B.); Limitations and optimizations (K.D., D.H.L., A.J.S., L.S.C. and W.B.); Outlook (K.D., D.H.L., A.J.S., L.S.C. and W.B.); Overview of the Primer (K.D., D.H.L., A.J.S., L.S.C. and W.B.).

Corresponding author

Correspondence to Andre J. Simpson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Arthur Edison, Luciano Morais Lião, Antonio Gilberto Ferreira and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Chemical shift

A normalized unit that describes the position of an NMR peak on the x axis, derived from the frequency at which the nucleus resonates in an NMR spectrometer.

Coil region

The region of the radiofrequency coil where sample nuclei can be excited and detected. The NMR probe houses the detection coil. 

Cross-polarization

A phenomenon wherein polarization is transferred between different nuclei through space.

Dipolar couplings

Interactions occurring between spin-active nuclei through space.

Ex vivo

In this context, ex vivo refers to lyophilized, whole organisms that are reswollen in solution.

Peak splitting

NMR peaks are said to be ’split’ into multiplets depending on the number of other nuclei they scalar couple, resulting in characteristic peak patterns.

Planar microcoil

A microcoil where the sample is placed on a flat coil.

Presaturation

A widely used water suppression technique based on low-power irradiation of the water signal at the start of an NMR experiment.

Pro-drug

A medication that becomes active after being metabolized.

Receiver gain

An acquisition parameter that should be optimized to maximize the incoming signal without exceeding the dynamic range of the spectrometer digitizer.

Shimming

A process wherein shim coils in the spectrometer are adjusted to optimize the lineshape of a sample by compensating for inhomogeneities in the magnetic field.

Spin-active nuclei

Nuclei possessing a non-zero spin, allowing them to interact with magnetic fields and thus be detectable by NMR.

Spinning sidebands

Anisotropic peaks in an NMR spectrum that occur due to imperfect averaging of interactions due to slow spinning and appear symmetrically on either side of isotropic signals in a spectrum at a distance equal to the spin rate.

T2 filter

A filter used to remove signals from components with short T2 relaxation times such as macromolecules.

Tuning

A process in which the probe circuitry is set to the frequency at which the sample nuclei resonate.

Volume microcoil

A microcoil where the coil surrounds the sample.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysak, D.H., Downey, K., Cahill, L.S. et al. In vivo NMR spectroscopy. Nat Rev Methods Primers 3, 91 (2023). https://doi.org/10.1038/s43586-023-00274-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00274-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing