Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Two-dimensional electronic spectroscopy

Abstract

Two-dimensional electronic spectroscopy (2DES) is a popular technique that can track ultrafast coherent and incoherent processes in real time. Since its development in the late 1990s, 2DES has become a powerful tool for investigating ultrafast dynamics in a range of systems, including nanomaterials and optoelectronic devices. This Primer explains the underlying physical principles of 2DES and how it can be applied to study dynamic photophysical processes. The article discusses how to collect, process and analyse data, with a summary of currently available experimental configurations. Common issues and challenges are considered, focusing on the limitations and reproducibility of the technique, finishing with an exploration of potential future advances and applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of two-dimensional electronic spectroscopy.
Fig. 2: Interpretation of signals in two-dimensional electronic spectroscopy maps S(3)
Fig. 3: Excitation geometries.
Fig. 4: Data processing.
Fig. 5: Schematic of data analysis procedures.
Fig. 6: Pictorial representation of the phase modulation pulse sequence and detection scheme.

Similar content being viewed by others

References

  1. Dantus, M. Coherent nonlinear spectroscopy: from femtosecond dynamics to control. Annu. Rev. Phys. Chem. 52, 639–679 (2001).

    Article  ADS  Google Scholar 

  2. Maiuri, M., Garavelli, M. & Cerullo, G. Ultrafast spectroscopy: state of the art and open challenges. J. Am. Chem. Soc. 142, 3–15 (2020).

    Article  Google Scholar 

  3. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

  4. Boyd, R. Nonlinear Optics (Academic Press, 2008).

  5. Brüggemann, B., Kjellberg, P. & Pullerits, T. Non-perturbative calculation of 2D spectra in heterogeneous systems: exciton relaxation in the FMO complex. Chem. Phys. Lett. 444, 192–196 (2007).

    Article  ADS  Google Scholar 

  6. Brosseau, P., Palato, S., Seiler, H., Baker, H. & Kambhampati, P. Fifth-order two-quantum absorptive two-dimensional electronic spectroscopy of CdSe quantum dots. J. Chem. Phys. 153, 234703 (2020).

    Article  ADS  Google Scholar 

  7. Malý, P. et al. Separating single- from multi-particle dynamics in nonlinear spectroscopy. Nature 616, 280–287 (2023).

    Article  ADS  Google Scholar 

  8. Zhang, Z., Wells, K. L., Seidel, M. T. & Tan, H.-S. Fifth-order three-dimensional electronic spectroscopy using a pump–probe configuration. J. Phys. Chem. B. 117, 15369–15385 (2013).

    Article  Google Scholar 

  9. Fuller, F. D. & Ogilvie, J. P. Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu. Rev. Phys. Chem. 66, 667–690 (2015).

    Article  ADS  Google Scholar 

  10. Bránczyk, A. M. et al. Crossing disciplines—a view on two-dimensional optical spectroscopy. Ann. Phys. 526, 31–49 (2014).

    Article  Google Scholar 

  11. Gelzinis, A., Augulis, R., Butkus, V., Robert, B. & Valkunas, L. Two-dimensional spectroscopy for non-specialists. Biochim. Biophys. Acta Bioenerg. 1860, 271–285 (2019).

    Article  Google Scholar 

  12. Lewis, K. L. M. & Ogilvie, J. P. Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 3, 503–510 (2012).

    Article  Google Scholar 

  13. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  ADS  Google Scholar 

  14. Hybl, J. D., Ferro, A. A. & Jonas, D. M. Two-dimensional Fourier transform electronic spectroscopy. J. Chem. Phys. 115, 6606–6622 (2001).

    Article  ADS  Google Scholar 

  15. Hybl, J. D., Albrecht, A. W., Gallagher Faeder, S. M. & Jonas, D. M. Two-dimensional electronic spectroscopy. Chem. Phys. Lett. 297, 307–313 (1998). To our knowledge, the first theoretical demonstration of 2D Fourier transform electronic spectroscopy.

    Article  ADS  Google Scholar 

  16. Li, H., Bristow, A. D., Siemens, M. E., Moody, G. & Cundiff, S. T. Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy. Nat. Commun. 4, 1390 (2013).

    Article  ADS  Google Scholar 

  17. Tian, P. F., Keusters, D., Suzaki, Y. & Warren, W. S. Femtosecond phase-coherent two-dimensional spectroscopy. Science 300, 15553–1555 (2003).

    Article  Google Scholar 

  18. Brixner, T., Mančal, T., Stiopkin, I. V. & Fleming, G. R. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004).

    Article  ADS  Google Scholar 

  19. Christensson, N. et al. Two-dimensional electronic spectroscopy of β-carotene. J. Phys. Chem. B 113, 16409–16419 (2009).

    Article  Google Scholar 

  20. Prokhorenko, V. I., Halpin, A. & Miller, R. J. D. Coherently-controlled two-dimensional photon echo electronic spectroscopy. Opt. Express 17, 9764–9779 (2009).

    Article  ADS  Google Scholar 

  21. Lambrev, P. H., Akhtar, P. & Tan, H. S. Insights into the mechanisms and dynamics of energy transfer in plant light-harvesting complexes from two-dimensional electronic spectroscopy. Biochim. Biophys. Acta. Bioenerg. 1861, 148050 (2020).

    Article  Google Scholar 

  22. Stone, K. W. et al. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science 324, 1169–1173 (2009).

    Article  ADS  Google Scholar 

  23. Turner, D. B. & Nelson, K. A. Coherent measurements of high-order electronic correlations in quantum wells. Nature 466, 1089–1092 (2010).

    Article  ADS  Google Scholar 

  24. Dahlberg, P. D. et al. Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells. Nat. Commun. 8, 988 (2017).

    Article  ADS  Google Scholar 

  25. Collini, E. et al. Biomimetic nanoarchitectures for light harvesting: self-assembly of pyropheophorbide-peptide conjugates. J. Phys. Chem. Lett. 11, 7972–7980 (2020).

    Article  Google Scholar 

  26. Lim, J. et al. Vibronic origin of long-lived coherence in an artificial molecular light harvester. Nat. Commun. 6, 7755 (2015).

    Article  ADS  Google Scholar 

  27. Cassette, E., Dean, J. C. & Scholes, G. D. Two-dimensional visible spectroscopy for studying colloidal semiconductor nanocrystals. Small 12, 2234–2244 (2016).

    Article  Google Scholar 

  28. Righetto, M. et al. Deciphering hot- and multi-exciton dynamics in core–shell QDs by 2D electronic spectroscopies. Phys. Chem. Chem. Phys. 20, 18176–18183 (2018).

    Article  Google Scholar 

  29. Collini, E. et al. Room-temperature inter-dot coherent dynamics in multilayer quantum dot materials. J. Phys. Chem. C 124, 16222–16231 (2020).

    Article  Google Scholar 

  30. Policht, V. R. et al. Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Lett. 21, 4738–4743 (2021).

    Article  ADS  Google Scholar 

  31. Richter, J. M. et al. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun. 8, 376 (2017).

    Article  ADS  Google Scholar 

  32. Seiler, H. et al. Two-dimensional electronic spectroscopy reveals liquid-like lineshape dynamics in CsPbI3 perovskite nanocrystals. Nat. Commun. 10, 4962 (2019).

    Article  ADS  Google Scholar 

  33. Ramesh, S. et al. Tailoring the energy manifold of quasi-two-dimensional perovskites for efficient carrier extraction. Adv. Energy Mater. 12, 2103556 (2022).

    Article  Google Scholar 

  34. Karki, K. J. et al. Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell. Nat. Commun. 5, 5869 (2014). Photocurrent-detected 2DES has been applied to characterize the ultrafast dynamics of a working photovoltaic cell.

    Article  ADS  Google Scholar 

  35. Bolzonello, L. et al. Photocurrent-detected 2D electronic spectroscopy reveals ultrafast hole transfer in operating PM6/Y6 organic solar cells. J. Phys. Chem. Lett. 12, 3983–3988 (2021).

    Article  Google Scholar 

  36. Zheng, H. et al. Dispersion-free continuum two-dimensional electronic spectrometer. Appl. Opt. 53, 1909–1917 (2014).

    Article  ADS  Google Scholar 

  37. Read, E. L. et al. Cross-peak-specific two-dimensional electronic spectroscopy. Proc. Natl Acad. Sci. USA 104, 14203–14208 (2007).

    Article  ADS  Google Scholar 

  38. Paleček, D., Edlund, P., Gustavsson, E., Westenhoff, S. & Zigmantas, D. Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy. J. Chem. Phys. 151, 024201 (2019).

    Article  ADS  Google Scholar 

  39. Fidler, A. F., Singh, V. P., Long, P. D., Dahlberg, P. D. & Engel, G. S. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy. Nat. Commun. 5, 3286 (2014).

    Article  ADS  Google Scholar 

  40. Holdaway, D. I. H., Collini, E. & Olaya-Castro, A. Isolating the chiral contribution in optical two-dimensional chiral spectroscopy using linearly polarized light. Opt. Express 25, 194112 (2017).

    Article  Google Scholar 

  41. Turner, D. B., Arpin, P. C., McClure, S. D., Ulness, D. J. & Scholes, G. D. Coherent multidimensional optical spectra measured using incoherent light. Nat. Commun. 4, 2298 (2013).

    Article  ADS  Google Scholar 

  42. Tekavec, P. F., Lott, G. A. & Marcus, A. H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys. 127, 214307 (2007). To our knowledge, an action-detected 2DES experiment (with fluorescence detection) has been proposed for the first time.

    Article  ADS  Google Scholar 

  43. Aeschlimann, M. et al. Coherent two-dimensional nanoscopy. Science 333, 1723–1726 (2011).

    Article  ADS  Google Scholar 

  44. Roeding, S. & Brixner, T. Coherent two-dimensional electronic mass spectrometry. Nat. Commun. 9, 2519 (2018).

    Article  ADS  Google Scholar 

  45. Collini, E. 2D electronic spectroscopies towards quantum technology applications. J. Phys. Chem. C 125, 13096–13108 (2021).

    Article  Google Scholar 

  46. Bakulin, A. A., Silva, C. & Vella, E. Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work. J. Phys. Chem. Lett. 7, 250–258 (2016).

    Article  Google Scholar 

  47. Oliver, T. A. A. Recent advances in multidimensional ultrafast spectroscopy. R Soc. Open Sci. 5, 171425 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  48. Cho, M. Two-Dimensional Optical Spectroscopy (CRC Press, 2009).

  49. Backus, S., Durfee, C. G. III, Murnane, M. M. & Kapteyn, H. C. High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207–1223 (1998).

    Article  ADS  Google Scholar 

  50. Wilhelm, T., Piel, J. & Riedle, E. Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Opt. Lett. 22, 1494–1496 (1997).

    Article  ADS  Google Scholar 

  51. Cerullo, G., Nisoli, M., Stagira, S. & De Silvestri, S. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Opt. Lett. 23, 1283–1285 (1998). A fundamental experimental milestone towards 2DES: the development of noncollinear optical parametric amplifiers to generate ultrashort (approximately 10 fs) laser pulses.

    Article  ADS  Google Scholar 

  52. Manzoni, C. & Cerullo, G. Design criteria for ultrafast optical parametric amplifiers. J. Opt. 18, 103501 (2016).

    Article  ADS  Google Scholar 

  53. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005). To our knowledge, the first significant proof of the ability of 2DES to determine energy transfer pathways and couplings in complex multichromophoric systems has been discovered.

    Article  ADS  Google Scholar 

  54. Guo, L. et al. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys. 15, 228–232 (2019).

    Article  Google Scholar 

  55. Nisoli, M. et al. Compression of high-energy laser pulses below 5 fs. Opt. Lett. 22, 522–524 (1997).

    Article  ADS  Google Scholar 

  56. Limpert, J. et al. Ultrafast high power fiber laser systems. C. R. Phys. 7, 187–197 (2006).

    Article  ADS  Google Scholar 

  57. Liebel, M., Schnedermann, C. & Kukura, P. Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source. Opt. Lett. 39, 4112–4115 (2014).

    Article  ADS  Google Scholar 

  58. Spencer, A. P. et al. Sample exchange by beam scanning with applications to noncollinear pump–probe spectroscopy at kilohertz repetition rates. Rev. Sci. Instrum. 88, 064101 (2017).

    Article  ADS  Google Scholar 

  59. Eckbreth, A. C. BOXCARS: crossed‐beam phase‐matched CARS generation in gases. Appl. Phys. Lett. 32, 421–423 (2008).

    Article  ADS  Google Scholar 

  60. Tollerud, J. O. & Davis, J. A. Coherent multi-dimensional spectroscopy: experimental considerations, direct comparisons and new capabilities. Prog. Quantum Electron. 55, 1–34 (2017).

    Article  ADS  Google Scholar 

  61. Cowan, M. L., Ogilvie, J. P. & Miller, R. J. D. Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem. Phys. Lett. 386, 184–189 (2004). A second fundamental experimental milestone towards 2DES: the development of a novel technique based on the use of diffractive optics to achieve passively phase-lock heterodyne detection.

    Article  ADS  Google Scholar 

  62. Brixner, T., Stiopkin, I. V. & Fleming, G. R. Tunable two-dimensional femtosecond spectroscopy. Opt. Lett. 29, 884–886 (2004).

    Article  ADS  Google Scholar 

  63. Selig, U. et al. Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics. Opt. Lett. 33, 2851–2853 (2008).

    Article  ADS  Google Scholar 

  64. Selig, U. et al. Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry. Opt. Lett. 35, 4178–4180 (2010).

    Article  ADS  Google Scholar 

  65. Smallwood, C. L. & Cundiff, S. T. Multidimensional coherent spectroscopy of semiconductors. Laser Photon. Rev. 12, 1800171 (2018).

    Article  ADS  Google Scholar 

  66. Dai, X., Bristow, A. D., Karaiskaj, D. & Cundiff, S. T. Two-dimensional Fourier-transform spectroscopy of potassium vapor. Phys. Rev. A 82, 52503 (2010).

    Article  ADS  Google Scholar 

  67. Borca, C. N., Zhang, T., Li, X. & Cundiff, S. T. Optical two-dimensional Fourier transform spectroscopy of semiconductors. Chem. Phys. Lett. 416, 311–315 (2005).

    Article  ADS  Google Scholar 

  68. Shim, S.-H. & Zanni, M. T. How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping. Phys. Chem. Chem. Phys. 11, 748–761 (2009). A new simpler beam geometry is proposed for 2DES experiments to lower technical barriers.

    Article  Google Scholar 

  69. Zhang, Z., Wells, L., Hyland, E. & Tan, H.-S. Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy. Chem. Phys. Lett. 550, 156–161 (2012).

    Article  ADS  Google Scholar 

  70. Tan, H. S. Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy. J. Chem. Phys. 129, 124501 (2008).

    Article  ADS  Google Scholar 

  71. Galler, A. & Feurer, T. Pulse shaper assisted short laser pulse characterization. Appl. Phys. B 90, 427–430 (2008).

    Article  ADS  Google Scholar 

  72. Fuller, F. D., Wilcox, D. E. & Ogilvie, J. P. Pulse shaping based two-dimensional electronic spectroscopy in a background free geometry. Opt. Express 22, 1018–1027 (2014).

    Article  ADS  Google Scholar 

  73. Kearns, N. M. et al. Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator. J. Phys. Chem. A 123, 3046–3055 (2019).

    Article  Google Scholar 

  74. Tournois, P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245–249 (1997).

    Article  ADS  Google Scholar 

  75. Verluise, F., Laude, V., Cheng, Z., Spielmann, C. & Tournois, P. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Opt. Lett. 25, 575–577 (2000).

    Article  ADS  Google Scholar 

  76. Brida, D., Manzoni, C. & Cerullo, G. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Opt. Lett. 37, 3027–3029 (2012).

    Article  ADS  Google Scholar 

  77. Réhault, J., Maiuri, M., Oriana, A. & Cerullo, G. Two-dimensional electronic spectroscopy with birefringent wedges. Rev. Sci. Instrum. 85, 123107 (2014).

    Article  ADS  Google Scholar 

  78. Goetz, S., Li, D., Kolb, V., Pflaum, J. & Brixner, T. Coherent two-dimensional fluorescence micro-spectroscopy. Opt. Express 26, 3915 (2018).

    Article  ADS  Google Scholar 

  79. Nardin, G., Autry, T. M., Silverman, K. L. & Cundiff, S. T. Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. Opt. Express 21, 28617–28627 (2013).

    Article  ADS  Google Scholar 

  80. Huber, B. et al. Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate. Rev. Sci. Instrum. 90, 113103 (2019).

    Article  ADS  Google Scholar 

  81. Tiwari, V. et al. Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria. Nat. Commun. 9, 4219 (2018).

    Article  ADS  Google Scholar 

  82. Kühn, O., Mančal, T. & Pullerits, T. Interpreting fluorescence detected two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 11, 838–842 (2020).

    Article  Google Scholar 

  83. Malý, P. & Mančal, T. Signatures of exciton delocalization and exciton–exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy. J. Phys. Chem. Lett. 9, 5654–5659 (2018).

    Article  Google Scholar 

  84. Ziólek, M., Lorenc, M. & Naskrecki, R. Determination of the temporal response function in femtosecond pump-probe systems. Appl. Phys. B 72, 843–847 (2001).

    Article  ADS  Google Scholar 

  85. Yetzbacher, M. K., Belabas, N., Kitney, K. A. & Jonas, D. M. Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra. J. Chem. Phys. 126, 044511 (2007).

    Article  ADS  Google Scholar 

  86. Cho, B., Yetzbacher, M. K., Kitney, K. A., Smith, E. R. & Jonas, D. M. Propagation and beam geometry effects on two-dimensional Fourier transform spectra of multilevel systems. J. Phys. Chem. A 113, 13287–13299 (2009).

    Article  Google Scholar 

  87. Bruder, L. et al. Coherent multidimensional spectroscopy of dilute gas-phase nanosystems. Nat. Commun. 9, 4823 (2018).

    Article  ADS  Google Scholar 

  88. Fresch, E. et al. How the protein environment can tune the energy, the coupling, and the ultrafast dynamics of interacting chlorophylls: the example of the water-soluble chlorophyll protein. J. Phys. Chem. Lett. 11, 1059–1067 (2020).

    Article  Google Scholar 

  89. Akhtar, P. et al. Temperature dependence of the energy transfer in LHCII studied by two-dimensional electronic spectroscopy. J. Phys. Chem. B 123, 6765–6775 (2019).

    Article  Google Scholar 

  90. Li, H., Moody, G. & Cundiff, S. T. Reflection optical two-dimensional Fourier-transform spectroscopy. Opt. Express 21, 1687–1692 (2013).

    Article  ADS  Google Scholar 

  91. Nguyen, X. T. et al. Ultrafast charge carrier relaxation in inorganic halide perovskite single crystals probed by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 10, 5414–5421 (2019).

    Article  Google Scholar 

  92. Nguyen, X. T. et al. Phonon-driven intra-exciton Rabi oscillations in CsPbBr3 halide perovskites. Nat. Commun. 14, 1047 (2023).

    Article  ADS  Google Scholar 

  93. Bolzonello, L., Volpato, A., Meneghin, E. & Collini, E. Versatile setup for high-quality rephasing, non-rephasing, and double quantum 2D electronic spectroscopy. J. Opt. Soc. Am. B 34, 1223–1233 (2017).

    Article  ADS  Google Scholar 

  94. Lepetit, L., Chériaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995).

    Article  ADS  Google Scholar 

  95. Meng, Q., Zhang, Y., Yan, T.-M. & Jiang, Y. H. Post-processing phase-correction algorithm in two-dimensional electronic spectroscopy. Opt. Express 25, 6644–6652 (2017).

    Article  ADS  Google Scholar 

  96. Khalil, M., Demirdöven, N. & Tokmakoff, A. Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra. Phys. Rev. Lett. 90, 47401 (2003).

    Article  ADS  Google Scholar 

  97. Schlau-Cohen, G. S., Ishizaki, A. & Fleming, G. R. Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting. Chem. Phys. 386, 1–22 (2011).

    Article  Google Scholar 

  98. van Stokkum, I. H. M., Larsen, D. S. & van Grondelle, R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta Bioenerg. 1657, 82–104 (2004).

    Article  Google Scholar 

  99. Dostál, J., Pšenčík, J. & Zigmantas, D. In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 8, 705–710 (2016).

    Article  Google Scholar 

  100. Petkov, B. K. et al. Two-dimensional electronic spectroscopy reveals the spectral dynamics of Forster resonance energy transfer. Chem 5, 2111–2125 (2019).

    Article  Google Scholar 

  101. Meneghin, E. et al. Coherence in carotenoid-to-chlorophyll energy transfer. Nat. Commun. 9, 3160 (2018).

    Article  ADS  Google Scholar 

  102. Meneghin, E., Pedron, D. & Collini, E. Raman and 2D electronic spectroscopies: a fruitful alliance for the investigation of ground and excited state vibrations in chlorophyll a. Chem. Phys. 514, 132–140 (2018).

    Article  Google Scholar 

  103. Turner, D. B., Stone, K. W., Gundogdu, K. & Nelson, K. A. Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells. J. Chem. Phys. 131, 144510 (2009).

    Article  ADS  Google Scholar 

  104. Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014).

    Article  Google Scholar 

  105. Ferretti, M. et al. The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy. Phys. Chem. Chem. Phys. 16, 9930–9939 (2014).

    Article  Google Scholar 

  106. Tang, J. & Norris, J. R. LPZ spectral analysis using linear prediction and the z transform. J. Chem. Phys. 84, 5210–5211 (1986).

    Article  ADS  Google Scholar 

  107. Panitchayangkoon, G. et al. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl Acad. Sci. USA 108, 20908–20912 (2011).

    Article  ADS  Google Scholar 

  108. Caram, J. R. & Engel, G. S. Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes. Faraday Discuss. 153, 93–104 (2011).

    Article  ADS  Google Scholar 

  109. Prior, J. et al. Wavelet analysis of molecular dynamics: efficient extraction of time-frequency information in ultrafast optical processes. J. Chem. Phys. 139, 224103 (2013).

    Article  ADS  Google Scholar 

  110. Volpato, A. & Collini, E. Time-frequency methods for coherent spectroscopy. Opt. Express 23, 20040–20050 (2015).

    Article  ADS  Google Scholar 

  111. Volpato, A., Bolzonello, L., Meneghin, E. & Collini, E. Global analysis of coherence and population dynamics in 2D electronic spectroscopy. Opt. Express 24, 24773–24785 (2016).

    Article  ADS  Google Scholar 

  112. Hochstrasser, R. M. Two-dimensional IR-spectroscopy: polarization anisotropy effects. Chem. Phys. 266, 273–284 (2001).

    Article  Google Scholar 

  113. Zanni, M. T., Ge, N.-H., Kim, Y. S. & Hochstrasser, R. M. Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination. Proc. Natl Acad. Sci. USA 98, 11265–11270 (2001).

    Article  ADS  Google Scholar 

  114. Dreyer, J., Moran, M. A. & Mukamel, S. Tensor components in three pulse vibrational echoes of a rigid dipeptide. Bull. Korean Chem. Soc. 24, 1091–1096 (2003).

    Article  Google Scholar 

  115. Thyrhaug, E., Žídek, K., Dostál, J., Bína, D. & Zigmantas, D. Exciton structure and energy transfer in the Fenna–Matthews–Olson complex. J. Phys. Chem. Lett. 7, 1653–1660 (2016).

    Article  Google Scholar 

  116. Massey, S. C. et al. Orientational dynamics of transition dipoles and exciton relaxation in LH2 from ultrafast two-dimensional anisotropy. J. Phys. Chem. Lett. 10, 270–277 (2019).

    Article  Google Scholar 

  117. Bukartė, E., Haufe, A., Paleček, D., Büchel, C. & Zigmantas, D. Revealing vibronic coupling in chlorophyll c1 by polarization-controlled 2D electronic spectroscopy. Chem. Phys. 530, 110643 (2020).

    Article  Google Scholar 

  118. Lloyd, L. T. et al. Sub-10 fs intervalley exciton coupling in monolayer MoS2 revealed by helicity-resolve two-dimensional electronic spectroscopy. ACS Nano 15, 10253–10263 (2021).

    Article  Google Scholar 

  119. Ostroumov, E. E., Mulvaney, R. M., Cogdell, R. J. & Scholes, G. D. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Science 340, 48–52 (2013).

    Article  ADS  Google Scholar 

  120. Marcolin, G. & Collini, E. Solvent-dependent characterization of fucoxanthin through 2D electronic spectroscopy reveals new details on the intramolecular charge-transfer state dynamics. J. Phys. Chem. Lett. 12, 4833–4840 (2021).

    Article  Google Scholar 

  121. Tumbarello, F. et al. The energy transfer yield between carotenoids and chlorophylls in peridinin chlorophyll a protein is robust against mutations. Int. J. Mol. Sci. 23, 5067 (2022).

    Article  Google Scholar 

  122. Prokhorenko, V. I., Picchiotti, A., Pola, M., Dijkstra, A. G. & Miller, R. J. D. New insights into the photophysics of DNA nucleobases. J. Phys. Chem. Lett. 7, 4445–4450 (2016).

    Article  Google Scholar 

  123. De Sio, A. et al. Intermolecular conical intersections in molecular aggregates. Nat. Nanotechnol. 16, 63–68 (2021).

    Article  ADS  Google Scholar 

  124. Camargo, F. V. D. A., Grimmelsmann, L., Anderson, L., Meech, S. R. & Heisler, I. A. Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum. Phys. Rev. Lett. 118, 033001 (2017).

    Article  ADS  Google Scholar 

  125. Tempelaar, R. et al. Laser-limited signatures of quantum coherence. J. Phys. Chem. A 120, 3042–3048 (2016).

    Article  Google Scholar 

  126. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). Demonstration that 2DES is sensitive to coherent dynamics in complex multichromophoric systems.

    Article  ADS  Google Scholar 

  127. Collini, E. & Scholes, G. D. G. D. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009).

    Article  ADS  Google Scholar 

  128. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  ADS  Google Scholar 

  129. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010). 2DES can successfully capture coherent dynamics at room temperature in a light-harvesting antenna.

    Article  ADS  Google Scholar 

  130. Wang, L. et al. Controlling quantum-beating signals in 2D electronic spectra by packing synthetic heterodimers on single-walled carbon nanotubes. Nat. Chem. 9, 219–225 (2017).

    Article  ADS  Google Scholar 

  131. Sohail, S. H. et al. DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer. Chem. Sci. 11, 8546–8557 (2020).

    Article  Google Scholar 

  132. Turner, D. B., Wilk, K. E., Curmi, P. M. G. & Scholes, G. D. Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 2, 1904–1911 (2011).

    Article  Google Scholar 

  133. Higgins, J. S. et al. Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment–protein complexes. Proc. Natl Acad. Sci. USA 118, e2112817118 (2021).

    Article  Google Scholar 

  134. Higgins, J. S. et al. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer. Proc. Natl Acad. Sci. USA 118, e2018240118 (2021).

    Article  Google Scholar 

  135. Rafig, S., Weingartz, N. P., Kromer, S., Castellano, F. N. & Chen, L. X. Spin–vibronic coherence drives singlet–triplet conversion. Nature 620, 776–781 (2023).

    Article  ADS  Google Scholar 

  136. Woggon, U. Optical Properties of Semiconductor Quantum Dots (Springer-Verlag, 2014).

  137. Cassette, E., Pensack, R. D., Mahler, B. & Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 6, 6086 (2015).

    Article  ADS  Google Scholar 

  138. Caram, J. R. et al. Persistent interexcitonic quantum coherence in CdSe quantum dots. J. Phys. Chem. Lett. 5, 196–204 (2014).

    Article  Google Scholar 

  139. Seibt, J., Hansen, T. & Pullerits, T. 3D spectroscopy of vibrational coherences in quantum dots: theory. J. Phys. Chem. B 117, 11124–11133 (2013).

    Article  Google Scholar 

  140. Seibt, J. & Pullerits, T. Beating signals in 2D spectroscopy: electronic or nuclear coherences? Application to a quantum dot model system. J. Phys. Chem. C 117, 18728–18737 (2013).

    Article  Google Scholar 

  141. Collini, E., Gattuso, H., Levine, R. D. & Remacle, F. Ultrafast fs coherent excitonic dynamics in CdSe quantum dots assemblies addressed and probed by 2D electronic spectroscopy. J. Chem. Phys. 154, 014301 (2021).

    Article  ADS  Google Scholar 

  142. Hamilton, J. et al. Harvesting a wide spectral range of electronic coherences with disordered quasi-homo dimeric assemblies at room temperature. Adv. Quantum Technol. 5, 2200060 (2022).

    Article  Google Scholar 

  143. Becker, C. et al. Nanophotonic-enhanced two-photon-excited photoluminescence of perovskite quantum dots. ACS Photonics 5, 4668–4676 (2018).

    Article  Google Scholar 

  144. Finkelstein-Shapiro, D. et al. Understanding radiative transitions and relaxation pathways in plexcitons. Chem 7, 1092–1107 (2021).

    Article  Google Scholar 

  145. Mewes, L., Wang, M., Ingle, R. A., Börjesson, K. & Chergui, M. Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy. Commun. Phys. 3, 157 (2020).

    Article  Google Scholar 

  146. Li, T. E., Cui, B., Subotnik, J. E. & Nitzan, A. Molecular polaritonics: chemical dynamics under strong light-matter coupling. Annu. Rev. Phys. Chem. 73, 43–71 (2022).

    Article  ADS  Google Scholar 

  147. Peruffo, N., Mancin, F. & Collini, E. Coherent dynamics in solutions of colloidal plexcitonic nanohybrids at room temperature. Adv. Opt. Mater. 11, 2203010 (2023).

    Article  Google Scholar 

  148. Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photon. 7, 128–132 (2013).

    Article  ADS  Google Scholar 

  149. Son, M. et al. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nat. Commun. 13, 7305 (2022).

    Article  ADS  Google Scholar 

  150. Xiang, B. et al. State-selective polariton to dark state relaxation dynamics. J. Phys. Chem. A 123, 5918–5927 (2019).

    Article  Google Scholar 

  151. Augulis, R. & Zigmantas, D. Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance. Opt. Express 19, 13126–13133 (2011).

    Article  ADS  Google Scholar 

  152. Son, M., Mosquera-Vázquez, S. & Schlau-Cohen, G. S. Ultrabroadband 2D electronic spectroscopy with high-speed, shot-to-shot detection. Opt. Express 25, 18950–18962 (2017).

    Article  ADS  Google Scholar 

  153. Mewes, L., Ingle, R. A., Al Haddad, A. & Chergui, M. Broadband visible two-dimensional spectroscopy of molecular dyes. J. Chem. Phys. 155, 034201 (2021).

    Article  ADS  Google Scholar 

  154. Turner, D. B. Standardized specifications of 2D optical spectrometers. Results Chem. 1, 100001 (2019).

    Article  Google Scholar 

  155. Harel, E., Long, P. D. & Engel, G. S. Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2. Opt. Lett. 36, 1665–1667 (2011).

    Article  ADS  Google Scholar 

  156. Harel, E., Fidler, A. F. & Engel, G. S. Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy. Proc. Natl Acad. Sci. USA 107, 16444–16447 (2010).

    Article  ADS  Google Scholar 

  157. Hedse, A., Kalaee, A. A. S., Wacker, A. & Pullerits, T. Pulse overlap artifacts and double quantum coherence spectroscopy. J. Chem. Phys. 158, 141104 (2023).

    Article  ADS  Google Scholar 

  158. Borrego-Varillas, R. et al. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem. Sci. 10, 9907–9921 (2019).

    Article  Google Scholar 

  159. Jiang, J. & Mukamel, S. Two-dimensional ultraviolet (2DUV) spectroscopic tools for identifying fibrillation propensity of protein residue sequences. Angew. Chem. Int. Ed. 49, 9666–9669 (2010).

    Article  Google Scholar 

  160. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    Article  ADS  Google Scholar 

  161. Karki, K. J. & Ciappina, M. F. Advances in nonlinear spectroscopy using phase modulated light fields: prospective applications in perturbative and non-perturbative regimes. Adv. Phys. X 7, 2090856 (2022).

    Google Scholar 

  162. Roeding, S., Klimovich, N. & Brixner, T. Optimizing sparse sampling for 2D electronic spectroscopy. J. Chem. Phys. 146, 084201 (2017).

    Article  ADS  Google Scholar 

  163. Jayachandran, A., Mueller, S. & Brixner, T. Fluorescence-detected two-quantum photon echoes via cogwheel phase cycling. J. Phys. Chem. Lett. 13, 11710–11719 (2022).

    Article  Google Scholar 

  164. Malý, P., Gruber, J. M., Cogdell, R. J., Mančal, T. & van Grondelle, R. Ultrafast energy relaxation in single light-harvesting complexes. Proc. Natl Acad. Sci. USA 113, 2934–2939 (2016).

    Article  ADS  Google Scholar 

  165. Dorfman, K. E. & Mukamel, S. Multidimensional spectroscopy with entangled light: loop vs ladder delay scanning protocols. New J. Phys. 16, 033013 (2014).

    Article  ADS  Google Scholar 

  166. Fresch, E. et al. The effect of hydrogen bonds on the ultrafast relaxation dynamics of a BODIPY dimer. J. Chem. Phys. 154, 084201 (2021).

    Article  ADS  Google Scholar 

  167. Parson, W. W. Modern Optical Spectroscopy 2nd edn (Springer-Verlag, 2015).

Download references

Acknowledgements

The authors thank K. Watters for scientific editing. E.C. acknowledges financial support from the University of Padova (P-DiSC#04BIRD2022-UNIPD grant) and the Ministero dell’Università e della Ricerca through the Project NEST-Spoke 9, code PE0000021 (CUP C93C22005230007). G.S.E. acknowledges financial support from the National Science Foundation (NSF) through Quantum sensing for Biophysics and Bioengineering (QuBBE) Quantum Leap Challenge Institutes (QLCI) (NSF OMA-2121044), through grant no. 1900359, and the Department of Energy through award no. DE-SC0020131. C.C.B. acknowledges support from a Department of Defense National Defense Science and Engineering Graduate (DoD NDSEG) Fellowship. G.C. acknowledges support from the PRIN 2017 Project 201795SBA3−HARVEST. T.P. acknowledges the Swedish Research Council grant 2021–05207 and Swedish Energy Agency grant 2020–005224.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (E.C.); Experimentation (F.V.A.C., G.C. and E.C.); Results (E.F. and E.C.); Applications (T.P. and E.C.); Reproducibility and data deposition (Q.S., C.C.B., G.S.E. and E.C.); Limitations and optimizations (Q.S., C.C.B., G.S.E. and E.C.); Outlook (Q.S., C.C.B., G.S.E. and E.C.); overview of the Primer (all authors).

Corresponding author

Correspondence to Elisabetta Collini.

Ethics declarations

Competing interests

G.C. discloses financial association with the company NIREOS (www.nireos.com), which manufactures the TWINS interferometer. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Darius Abramavicius and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

2D decay-associated spectra

Two-dimensional plots obtained by a multiexponential global fitting procedure, in which the amplitude associated with a specific decay time component is reported as a function of the excitation and detection frequencies.

Dephasing times

The characterization of the randomization of the phase within an ensemble because of intermolecular interactions and determines how long a system maintains its coherence.

Four-wave-mixing

Techniques that are third-order nonlinear optical processes that involve the interaction of three electric fields with a system, resulting in the creation of a fourth field, the signal, according to momentum and energy conservation principles.

Gradient-assisted photon echo spectroscopy

An experimental configuration used to record two-dimensional electronic spectroscopy spectra. Rather than systematically scanning t1 for each value of population time t2, the variation in t1 is created by a temporal gradient of slope created geometrically by tilting the wavefront of one beam relative to another.

Heterodyne detection

A detection method for which the weak signal emitted by the sample is mixed with a second phase-coherent light beam, called the local oscillator. This enhances the detected signal and retrieves phase information to reveal the real or imaginary part of the nonlinear response.

Interferometric stability

A type of stability achieved by maintaining well-defined phase relationships between two or more interfering electric fields over time.

Phase cycling

The exciting pulse sequence is tailored to the desired interpulse delays and relative phases. To isolate the desired signal, several measurements are taken with the appropriate delays and phases and then combined.

Phase modulation

In this approach, a pulse-to-pulse carrier-envelope phase shift is created. Detecting signals modulated at the correct frequency combination enables linear and nonlinear spectroscopic signals to be isolated.

Pulse shaping

Tailors the temporal profile of ultrashort optical pulses by physically manipulating the phase and amplitude of the frequency components.

Relaxation dynamics

The ensemble of kinetic pathways that a system in an excited state follows to return to its equilibrium position (ground state). Each relaxation process has a corresponding relaxation time τ, which is the reciprocal of the associated kinetic constant (k = 1/τ).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fresch, E., Camargo, F.V.A., Shen, Q. et al. Two-dimensional electronic spectroscopy. Nat Rev Methods Primers 3, 84 (2023). https://doi.org/10.1038/s43586-023-00267-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00267-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing