Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Protein film electrochemistry

Abstract

Protein film electrochemistry (PFE) is a powerful suite of electroanalytical techniques used to investigate the properties of redox proteins. The proteins under investigation are adsorbed as a (sub-)monolayer film on an electrode surface. Direct electron transfer between the immobilized protein and working electrode gives rise to an electrical current that visualizes and quantifies redox processes occurring within the protein. Advantages of PFE include low sample requirements — typically less than a nanomole protein — high sensitivity and the ability to resolve redox chemistry in the electrochemical potential and time domains. This Primer provides a guide to using PFE for quantitative thermodynamic and kinetic descriptions of half-reactions (redox reactions) and coupled chemical processes, including ligand binding, ligand unbinding and redox catalysis. Applications of PFE in developing biosensors, facilitating energy conversion and resolving enzyme mechanisms are highlighted. Finally, the state of the art and prospects for novel experimental and theoretical approaches are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of protein film electrochemistry.
Fig. 2: Schematics of electrochemical cells.
Fig. 3: Non-catalytic peaks in the cyclic voltammetry of adsorbed proteins.
Fig. 4: Trumpet plots and ligand binding and unbinding.
Fig. 5: Redox catalysis.
Fig. 6: Biosensing.
Fig. 7: Photoreactivity.
Fig. 8: Enzyme mechanism.

Similar content being viewed by others

References

  1. Liu, J. et al. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 114, 4366–4469 (2014).

    Article  ADS  Google Scholar 

  2. Lippard, S. J. & Berg, J. M. Principles of Bioinorganic Chemistry (Univ. Science Books, 1994).

  3. Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S. & Dutton, P. L. Nature of biological electron transfer. Nature 355, 796–802 (1992).

    Article  ADS  Google Scholar 

  4. Armstrong, F. A., Evans, R. M. & Megarity, C. F. Protein film electrochemistry of iron-sulfur enzymes. Methods Enzymol. 599, 387–407 (2018).

    Article  Google Scholar 

  5. Armstrong, F. A., Heering, H. A. & Hirst, J. Reactions of complex metalloproteins studied by protein-film voltammetry. Chem. Soc. Rev. 26, 169–179 (1997).

    Article  Google Scholar 

  6. Armstrong, F. A. & Wilson, G. S. Recent developments in Faradaic bioelectrochemistry. Electrochim. Acta 45, 2623–2645 (2000).

    Article  Google Scholar 

  7. del Barrio, M. et al. Electrochemical investigations of hydrogenases and other enzymes that produce and use solar fuels. Acc. Chem. Res. 51, 769–777 (2018).

    Article  Google Scholar 

  8. Leger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008). This comprehensive review summarizes several models developed to interpret the PFE of adsorbed redox proteins and enzymes, and it also explains how the models are used to analyse experimental data.

    Article  Google Scholar 

  9. Hirst, J. Elucidating the mechanisms of coupled electron transfer and catalytic reactions by protein film voltammetry. Biochim. Biophys. Acta 1757, 225–239 (2006).

    Article  Google Scholar 

  10. Gates, A. J. et al. The relationship between redox enzyme activity and electrochemical potential-cellular and mechanistic implications from protein film electrochemistry. Phys. Chem. Chem. Phys. 13, 7720–7731 (2011).

    Article  Google Scholar 

  11. Campbell-Rance, D. S., Doan, T. T. & Leopold, M. C. Sweep, step, pulse, and frequency-based techniques applied to protein monolayer electrochemistry at nanoparticle interfaces. J. Electroanal. Chem. 662, 343–354 (2011).

    Article  Google Scholar 

  12. Armstrong, F. A., Butt, J. N., George, S. J., Hatchikian, E. C. & Thomson, A. J. Evidence for reversible multiple redox transformations of [3Fe-4S] clusters. FEBS Lett. 259, 15–18 (1989).

    Article  Google Scholar 

  13. Feng, Z. Q., Imabayashi, S., Kakiuchi, T. & Niki, K. Electroreflectance spectroscopic study of the electron-transfer rate of cytochrome c electrostatically immobilized on the omega-carboxyl alkanethiol monolayer modified gold electrode. J. Electroanal. Chem. 394, 149–154 (1995).

    Article  Google Scholar 

  14. Willit, J. L. & Bowden, E. F. Determination of unimolecular electron-transfer rate constants for strongly adsorbed cytochrome c on tin oxide electrodes. J. Electroanal. Chem. 221, 265–274 (1987).

    Article  Google Scholar 

  15. Bard, A. J. & Faulkner, L. R. Electrochemical Methods. Fundamentals and Applications (John Wiley & Sons Inc., 2000).

  16. Compton, R. & Banks, C. Understanding Voltammetry 3rd edn (WSPC, 2018).

  17. Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry (W. H. Freeman, 2021).

  18. Colburn, A. W., Levey, K. J., O’Hare, D. & Macpherson, J. V. Lifting the lid on the potentiostat: a beginner’s guide to understanding electrochemical circuitry and practical operation. Phys. Chem. Chem. Phys. 23, 8100–8117 (2021). An excellent tutorial review on the operation of potentiostats and problem-solving issues that can arise with electrochemical measurements.

    Article  Google Scholar 

  19. Caux, M. et al. PassStat, a simple but fast, precise and versatile open source potentiostat. HardwareX 11, e00290 (2022).

    Article  Google Scholar 

  20. Hirst, J. & Armstrong, F. A. Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange. Anal. Chem. 70, 5062–5071 (1998). Rates of interfacial electron transfer are quantified for four different proteins; the resulting models consider Marcus and Butler–Volmer descriptions of interfacial electron transfer and form the foundations for many subsequent models of more complex behaviours.

    Article  Google Scholar 

  21. Jeuken, L. J. C., McEvoy, J. P. & Armstrong, F. A. Insights into gated electron-transfer kinetics at the electrode–protein interface: a square wave voltammetry study of the blue copper protein azurin. J. Phys. Chem. B 106, 2304–2313 (2002).

    Article  Google Scholar 

  22. Hirst, J. et al. Kinetics and mechanism of redox-coupled, long-range proton transfer in an iron-sulfur protein. Investigation by fast-scan protein-film voltammetry. J. Am. Chem. Soc. 120, 7085–7094 (1998).

    Article  Google Scholar 

  23. Heering, H. A., Mondal, M. S. & Armstrong, F. A. Using the pulsed nature of staircase cyclic voltammetry to determine interfacial electron-transfer rates of adsorbed species. Anal. Chem. 71, 174–182 (1999).

    Article  Google Scholar 

  24. Anantharaj, S. & Noda, S. iR drop correction in electrocatalysis: everything one needs to know! J. Mater. Chem. A 10, 9348–9354 (2022).

    Article  Google Scholar 

  25. Kato, M., Zhang, J. Z., Paul, N. & Reisner, E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem. Soc. Rev. 43, 6485–6497 (2014).

    Article  Google Scholar 

  26. Sensi, M. et al. Photoinhibition of FeFe hydrogenase. ACS Catal. 7, 7378–7387 (2017).

    Article  Google Scholar 

  27. Murgida, D. H. In situ spectroelectrochemical investigations of electrode-confined electron-transferring proteins and redox enzymes. ACS Omega 6, 3435–3446 (2021).

    Article  Google Scholar 

  28. Jeuken, L. J. C. Structure and modification of electrode materials for protein electrochemistry. Adv. Biochem. Eng. Biotechnol. 158, 43–73 (2017).

    Google Scholar 

  29. Sahin, S. & Milton, R. D. Evolving enzymatic electrochemistry with rare or unnatural amino acids. Curr. Opin. Electrochem. 35, 101102 (2022).

    Article  Google Scholar 

  30. Campbell, W. H., Henig, J. & Plumere, N. Affinity binding via zinc(II) for controlled orientation and electrochemistry of histidine-tagged nitrate reductase in self-assembled monolayers. Bioelectrochem 93, 46–50 (2013).

    Article  Google Scholar 

  31. Baffert, C. et al. Covalent attachment of FeFe hydrogenases to carbon electrodes for direct electron transfer. Anal. Chem. 84, 7999–8005 (2012). An excellent introduction to the benefits and complexities of covalent attachment of enzymes to electrodes for PFE.

    Article  Google Scholar 

  32. Holzinger, M., Cosnier, S. & Buzzetti, P. H. M. The versatility of pyrene and its derivatives on sp2 carbon nanomaterials for bioelectrochemical applications. Synth. Met. 292, 117219 (2023).

    Article  Google Scholar 

  33. Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C. & Chehimi, M. M. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev. 40, 4143–4166 (2011).

    Article  Google Scholar 

  34. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  Google Scholar 

  35. Yan, X. M., Tang, J., Tanner, D., Ulstrup, J. & Xiao, X. X. Direct electrochemical enzyme electron transfer on electrodes modified by self-assembled molecular monolayers. Catalysts 10, 1458 (2020).

    Article  Google Scholar 

  36. Doan, T. T., Freeman, M. H., Schmidt, A. R., Nguyen, N. D. T. & Leopold, M. C. Synthesis, assembly, and characterization of monolayer protected gold nanoparticle films for protein monolayer electrochemistry. J. Vis. Exp. 56, 3441 (2011).

    Google Scholar 

  37. Oviedo-Rouco, S. et al. Correlated electric field modulation of electron transfer parameters and the access to alternative conformations of multifunctional cytochrome c. Bioelectrochem 143, 107956 (2022).

    Article  Google Scholar 

  38. Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015). This paper describes PFE using hierarchical inverse-opal ITO working electrodes prepared by a method now used by many different research groups.

    Article  Google Scholar 

  39. Morlock, S., Subramanian, S. K., Zouni, A. & Lisdat, F. Closing the green gap of photosystem I with synthetic fluorophores for enhanced photocurrent generation in photobiocathodes. Chem. Sci. 14, 1696–1708 (2023).

    Article  Google Scholar 

  40. Siritanaratkul, B. et al. Transfer of photosynthetic NADP(+)/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis. Chem. Sci. 8, 4579–4586 (2017).

    Article  Google Scholar 

  41. Morlock, S., Subramanian, S. K., Zouni, A. & Lisdat, F. Bio-inorganic hybrid structures for direct electron transfer to photosystem I in photobioelectrodes. Biosens. Bioelectron. 214, 114495 (2022).

    Article  Google Scholar 

  42. Fourmond, V. QSoas: a versatile software for data analysis. Anal. Chem. 88, 5050–5052 (2016).

    Article  Google Scholar 

  43. Merrouch, M., Hadj-Said, J., Leger, C., Dementin, S. & Fourmond, V. Reliable estimation of the kinetic parameters of redox enzymes by taking into account mass transport towards rotating electrodes in protein film voltammetry experiments. Electrochim. Acta 245, 1059–1064 (2017).

    Article  Google Scholar 

  44. Fourmond, V. & Leger, C. Modelling the voltammetry of adsorbed enzymes and molecular catalysts. Curr. Opin. Electrochem. 1, 110–120 (2017).

    Article  Google Scholar 

  45. Heering, H. A., Wiertz, F. G. M., Dekker, C. & de Vries, S. Direct immobilization of native yeast Iso-1 cytochrome c on bare gold: fast electron relay to redox enzymes and zeptomole protein-film voltammetry. J. Am. Chem. Soc. 126, 11103–11112 (2004).

    Article  Google Scholar 

  46. Wang, M. K., Zhao, F., Liu, Y. & Dong, S. J. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. Biosens. Bioelectron. 21, 159–166 (2005).

    Article  Google Scholar 

  47. Lockwood, C. W. J. et al. Resolution of key roles for the distal pocket histidine in cytochrome c nitrite reductases. J. Am. Chem. Soc. 137, 3059–3068 (2015).

    Article  Google Scholar 

  48. Marritt, S. J. et al. Spectroelectrochemical characterization of a pentaheme cytochrome in solution and as electrocatalytically active films on nanocrystalline metal-oxide electrodes. J. Am. Chem. Soc. 130, 8588–8589 (2008).

    Article  Google Scholar 

  49. Reuillard, B. et al. High performance reduction of H2O2 with an electron transport decaheme cytochrome on a porous ITO electrode. J. Am. Chem. Soc. 139, 3324–3327 (2017).

    Article  Google Scholar 

  50. Ash, P. A., Hidalgo, R. & Vincent, K. A. Protein film infrared electrochemistry demonstrated for study of H2 oxidation by a [NiFe] hydrogenase. J. Vis. Exp. 130, 55858 (2017).

    Google Scholar 

  51. Chung, M. W. et al. Infrared spectroscopy coupled with protein film electrochemistry to study hydrogenase inhibition by pi-acid ligands. J. Biol. Inorg. Chem. 19, S879 (2014).

    Google Scholar 

  52. Kornienko, N. et al. Advancing techniques for investigating the enzyme–electrode interface. Acc. Chem. Res. 52, 1439–1448 (2019).

    Article  Google Scholar 

  53. McEvoy, J. P. & Armstrong, F. A. Protein film cryovoltammetry: demonstrations with a 7Fe ([3Fe-4S]+[4Fe-4S]) ferredoxin. Chem. Commun. 1999, 1635–1636 (1999).

    Article  Google Scholar 

  54. Kornienko, N. et al. Oxygenic photoreactivity in photosystem II studied by rotating ring disk electrochemistry. J. Am. Chem. Soc. 140, 17923–17931 (2018). An elegant example of the power of PFE to deconvolute complexity in enzyme mechanism that benefits from the use of a rotating ring disk electrode.

    Article  Google Scholar 

  55. Fourmond, V. & Leger, C. Protein electrochemistry: questions and answers. Adv. Biochem. Eng. Biot. 158, 1–41 (2017).

    Google Scholar 

  56. Hartshorne, R. S. et al. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. J. Biol. Inorg. Chem. 12, 1083–1094 (2007).

    Article  Google Scholar 

  57. van Wonderen, J. H., Burlat, B., Richardson, D. J., Cheesman, M. R. & Butt, J. N. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J. Biol. Chem. 283, 9587–9594 (2008).

    Article  Google Scholar 

  58. Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979). This landmark paper derives equations for the non-catalytic voltammetry of adsorbed redox centres and that are used ubiquitously in the analysis of PFE.

    Article  Google Scholar 

  59. Plichon, V. & Laviron, E. Theoretical study of a two-step reversible electrochemical reaction associated with irreversible chemical reactions in thin layer linear potential sweep voltammetry. J. Electroanal. Chem. 71, 143–156 (1976).

    Article  Google Scholar 

  60. Jenner, L. P. et al. Reaction of thiosulfate dehydrogenase with a substrate mimic induces dissociation of the cysteine heme ligand giving insights into the mechanism of oxidative catalysis. J. Am. Chem. Soc. 144, 18296–18304 (2022).

    Article  Google Scholar 

  61. Maiocco, S. J., Arcinas, A. J., Booker, S. J. & Elliott, S. J. Parsing redox potentials of five ferredoxins found within Thermotoga maritima. Protein Sci. 28, 257–266 (2019).

    Article  Google Scholar 

  62. Zhu, W. et al. Structural properties and catalytic implications of the SPASM domain iron-sulfur clusters in Methylorubrum extorquens PqqE. J. Am. Chem. Soc. 142, 12620–12634 (2020).

    Article  Google Scholar 

  63. Rizzolo, K. et al. A widely distributed diheme enzyme from Burkholderia that displays an atypically stable bis-Fe(IV) state. Nat. Commun. 10, 1101 (2019).

    Article  ADS  Google Scholar 

  64. Walker, L. M., Kincannon, W. M., Bandarian, V. & Elliott, S. J. Deconvoluting the reduction potentials for the three [4Fe-4S] clusters in an adoMet radical SCIFF maturase. Biochemistry 57, 6050–6053 (2018).

    Article  Google Scholar 

  65. Armstrong, F. A. et al. Fast, long-range electron-transfer reactions of a ‘blue’ copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer. Chem. Commun. 2004, 316–317 (2004).

    Article  Google Scholar 

  66. Zitare, U. A. et al. The role of molecular crowding in long-range metalloprotein electron transfer: dissection into site- and scaffold-specific contributions. Electrochim. Acta 294, 117–125 (2019).

    Article  Google Scholar 

  67. Gulaboski, R., Kokoskarova, P. & Mitrev, S. Theoretical aspects of several successive two-step redox mechanisms in protein-film cyclic staircase voltammetry. Electrochim. Acta 69, 86–96 (2012).

    Article  Google Scholar 

  68. Shen, B. H. et al. Azotobacter vinelandii ferredoxin I. Aspartate-15 facilitates proton transfer to the reduced [3Fe-4S] cluster. J. Biol. Chem. 268, 25928–25939 (1993).

    Article  Google Scholar 

  69. Butt, J. N. et al. Voltammetric characterization of rapid and reversible binding of an exogenous thiolate ligand at a [4Fe-4S] cluster in ferredoxin III from Desulfovibrio africanus. J. Am. Chem. Soc. 115, 1414–1421 (1993). A comprehensive illustration of how PFE can detect and quantify chemical reactions coupled to redox transitions (EC and CE reactions).

    Article  Google Scholar 

  70. Hirst, J., Jameson, G. N. L., Allen, J. W. A. & Armstrong, F. A. Very rapid, cooperative two-electron/two-proton redox reactions of [3Fe-4S] clusters: detection and analysis by protein-film voltammetry. J. Am. Chem. Soc. 120, 11994–11999 (1998). An elegant account of the use of PFE to quantify the rates of redox-coupled proton (un)binding events.

    Article  Google Scholar 

  71. Camba, R. et al. Mechanisms of redox-coupled proton transfer in proteins: role of the proximal proline in reactions of the [3Fe-4S] cluster in Azotobacter vinelandii ferredoxin I. Biochemistry 42, 10589–10599 (2003).

    Article  Google Scholar 

  72. Steensma, E., Heering, H. A., Hagen, W. R. & VanMierlo, C. P. M. Redox properties of wild-type, Cys69Ala, and Cys69Ser Azotobacter vinelandii flavodoxin II as measured by cyclic voltammetry and EPR spectroscopy. Eur. J. Biochem. 235, 167–172 (1996).

    Article  Google Scholar 

  73. Butt, J. N., Fawcett, S. E. J., Breton, J., Thomson, A. J. & Armstrong, F. A. Electrochemical potential and pH dependences of [3Fe-4S] < - > [M3Fe-4S] cluster transformations (M = Fe, Zn, Co, and Cd) in ferredoxin III from Desulfovibrio africanus and detection of a cluster with M = Pb. J. Am. Chem. Soc. 119, 9729–9737 (1997).

    Article  Google Scholar 

  74. Butt, J. N., Niles, J., Armstrong, F. A., Breton, J. & Thomson, A. J. Formation and properties of a stable high-potential copper–iron–sulfur cluster in a ferredoxin. Nat. Struct. Biol. 1, 427–433 (1994).

    Article  Google Scholar 

  75. Heering, H. A., Hirst, J. & Armstrong, F. A. Interpreting the catalytic voltammetry of electroactive enzymes adsorbed on electrodes. J. Phys. Chem. B 102, 6889–6902 (1998).

    Article  Google Scholar 

  76. Heering, H. A., Weiner, J. H. & Armstrong, F. A. Direct detection and measurement of electron relays in a multicentered enzyme: voltammetry of electrode-surface films of E. coli fumarate reductase, an iron–sulfur flavoprotein. J. Am. Chem. Soc. 119, 11628–11638 (1997).

    Article  Google Scholar 

  77. Leger, C., Jones, A. K., Albracht, S. P. J. & Armstrong, F. A. Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes. J. Phys. Chem. B 106, 13058–13063 (2002).

    Article  Google Scholar 

  78. Sucheta, A., Cammack, R., Weiner, J. & Armstrong, F. A. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface — direct voltammetric observations of redox centers and their participation in rapid catalytic electron-transport. Biochemistry 32, 5455–5465 (1993).

    Article  Google Scholar 

  79. Angove, H. C., Cole, J. A., Richardson, D. J. & Butt, J. N. Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome c nitrite reductase. J. Biol. Chem. 277, 23374–23381 (2002).

    Article  Google Scholar 

  80. Jones, A. K., Sillery, E., Albracht, S. P. J. & Armstrong, F. A. Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun. 2002, 866–867 (2002).

    Article  Google Scholar 

  81. Armstrong, F. A. et al. Electrocatalytic reduction of hydrogen-peroxide at a stationary pyrolytic-graphite electrode surface in the presence of cytochrome c peroxidase — a description based on a microelectrode array model for adsorbed enzyme molecules. Analyst 118, 973–978 (1993).

    Article  ADS  Google Scholar 

  82. Hoeben, F. J. M. et al. Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry. Langmuir 24, 5925–5931 (2008).

    Article  Google Scholar 

  83. Armstrong, F. A. Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites. Curr. Opin. Chem. Biol. 9, 110–117 (2005).

    Article  Google Scholar 

  84. Leger, C. et al. Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. Biochemistry 40, 11234–11245 (2001).

    Article  Google Scholar 

  85. Anderson, L. J., Richardson, D. J. & Butt, J. N. Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. Biochemistry 40, 11294–11307 (2001).

    Article  Google Scholar 

  86. Fourmond, V. et al. Correcting for electrocatalyst desorption and inactivation in chronoamperometry experiments. Anal. Chem. 81, 2962–2968 (2009).

    Article  Google Scholar 

  87. Gwyer, J. D., Richardson, D. J. & Butt, J. N. Resolving complexity in the interactions of redox enzymes and their inhibitors: contrasting mechanisms for the inhibition of a cytochrome c nitrite reductase revealed by protein film voltammetry. Biochemistry 43, 15086–15094 (2004).

    Article  Google Scholar 

  88. Fourmond, V., Infossi, P., Giudici-Orticoni, M. T., Bertrand, P. & Leger, C. ‘Two-step’ chronoamperometric method for studying the anaerobic inactivation of an oxygen tolerant NiFe hydrogenase. J. Am. Chem. Soc. 132, 4848–4857 (2010).

    Article  Google Scholar 

  89. Leger, C., Dementin, S., Bertrand, P., Rousset, M. & Guigliarelli, B. Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry. J. Am. Chem. Soc. 126, 12162–12172 (2004).

    Article  Google Scholar 

  90. Leroux, F. et al. Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc. Natl Acad. Sci. USA 105, 11188–11193 (2008).

    Article  ADS  Google Scholar 

  91. Fourmond, V., Plumere, N. & Leger, C. Reversible catalysis. Nat. Rev. Chem. 5, 348–360 (2021).

    Article  Google Scholar 

  92. Fourmond, V., Wiedner, E. S., Shaw, W. J. & Leger, C. Understanding and design of bidirectional and reversible catalysts of multielectron, multistep reactions. J. Am. Chem. Soc. 141, 11269–11285 (2019).

    Article  Google Scholar 

  93. Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    Article  ADS  Google Scholar 

  94. Kurth, J. M., Dahl, C. & Butt, J. N. Catalytic protein film electrochemistry provides a direct measure of the tetrathionate/thiosulfate reduction potential. J. Am. Chem. Soc. 137, 13232–13235 (2015).

    Article  Google Scholar 

  95. Wu, Y. H. & Hu, S. S. Biosensors based on direct electron transfer in redox proteins. Microchim. Acta 159, 1–17 (2007).

    Article  Google Scholar 

  96. Das, P., Das, M., Chinnadayyala, S. R., Singha, I. M. & Goswami, P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens. Bioelectron. 79, 386–397 (2016).

    Article  Google Scholar 

  97. Zuccarello, L., Barbosa, C., Todorovic, S. & Silveira, C. M. Electrocatalysis by heme enzymes — applications in biosensing. Catalysts 11, 218 (2021).

    Article  Google Scholar 

  98. Gulaboski, R., Mirceski, V., Bogeski, I. & Hoth, M. Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. J. Solid State Electrochem. 16, 2315–2328 (2012).

    Article  Google Scholar 

  99. Ronkainen, N. J., Halsall, H. B. & Heineman, W. R. Electrochemical biosensors. Chem. Soc. Rev. 39, 1747–1763 (2010).

    Article  Google Scholar 

  100. Sassolas, A., Blum, L. J. & Leca-Bouvier, B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30, 489–511 (2012).

    Article  Google Scholar 

  101. Datta, S., Christena, L. R. & Rajaram, Y. R. S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3, 1–9 (2013).

    Article  Google Scholar 

  102. Bollella, P. & Katz, E. Enzyme-based biosensors: tackling electron transfer issues. Sensors 20, 3517 (2020).

    Article  ADS  Google Scholar 

  103. Tan, T. C. et al. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat. Commun. 6, 7542 (2015).

    Article  ADS  Google Scholar 

  104. Tavahodi, M. et al. Direct electron transfer of cellobiose dehydrogenase on positively charged polyethyleneimine gold nanoparticles. ChemPlusChem 82, 546–552 (2017).

    Article  Google Scholar 

  105. Chen, H. et al. Fundamentals, applications, and future directions of bioelectrocatalysis. Chem. Rev. 120, 12903–12993 (2020).

    Article  ADS  Google Scholar 

  106. Xiao, X. X. et al. Tackling the challenges of enzymatic (bio)fuel cells. Chem. Rev. 119, 9509–9558 (2019).

    Article  Google Scholar 

  107. Noll, T. & Noll, G. Strategies for ‘wiring’ redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology. Chem. Soc. Rev. 40, 3564–3576 (2011).

    Article  Google Scholar 

  108. Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).

    Article  Google Scholar 

  109. Terasaki, N. et al. Photocurrent generation properties of histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516, 2553–2557 (2008).

    Article  ADS  Google Scholar 

  110. Kato, M., Cardona, T., Rutherford, A. W. & Reisner, E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J. Am. Chem. Soc. 135, 10610–10613 (2013).

    Article  Google Scholar 

  111. Jones, A. K., Camba, R., Reid, G. A., Chapman, S. K. & Armstrong, F. A. Interruption and time-resolution of catalysis by a flavoenzyme using fast scan protein film voltammetry. J. Am. Chem. Soc. 122, 6494–6495 (2000).

    Article  Google Scholar 

  112. Orain, C. et al. Electrochemical measurements of the kinetics of inhibition of two FeFe Hydrogenases by O2 demonstrate that the reaction is partly reversible. J. Am. Chem. Soc. 137, 12580–12587 (2015).

    Article  Google Scholar 

  113. Field, S. J. et al. Reductive activation of nitrate reductases. Dalton Trans. 2005, 3580–3596 (2005).

    Article  Google Scholar 

  114. Liebgott, P. P. et al. Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat. Chem. Biol. 6, 63–70 (2010).

    Article  Google Scholar 

  115. Wang, P. H. & Blumberger, J. Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation. Proc. Natl Acad. Sci. USA 109, 6399–6404 (2012).

    Article  ADS  Google Scholar 

  116. Heering, H. A. & Hagen, W. R. Complex electrochemistry of flavodoxin at carbon-based electrodes: results from a combination of direct electron transfer, flavin-mediated electron transfer and comproportionation. J. Electroanal. Chem. 404, 249–260 (1996).

    Article  Google Scholar 

  117. Hwang, E. T. et al. Exploring step-by-step assembly of nanoparticle: cytochrome biohybrid photoanodes. ChemElectroChem 4, 1959–1968 (2017).

    Article  Google Scholar 

  118. Badiani, V. M. et al. Elucidating film loss and the role of hydrogen bonding of adsorbed redox enzymes by electrochemical quartz crystal microbalance analysis. ACS Catal. 12, 1886–1897 (2022).

    Article  Google Scholar 

  119. Beulen, M. W. J., Kastenberg, M. I., van Veggel, F. C. J. M. & Reinhoudt, D. N. Electrochemical stability of self-assembled monolayers on gold. Langmuir 14, 7463–7467 (1998).

    Article  Google Scholar 

  120. Ramos, N. C., Medlin, J. W. & Holewinski, A. Electrochemical stability of thiolate self-assembled monolayers on Au, Pt, and Cu. ACS Appl. Mater. Interfaces 15, 14470–14480 (2023).

    Google Scholar 

  121. Milton, R. D. & Minteer, S. D. Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. J. R. Soc. Interface 14, 20170253 (2017). Some important control studies that need to be done to ensure that PFE responses are not due to artefacts such as dissociated cofactors are highlighted in the final section of this review.

    Article  Google Scholar 

  122. Ash, P. A., Kendall-Price, S. E. T. & Vincent, K. A. Unifying activity, structure, and spectroscopy of [NiFe] hydrogenases: combining techniques to clarify mechanistic understanding. Acc. Chem. Res. 52, 3120–3131 (2019). An excellent review on the benefits of combining spectroscopy with PFE.

    Article  Google Scholar 

  123. Abdiaziz, K., Salvadori, E., Sokol, K. P., Reisner, E. & Roessler, M. M. Protein film electrochemical EPR spectroscopy as a technique to investigate redox reactions in biomolecules. Chem. Commun. 55, 8840–8843 (2019).

    Article  Google Scholar 

  124. Chen, X. L. et al. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. Nat. Mater. 21, 811–818 (2022). Further progress in PFE will in part depend on improved electrode materials, and this paper describes an elegant printing technique to create (nano)structured electrodes.

    Article  ADS  MathSciNet  Google Scholar 

  125. Liu, Y. P. et al. Facile functionalization of carbon electrodes for efficient electroenzymatic hydrogen production. JACS Au 3, 124–130 (2023). Application of PFE in catalysis requires high current densities and this paper describes a relatively easy way to achieve this with hydrogenases.

    Article  Google Scholar 

  126. Moore, E. E. et al. Understanding the local chemical environment of bioelectrocatalysis. Proc. Natl Acad. Sci. USA 119, e2114097119 (2022).

    Article  Google Scholar 

  127. Alonso-Lomillo, M. A. et al. Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett. 7, 1603–1608 (2007).

    Article  ADS  Google Scholar 

  128. Rudiger, O., Abad, J. M., Hatchikian, E. C., Fernandez, V. M. & De Lacey, A. L. Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2. J. Am. Chem. Soc. 127, 16008–16009 (2005).

    Article  Google Scholar 

  129. Yarman, A. et al. Third generation ATP sensor with enzymatic analyte recycling. Electroanalysis 26, 2043–2048 (2014).

    Article  Google Scholar 

  130. Armstrong, F. A., Cheng, B. C., Herold, R. A., Megarity, C. F. & Siritanaratkul, B. From protein film electrochemistry to nanoconfined enzyme cascades and the electrochemical leaf. Chem. Rev. 123, 5421–5458 (2023).

    Article  Google Scholar 

  131. Megarity, C. F., Weald, T. R. I., Heath, R. S., Turner, N. J. & Armstrong, F. A. A nanoconfined four-enzyme cascade simultaneously driven by electrical and chemical energy, with built-in rapid, confocal recycling of NADP(H) and ATP. ACS Catal. 12, 8811–8821 (2022).

    Article  Google Scholar 

  132. Lee, Y. S., Lim, K. & Minteer, S. D. Cascaded biocatalysis and bioelectrocatalysis: overview and recent advances. Annu. Rev. Phys. Chem. 72, 467–488 (2021).

    Article  Google Scholar 

  133. McMillan, D. G. G., Marritt, S. J., Butt, J. N. & Jeuken, L. J. C. Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA. J. Biol. Chem. 287, 14215–14225 (2012).

    Article  Google Scholar 

  134. Gutierrez-Sanchez, C. et al. Oriented immobilization of a membrane-bound hydrogenase onto an electrode for direct electron transfer. Langmuir 27, 6449–6457 (2011).

    Article  Google Scholar 

  135. Friedrich, M. G. et al. In situ monitoring of the catalytic activity of cytochrome c oxidase in a biomimetic architecture. Biophys. J. 95, 1500–1510 (2008).

    Article  ADS  Google Scholar 

  136. Meyer, T. et al. Evidence for distinct electron transfer processes in terminal oxidases from different origin by means of protein film voltammetry. J. Am. Chem. Soc. 136, 10854–10857 (2014).

    Article  Google Scholar 

  137. Holland, J. T., Lau, C., Brozik, S., Atanassov, P. & Banta, S. Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J. Am. Chem. Soc. 133, 19262–19265 (2011).

    Article  Google Scholar 

  138. Adamson, H. et al. Analysis of HypD disulfide redox chemistry via optimization of Fourier transformed ac voltammetric data. Anal. Chem. 89, 1565–1573 (2017).

    Article  Google Scholar 

  139. Maiocco, S. J., Grove, T. L., Booker, S. J. & Elliott, S. J. Electrochemical resolution of the [4Fe-4S] centers of the AdoMet radical enzyme BtrN: evidence of proton coupling and an unusual, low-potential auxiliary cluster. J. Am. Chem. Soc. 137, 8664–8667 (2015).

    Article  Google Scholar 

  140. Jeuken, L. J. C., Jones, A. K., Chapman, S. K., Cecchini, G. & Armstrong, F. A. Electron-transfer mechanisms through biological redox chains in multicenter enzymes. J. Am. Chem. Soc. 124, 5702–5713 (2002).

    Article  Google Scholar 

  141. Gulaboski, R. Theoretical contribution towards understanding specific behaviour of ‘simple’ protein-film reactions in square-wave voltammetry. Electroanalysis 31, 545–553 (2019).

    Article  Google Scholar 

  142. Pilz, F. H. & Kielb, P. Cyclic voltammetry, square wave voltammetry or electrochemical impedance spectroscopy? Interrogating electrochemical approaches for the determination of electron transfer rates of immobilized redox proteins. BBA Adv. 4, 100095 (2023).

    Article  Google Scholar 

  143. Adamson, H., Bond, A. M. & Parkin, A. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry. Chem. Commun. 53, 9519–9533 (2017).

    Article  Google Scholar 

  144. Bell, C. G., Anastassiou, C. A., O’Hare, D., Parker, K. H. & Siggers, J. H. Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems. Electrochim. Acta 64, 71–80 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

J.N.B. and L.J.C.J. thank F. Armstrong for inspiring and guiding their introduction to PFE and the many students and co-workers with whom they have subsequently collaborated in applying and developing the technique. They are grateful for long-term funding from UK Research Councils, notably BBSRC most recently through grants BB/S000704/1 and BB/S002499/1. J.A.J.B. is funded by a PhD studentship from the University of East Anglia and A.L.S-C. by the UKRI Biotechnology and Biological Sciences Research Council Norwich Research Park Biosciences Doctoral Training Partnership (Grant no. BB/T008717/1).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.N.B. and L.J.C.J.); Experimentation (J.N.B. and L.J.C.J.); Results (J.N.B., L.J.C.J., H.Z., J.A.J.B. and A.L.S.-C.); Applications (J.N.B., L.J.C.J. and H.Z.); Reproducibility and data deposition (J.N.B., L.J.C.J. and H.Z.); Limitations and optimizations (J.N.B., L.J.C.J. and H.Z.); Outlook (J.N.B., L.J.C.J. and H.Z.); Overview of the Primer (all authors).

Corresponding authors

Correspondence to Julea N. Butt or Lars J. C. Jeuken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Rubin Gulaboski, Christophe Leger and Frieder Scheller for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chronoamperometry

A technique in which electric current is measured as a function of time with the working electrode held at a defined electric potential or stepped between two or more defined electric potentials.

Counter electrode

An electrode that carries electric current flowing in a three-electrode electrochemical cell. Electrochemical processes occurring at this electrode are not of interest.

Cyclic voltammetry

A technique in which the current is measured as the working electrode potential is ramped linearly with time. When a defined working electrode potential is reached, the potential is ramped linearly in the opposite direction to return the working electrode to its initial potential.

Faradaic current

Electric current generated by the oxidation or reduction of species at a working electrode.

Non-Faradaic current

Electric current measured in an electrochemical cell that is not due to redox processes. Typically, this current arises from migration of ions in response to the electric potential applied to an electrode.

Redox catalysis

The interconversion of reactants and products through a redox reaction catalysed by an enzyme. For an enzyme-catalysed reaction, the reactants are often referred to as substrates.

Reference electrode

An electrode with a stable and defined electrode potential. The potential of the working electrode is defined relative to that of the reference electrode.

Working electrode

The electrode at which redox chemistry of interest occurs in a three-electrode electrochemical cell.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, J.N., Jeuken, L.J.C., Zhang, H. et al. Protein film electrochemistry. Nat Rev Methods Primers 3, 77 (2023). https://doi.org/10.1038/s43586-023-00262-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00262-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing