Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Nature-inspired micropatterns

Abstract

Micropatterned materials have developed in nature over 3.8 billion years, with remarkable performance. Nature inspiration is the process of understanding biological mechanisms and strategies and using this knowledge to solve technical problems or enhance engineering designs. The term nature inspiration includes biomimetics, biomimicry and bioinspiration. Micropatterns are patterned materials or structures that have feature sizes in the nanometre-to-micrometre range. Owing to size effects, micropatterns can impart novel functions to a material without altering the bulk composition and properties. By imitating natural strategies, engineering challenges can be solved. Examples include mimicking ecological and in vivo microenvironments or producing superhydrophobic surfaces, adhesives and structural colours. Nature inspiration is an interdisciplinary field, involving various materials and fabrication techniques. This Primer provides a comprehensive overview of nature-inspired micropatterns, which offer unique design strategies and functional properties. In this Primer, key principles, fabrication methods and applications of nature-inspired micropatterns are discussed. Additionally, future prospects and challenges are highlighted for this rapidly evolving field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pattern transfer operation of photolithography and etching.
Fig. 2: Schematic of soft lithography procedures.
Fig. 3: Schematic of 2D and 3D printing procedures.
Fig. 4: Characterization of micropattern structure.
Fig. 5: Characterization of wettability and adhesives of micropatterned surfaces.
Fig. 6: Characterization of the structural colour and cell culturing function of micropattern.
Fig. 7: Application of nature-inspired micropatterns.

Similar content being viewed by others

References

  1. Patek, S. N. Biomimetics and evolution. Science 345, 1448–1449 (2014).

    Article  ADS  Google Scholar 

  2. Broeckhoven, C. & du Plessis, A. Escaping the labyrinth of bioinspiration: biodiversity as key to successful product innovation. Adv. Funct. Mater. 32, 2110235 (2022).

    Article  Google Scholar 

  3. Hetzler, B. E., Trauner, D. & Lawrence, A. L. Natural product anticipation through synthesis. Nat. Rev. Chem. 6, 170–181 (2022).

    Article  Google Scholar 

  4. Ganewatta, M. S., Wang, Z. & Tang, C. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nat. Rev. Chem. 5, 753–772 (2021).

    Article  Google Scholar 

  5. Yang, J. et al. Biologically modified nanoparticles as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2020).

    Article  Google Scholar 

  6. Wegst, U., Bai, H., Saiz, E., Tomisa, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  ADS  Google Scholar 

  7. Sanchez, C., Arribart, H. & Giraud Guille, M. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277–288 (2005).

    Article  ADS  Google Scholar 

  8. Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).

    Article  ADS  Google Scholar 

  9. Darmanin, T. & Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 18, 273–285 (2015).

    Article  Google Scholar 

  10. Xiang, T. et al. Biomimetic micro/nano structures for biomedical applications. Nano Today 35, 100980 (2020).

    Article  Google Scholar 

  11. Yoo, J. W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10, 521–535 (2011).

    Article  Google Scholar 

  12. Proppe, A. H. et al. Bioinspiration in light harvesting and catalysis. Nat. Rev. Mater. 5, 828–846 (2020).

    Article  ADS  Google Scholar 

  13. Heuer, A. H. et al. Innovative materials processing strategies: a biomimetic approach. Science. 255, 1098–1105 (1992).

    Article  ADS  Google Scholar 

  14. Wang, Y. et al. Bioinspired structural color patch with anisotropic surface adhesion. Sci. Adv. 6, eaax8258 (2020).

  15. Zhang, B. et al. Advanced bio-inspired structural materials: local properties determine overall performance. Mater. Today 41, 177–199 (2020).

    Article  Google Scholar 

  16. ISO/TC266 2015 BiomimeticsTerminology, Concepts and Methodology, ISO 18458 (Beuth, 2015).

  17. Fayemi, P. E., Wanieck, K., Zollfrank, C., Maranzana, N. & Aoussat, A. Biomimetics: process, tools and practice. Bioinspir. Biomim. 12, 011002 (2017). This paper summarized some terms about ‘learning from nature’, for example, bionic, bioinspire, biomimetic and biomimicry. The definition, the common features and the differences are compared.

    Article  ADS  Google Scholar 

  18. Katiyar, N. K., Goel, G., Hawi, S. & Goel, S. Nature-inspired materials: emerging trends and prospects. NPG Asia Mater. 13, 56 (2021).

    Article  ADS  Google Scholar 

  19. Barnes, W. J. P. Biomimetic solutions to sticky problems. Science 318, 203–204 (2007).

    Article  Google Scholar 

  20. Lei, Z., Zhu, W., Zhang, X., Wang, X. & Wu, P. Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31, 2008020 (2021).

    Article  Google Scholar 

  21. Xu, X. et al. Improving plant photosynthesis through light-harvesting upconversion nanoparticles. ACS Nano 16, 18027–18037 (2022).

    Article  Google Scholar 

  22. Varenberg, M. & Gorb, S. N. Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009).

    Article  Google Scholar 

  23. Liimatainen, V., Drotlef, D. M., Son, D. & Sitti, M. Liquid-superrepellent bioinspired fibrillar adhesives. Adv. Mater. 32, 2000497 (2020).

    Article  Google Scholar 

  24. Bažant, Z. P. Size effect. Int. J. Solids Struct. 37, 69–80 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  25. Boesel, L. F. et al. Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv. Mater. 22, 2125–2137 (2010). This paper described the impact ofsize effecton the adhesive properties of micropattern.

    Article  Google Scholar 

  26. Zhao, Y., Xie, Z., Gu, H., Zhu, C. & Gu, Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 41, 3297–3317 (2012).

    Article  Google Scholar 

  27. Saleh, T. A. Nanomaterials: classification, properties, and environmental toxicities. Environ. Technol. Innov. 20, 101067 (2020). This review summarized the mechanisms of size effect.

    Article  Google Scholar 

  28. Banik, A. & Tan, K. T. Dynamic friction performance of hierarchical biomimetic surface pattern inspired by frog toe-pad. Adv. Mater. Interfaces 7, 2000987 (2020).

    Article  Google Scholar 

  29. Iturri, J. et al. Torrent frog-inspired adhesives: attachment to flooded surfaces. Adv. Funct. Mater. 25, 1499–1505 (2015).

    Article  Google Scholar 

  30. Meng, F. et al. Tree frog-inspired structured hydrogel adhesive with regulated liquid. Adv. Mater. Interfaces 8, 2100528 (2021).

    Article  Google Scholar 

  31. Geim, A. et al. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003).

    Article  ADS  Google Scholar 

  32. Wang, D. et al. Sensing-triggered stiffness-tunable smart adhesives. Sci. Adv. 9, eadf4051 (2023).

    Google Scholar 

  33. Ruotolo, W., Brouwer, D. & Cutkosky, M. R. From grasping to manipulation with gecko-inspired adhesives on a multifinger gripper. Sci. Robot. 6, eabi9773 (2021).

    Article  Google Scholar 

  34. Jiang, H. et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Sci. Robot. 2, eaan4545 (2017).

    Article  Google Scholar 

  35. Hu, S. et al. Liquid repellency enhancement through flexible microstructures. Sci. Adv. 6, eaba9721 (2020).

    Article  ADS  Google Scholar 

  36. Li, Y., Liu, B. F. & Zhang, X. Wettability-patterned microchip for emerging biomedical materials and technologies. Mater. Today 51, 273–293 (2021).

    Article  ADS  Google Scholar 

  37. Wang, F., Wu, Y. & Nestler, B. Wetting effect on patterned substrate. Adv. Mater. 35, 2210745 (2023).

    Article  Google Scholar 

  38. Huang, F. et al. Wetting-enhanced structural color for convenient and reversible encryption of optical information. ACS Appl. Mater. Interfaces 13, 42276–42286 (2021). This paper summarized theories about wetting effects on patterned substrates, with emphasis on mathematical models.

    Article  Google Scholar 

  39. Kolle, M. et al. Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat. Nanotechnol. 5, 511–515 (2010).

    Article  ADS  Google Scholar 

  40. Davis, A. L., Nijhout, H. F. & Johnsen, S. Diverse nanostructures underlie thin ultra-black scales in butterflies. Nat. Commun. 11, 1294 (2020).

    Article  ADS  Google Scholar 

  41. Gu, Y. et al. Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022).

    Article  ADS  Google Scholar 

  42. Wang, Y. et al. Microenvironment-controlled micropatterned microfluidic model (MMMM) for biomimetic in situ studies. ACS Nano 14, 9861–9872 (2020).

    Article  Google Scholar 

  43. Han, S. et al. A digital microfluidic diluter-based microalgal motion biosensor for marine pollution monitoring. Biosens. Bioelectron. 143, 111597 (2019).

    Article  Google Scholar 

  44. Wang, X. et al. Differentiation of bMSCs on biocompatible, biodegradable, and biomimetic scaffolds for largely defected tissue repair. ACS Appl. Bio Mater 3, 735–746 (2019).

    Article  Google Scholar 

  45. Schaffner, M., England, G., Kolle, M., Aizenberg, J. & Vogel, N. Combining bottom-up self-assembly with top-down microfabrication to create hierarchical inverse opals with high structural order. Small 11, 4334–4340 (2015).

    Article  Google Scholar 

  46. Egan, P., Sinko, R., LeDuc, P. R. & Keten, S. The role of mechanics in biological and bio-inspired systems. Nat. Commun. 6, 7418 (2015).

    Article  ADS  Google Scholar 

  47. Zhang, X. et al. Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discov. 1, FDD7 (2019).

    Article  MathSciNet  Google Scholar 

  48. Dumanli, A. G. & Savin, T. Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 45, 6698–6724 (2016).

    Article  Google Scholar 

  49. Baumeister, D., Tocke, R., Dwyer, J., Ritter, S. & Benyus, J. Biomimicry resource handbook: a seed bank of best practices. Biomimicry 3, 286 (2014).

    Google Scholar 

  50. Bandyopadhyay, P. R., Hrubes, J. D. & Leinhos, H. A. Biorobotic adhesion in water using suction cups. Bioinspir. Biomim. 3, 016003 (2008).

    Article  Google Scholar 

  51. Baik, S., Kim, J., Lee, H. J., Lee, T. H. & Pang, C. Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin. Adv. Sci. 5, 1800100 (2018).

    Article  Google Scholar 

  52. Baik, S. et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546, 396–400 (2017).

    Article  ADS  Google Scholar 

  53. Chen, Y. et al. Controlled growth of patterned conducting polymer microsuckers on superhydrophobic micropillar-structured templates. Adv. Funct. Mater. 28, 1800240 (2018).

    Article  Google Scholar 

  54. Penick, C. A. et al. The comparative approach to bio-inspired design: integrating biodiversity and biologists into the design process. Integr. Comp. Biol. 62, 1153–1163 (2022).

    Article  Google Scholar 

  55. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  Google Scholar 

  56. Zheng, G. et al. Development of microfluidic dilution network-based system for lab-on-a-chip microalgal bioassays. Anal. Chem. 90, 13280–13289 (2018).

    Article  Google Scholar 

  57. Pan, Y., Yang, Z., Li, C., Hassan, S. U. & Shum, H. C. Plant-inspired TransfOrigami microfluidics. Sci. Adv. 8, eabo1719 (2022).

    Article  Google Scholar 

  58. Wanieck, K., Fayemi, P., Maranzana, N., Zollfrank, C. & Jacobs, S. Biomimetics and its tools. Bioinspir. Biomim. Nanobiomater. 6, 53–66 (2017). This paper gives an overview of more than 40 existing tools, which have been developed to facilitate and support biomimetics.

    Article  Google Scholar 

  59. Houten, F. et al. Bio-based design methodologies for products, processes, machine tools and production systems. CIRP J. Manuf. Sci. Technol. 32, 46–60 (2021).

    Article  Google Scholar 

  60. Scarangella, A., Soldan, V. & Mitov, M. Biomimetic design of iridescent insect cuticles with tailored, self-organized cholesteric patterns. Nat. Commun. 11, 4108 (2020).

    Article  ADS  Google Scholar 

  61. Cheng, X. et al. Programming 3D curved mesosurfaces using microlattice designs. Science 379, 1225–1232 (2023).

    Article  ADS  Google Scholar 

  62. He, X. et al. Prediction of the lotus effect on solid surfaces by machine learning. Small 18, 2203264 (2022).

    Article  Google Scholar 

  63. Lill, T. & Joubert, O. The cutting edge of plasma etching. Science 319, 1050–1051 (2008).

    Article  Google Scholar 

  64. Kustandi, T. S. et al. Self-assembled nanoparticles based fabrication of gecko foot-hair-inspired polymer nanofibers. Adv. Funct. Mater. 17, 2211–2218 (2007).

    Article  Google Scholar 

  65. Huang, Y. F. et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotech. 2, 770–774 (2007).

    Article  ADS  Google Scholar 

  66. Wu, L. et al. Toward controllable wet etching of monocrystalline silicon: roles of mechanically driven defects. ACS Appl. Mater. Interfaces 14, 29366–29376 (2022).

    Article  Google Scholar 

  67. Guo, D. J. et al. Fabrication and adhesion of a bio-inspired microarray: capillarity-induced casting using porous silicon mold. J. Mater. Chem. B 1, 379–386 (2013).

    Article  Google Scholar 

  68. Xue, L. et al. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano 11, 9711–9719 (2017).

    Article  Google Scholar 

  69. Xue, L. et al. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads. Nat. Commun. 6, 6621 (2015).

    Article  ADS  Google Scholar 

  70. Yi, H. et al. Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes. Adv. Funct. Mater. 28, 1706498 (2018).

    Article  Google Scholar 

  71. Yi, H., Lee, S. H., Seong, M., Kwak, M. K. & Jeong, H. E. Bioinspired reversible hydrogel adhesives for wet and underwater surfaces. J. Mater. Chem. B 6, 8064–8070 (2018).

    Article  Google Scholar 

  72. Minchenkov, K., Vedernikov, A., Safonov, A. & Akhatov, I. Thermoplastic pultrusion: a review. Polymers 13, 180 (2021).

    Article  Google Scholar 

  73. Gorb, S., Varenberg, M., Peressadko, A. & Tuma, J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 4, 271–275 (2007).

    Article  Google Scholar 

  74. Bormashenko, E., Stein, T., Pogreb, R. & Aurbach, D. “Petal effect” on surfaces based on lycopodium: high-stick surfaces demonstrating high apparent contact angles. J. Phys. Chem. C 113, 5568–5572 (2009).

    Article  Google Scholar 

  75. Zhang, E., Liu, Y., Yu, J., Lv, T. & Li, L. Fabrication of hierarchical gecko-inspired microarrays using a three-dimensional porous nickel oxide template. J. Mater. Chem. B 3, 6571–6575 (2015).

    Article  Google Scholar 

  76. Drotlef, D. M. et al. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Adv. Funct. Mater. 23, 1137–1146 (2013).

    Article  Google Scholar 

  77. Shakeri, A., Khan, S. & Didar, T. F. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip 21, 3053–3075 (2021).

    Article  Google Scholar 

  78. Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

    Article  ADS  Google Scholar 

  79. Huang, R. et al. Suction cups-inspired adhesive patch with tailorable patterns for versatile wound healing. Adv. Sci. 8, 2100201 (2021).

    Article  Google Scholar 

  80. Jin, K. et al. Biomimetic bidirectional switchable adhesive inspired by the gecko. Adv. Funct. Mater. 24, 574–579 (2014).

    Article  Google Scholar 

  81. Seong, M., Park, H. H., Hwang, I. & Jeong, H. E. Strong and reversible adhesion of interlocked 3D-microarchitectures. Coatings 9, 48 (2019).

    Article  Google Scholar 

  82. Kim, D. W. et al. Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion. Adv. Funct. Mater. 29, 1807614 (2019).

    Article  Google Scholar 

  83. Reddy, S., Arzt, E. & del Campo, A. Bioinspired surfaces with switchable adhesion. Adv. Mater. 19, 3833–3837 (2007).

    Article  Google Scholar 

  84. Yoo, P. J. et al. Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing. Chem. Mater. 16, 5000–5005 (2004).

    Article  Google Scholar 

  85. Xiang, Y. et al. Superrepellency of underwater hierarchical structures on Salvinia leaf. Proc. Natl Acad. Sci. USA 117, 2282–2287 (2020).

    Article  ADS  Google Scholar 

  86. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    Article  ADS  Google Scholar 

  87. Guan, Q. F. et al. Sustainable cellulose-nanofiber based hydrogels. ACS Nano 15, 7889–7898 (2021).

    Article  Google Scholar 

  88. Davidson, M. D. et al. Mechanochemical adhesion and plasticity in multifiber hydrogel networks. Adv. Mater. 32, 1905719 (2020).

    Article  Google Scholar 

  89. Li, Z. et al. Nature-derived bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Mater. Today Adv. 11, 100150 (2021).

    Article  Google Scholar 

  90. Ouyang, J. et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl Acad. Sci. USA 117, 28667–28677 (2020).

    Article  ADS  Google Scholar 

  91. Tang, H. et al. In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise. ACS Nano 16, 17931–17947 (2022).

    Article  Google Scholar 

  92. Jin, L. et al. An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioact. Mater. 16, 162–172 (2022).

    Article  Google Scholar 

  93. Aisenbrey, E. A. & Murphy, W. L. Synthetic alternative to Matrigel. Nat. Rev. Mater. 5, 539–551 (2020).

    Article  ADS  Google Scholar 

  94. Chowdhury, M. S. et al. Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 10, 4546 (2019).

    Article  ADS  Google Scholar 

  95. Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017). This paper reviews the development of hydrogels.

    Article  Google Scholar 

  96. Richbourg, N. R. et al. Precise control of synthetic hydrogel network structure via linear, independent synthesis–swelling relationships. Sci. Adv. 7, eabe3245 (2021).

    Article  ADS  Google Scholar 

  97. Ruan, H. et al. Engineered extracellular vesicles for ischemic stroke treatment. Innovation 4, 100394 (2023).

    Google Scholar 

  98. Zou, W. et al. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr. Polym. 202, 246–257 (2018).

    Article  Google Scholar 

  99. Rao, P. et al. Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 30, e1801884 (2018).

    Article  Google Scholar 

  100. Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the biologist. Cell 184, 18–32 (2021).

    Article  Google Scholar 

  101. Ma, Y. et al. Remote control over underwater dynamic attachment/detachment and locomotion. Adv. Mater. 30, 1801595 (2018).

    Article  Google Scholar 

  102. Wu, Q. et al. Bio-inspired active self-cleaning surfaces via filament-like sweepers array. Adv. Mater. 35, 2212246 (2023).

    Article  Google Scholar 

  103. Alameda, M. T., Osorio, M. R., Hernández, J. J. & Rodríguez, I. Multilevel hierarchical topographies by combined photolithography and nanoimprinting processes to create surfaces with controlled wetting. ACS Appl. Nano Mater. 2, 4727–4733 (2019).

    Article  Google Scholar 

  104. Linares, A. V., Falcimaigne-Cordin, A., Gheber, L. A. & Haupt, K. Patterning nanostructured, synthetic, polymeric receptors by simultaneous projection photolithography, nanomolding, and molecular imprinting. Small 7, 2318–2325 (2011).

    Article  Google Scholar 

  105. Akamatsu, K., Samitsu, S., Tsuruoka, T., Hasegawa, J. & Nawafune, H. Site-selective integration of monolayer-protected inorganic nanoparticles onto surface monolayer templates by a solvent-induced lift-off process. Small 2, 1130–1133 (2006).

    Article  Google Scholar 

  106. Liao, W. S. et al. Subtractive patterning via chemical lift-off lithography. Science 337, 1517–1521 (2012).

    Article  ADS  Google Scholar 

  107. Adelung, R. et al. Strain-controlled growth of nanowires within thin-film cracks. Nat. Mater. 3, 375–379 (2004).

    Article  ADS  Google Scholar 

  108. Xue, L. et al. Tailoring normal adhesion of arrays of thermoplastic, spring-like polymer nanorods by shaping nanorod tips. Langmuir 28, 10781–10788 (2012).

    Article  Google Scholar 

  109. Riesgo, B. et al. Effect of hydrofluoric acid concentration and etching time on the adhesive and mechanical behavior of glass-ceramics: a systematic review and meta-analysis. Int. J. Adhes. Adhes. 121, 103303 (2023).

    Article  Google Scholar 

  110. Sun, H. et al. Etching of two-dimensional materials. Mater. Today 42, 192–213 (2021).

    Article  Google Scholar 

  111. Han, J. et al. Anisotropic wet etching silicon tips of small opening angle in KOH solution with the additions of I2/KI. Sens. Actuators A: Phys. 152, 75–79 (2009).

    Article  Google Scholar 

  112. Li, W. et al. An adhesive bioink toward biofabrication under wet conditions. Small https://doi.org/10.1002/smll.202205078 (2023).

  113. Wei, Y., Wang, F. & Guo, Z. Bio-inspired and metal-derived superwetting surfaces: function, stability and applications. Adv. Colloid Interface Sci. 314, 102879 (2023).

    Article  Google Scholar 

  114. Schmidt, O. & Eberl, K. Thin solid films roll up into nanotubes. Nature 410, 168 (2001).

    Article  ADS  Google Scholar 

  115. Sen, A. K., Raj, A., Banerjee, U. & Iqbal, S. R. in Microfluidic Electrophoresis: Methods and Protocols (ed. Dutta, D.) 13–54 (Springer, 2019).

  116. Swarup, S. D. & Arjyajyoti, G. Hot embossing of polymers — a review. Mater. Today: Proc. 26, 405–414 (2020).

    Article  Google Scholar 

  117. Kim, J. K. et al. Enhanced flexible mold lifetime for roll-to-roll scaled-up manufacturing of adhesive complex microstructures. Adv. Mater. 35, e2207257 (2023).

    Article  Google Scholar 

  118. Han, F. et al. Triple-synergistic 2D material-based dual-delivery antibiotic platform. NPG Asia Mater. 12, 15 (2020).

    Article  ADS  Google Scholar 

  119. Ji, X. et al. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12, 1124 (2021).

    Article  ADS  Google Scholar 

  120. Wang, S. et al. Machine-learning micropattern manufacturing. Nano Today 38, 101152 (2021).

    Article  Google Scholar 

  121. Zheng, G. et al. Microfluidic chemostatic bioreactor for high-throughput screening and sustainable co-harvesting of biomass and biodiesel in microalgae. Bioact. Mater. 25, 629–639 (2023).

    Article  Google Scholar 

  122. Ouyang, J. et al. A facile and general method for synthesis of antibiotic-free protein-based hydrogel: wound dressing for the eradication of drug-resistant bacteria and biofilms. Bioact. Mater. 18, 446–458 (2022).

    Article  Google Scholar 

  123. Papautsky, I. & Peterson, E.T.K. in Micromolding: Encyclopedia of Microfluidics and Nanofluidics (ed. Li, D.) (Springer, 2014).

  124. Li, Q. et al. Replica molding-based nanopatterning of tribocharge on elastomer with application to electrohydrodynamic nanolithography. Nat. Commun. 9, 974 (2018).

    Article  ADS  Google Scholar 

  125. Xu, Q. et al. Biomimetic selfcleaning surfaces: synthesis, mechanism and applications. J. R. Soc. Interface 13, 20160300 (2016).

    Article  Google Scholar 

  126. Li, X., Tian, J. & Shen, W. Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17, 649–659 (2010).

    Article  Google Scholar 

  127. Wang, H. et al. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal. Bioanal. Chem. 406, 2799–2807 (2014).

    Article  Google Scholar 

  128. Wang, M. et al. A three-dimensional pinwheel-shaped paper-based microfluidic analytical device for fluorescence detection of multiple heavy metals in coastal waters by rational device design. Anal. Bioanal. Chem. 413, 3299–3313 (2021).

    Article  Google Scholar 

  129. Bruzewicz, D. A., Reches, M. & Whitesides, G. M. Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal. chem. 80, 3387–3392 (2008).

    Article  Google Scholar 

  130. Xia, H. et al. Mediator-free electron-transfer on patternable hierarchical meso/macro porous bienzyme interface for highly-sensitive sweat glucose and surface electromyography monitoring. Sens. Actuators B 312, 127962 (2020).

    Article  Google Scholar 

  131. Kotz, F. et al. Fused deposition modeling of microfluidic chips in polymethylmethacrylate. Micromachines 11, 873 (2020).

    Article  Google Scholar 

  132. Gross, B. C. et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 3240–3253 (2014).

    Article  Google Scholar 

  133. Liao, J. et al. 3D-printable colloidal photonic crystals. Mater. Today 56, 29–41 (2022).

    Article  Google Scholar 

  134. Cui, H. et al. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci. Adv. 6, eabb5067 (2020).

    Article  ADS  Google Scholar 

  135. Li, H. et al. Scattered seeding of CAR T cells in solid tumors augments anticancer efficacy. Natl Sci. Rev. 9, nwab172 (2022).

    Article  MathSciNet  Google Scholar 

  136. Tricinci, O., Pignatelli, F. & Mattoli, V. 3D micropatterned functional surface inspired by Salvinia molesta via direct laser lithography for air retention and drag reduction. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202206946 (2023).

  137. Brown, P. S. & Bhushan, B. Designing bioinspired superoleophobic surfaces. APL Mater. 4, 015703 (2016). This paper explained the physical mechanisms about contact angle of droplet on the micropatterned surfaces. Wenzel state and CassieBaxter state are briefly summarized.

    Article  ADS  Google Scholar 

  138. Hensel, R., Moh, K. & Arzt, E. Engineering micropatterned dry adhesives: from contact theory to handling applications. Adv. Funct. Mater. 28, 1800865 (2018).

    Article  Google Scholar 

  139. Chen, H. et al. Bioinspired surface for surgical graspers based on the strong wet friction of tree frog toe pads. ACS Appl. Mater. Interfaces 7, 13987–13995 (2015).

    Article  Google Scholar 

  140. Vogel, M. J. & Steen, P. H. Capillarity-based switchable adhesion. Proc. Natl Acad. Sci. USA 107, 3377–3381 (2010).

    Article  ADS  Google Scholar 

  141. Tvon Erlach, T. C. et al. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nat. Mater. 17, 237–242 (2018).

    Article  ADS  Google Scholar 

  142. Théry, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006).

    Article  ADS  Google Scholar 

  143. Zheng, G. et al. An integrated microfluidic device in marine microalgae culture for toxicity screening application. Mar. Pollut. Bull. 72, 231–243 (2013).

    Article  ADS  Google Scholar 

  144. Ahmed, T., Shimizu, T. S. & Stocker, R. Microfluidics for bacterial chemotaxis. Integr. Biol. 2, 604–629 (2010).

    Article  Google Scholar 

  145. Englert, D. L., Manson, M. D. & Jayaraman, A. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl. Environ. Microbiol. 75, 4557–4564 (2009).

    Article  ADS  Google Scholar 

  146. Durham, W. M., Tranzer, O., Leombruni, A. & Stocker, R. Division by fluid incision: biofilm patch development in porous media. Phys. Fluids 24, 091107 (2012).

    Article  ADS  Google Scholar 

  147. Marcos & Stocker, R. Microorganisms in vortices: a microfluidic setup. Limnol. Oceanogr. Methods 4, 392–398 (2006).

    Article  Google Scholar 

  148. Li, F. et al. Bioresource upgrade for sustainable energy, environment, and biomedicine. Nano-Micro Lett. 15, 35 (2023).

    Article  ADS  Google Scholar 

  149. Han, B. et al. Computer-aided design of microfluidic resistive network using circuit partition and CFD-based optimization and application in microalgae assessment for marine ecological toxicity. Bioprocess Biosyst. Eng. 42, 785–797 (2019).

    Article  Google Scholar 

  150. Feng, C. Y. et al. An on-chip pollutant toxicity determination based on marine microalgal swimming inhibition. Analyst 141, 1761–1771 (2016).

    Article  ADS  Google Scholar 

  151. Zheng, G. et al. A microfluidic droplet array demonstrating high-throughput screening in individual lipid-producing microalgae. Anal. Chim. Acta 1227, 340322 (2022).

    Article  Google Scholar 

  152. Mehrabi, Z., Slade, E. M., Solis, A. & Mann, D. J. The importance of microhabitat for biodiversity sampling. PLoS ONE 9, e114015 (2014).

    Article  ADS  Google Scholar 

  153. Wang, Y. et al. An integrated digital microfluidic bioreactor for fully automatic screening of microalgal growth and stress-induced lipid accumulation. Biotechnol. Bioeng. 118, 294–304 (2021).

    Article  Google Scholar 

  154. Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).

    Article  ADS  Google Scholar 

  155. Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).

    Article  ADS  Google Scholar 

  156. Dörgens, A. L. et al. A laboratory model of marine snow: preparation and characterization of porous fiber particles. Limnol. Oceanogr. Methods 13, 664–671 (2015).

    Article  Google Scholar 

  157. Shapiro, O. H., Kramarsky-Winter, E., Gavish, A. R., Stocker, R. & Vardi, A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat. Commun. 7, 10860 (2016).

    Article  ADS  Google Scholar 

  158. Long, T. & Ford, R. M. Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor. Environ. Sci. Technol. 435, 1546–1552 (2008).

    Google Scholar 

  159. Marcos, Fu, H. C., Powers, T. R. & Stocker, R. Bacterial rheotaxis. Proc. Natl Acad. Sci. USA 109, 4780–4785 (2012).

    Article  ADS  Google Scholar 

  160. Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006).

    Article  ADS  Google Scholar 

  161. DiLuzio, W. R. et al. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005).

    Article  ADS  Google Scholar 

  162. Perera-Costa, D., Bruque, J. M., González-Martín, M. L., Gómez-García, A. C. & Vadillo-Rodríguez, V. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir 30, 4633–4641 (2014).

    Article  Google Scholar 

  163. White, A. R., Jalali, M. & Sheng, J. A new ecology-on-a-chip microfluidic platform to study interactions of microbes with a rising oil droplet. Sci. Rep. 9, 13737 (2019).

    Article  ADS  Google Scholar 

  164. Pașca, S. P. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 609, 907–910 (2022).

    Article  ADS  Google Scholar 

  165. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article  Google Scholar 

  166. Zhou, J. et al. Biomaterials and nanomedicine for bone regeneration: progress and future prospects. Exploration 1, 20210011 (2021).

    Article  Google Scholar 

  167. Castillo Ransanz, L., Van Altena, P. F. J., Heine, V. M. & Accardo, A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front. Bioeng. Biotech. 10, 1096054 (2022).

    Article  Google Scholar 

  168. Chen, X., Zhang, Y. S., Zhang, X. & Liu, C. Organ-on-a-chip platforms for accelerating the evaluation of nanomedicine. Bioact. Mater. 6, 1012–1027 (2021).

    Article  Google Scholar 

  169. Koyilot, M. C. et al. Breakthroughs and applications of organ-on-a-chip technology. Cells 11, 1828 (2022).

    Article  Google Scholar 

  170. Zhang, B., Korolj, A., Lai, B. F. L. & Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 3, 257–278 (2018).

    Article  ADS  Google Scholar 

  171. Zheng, G.-X. et al. An integrated microfluidic device for culturing and screening of Giardia lamblia. Exp. Parasitol. 137, 1–7 (2014).

    Article  Google Scholar 

  172. Lu, L. et al. Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay. Anal. Bioanal. Chem. 409, 1451–1459 (2017).

    Article  Google Scholar 

  173. Markus, J. et al. Human small intestinal organotypic culture model for drug permeation, inflammation, and toxicity assays. In Vitro Cell. Dev. Anim. 57, 160–173 (2021).

    Article  Google Scholar 

  174. Velasco, V., Soucy, P., Keynton, R. & Williams, S. J. A microfluidic impedance platform for real-time, in vitro characterization of endothelial cells undergoing fluid shear stress. Lab on a Chip 22, 4705–4716 (2022).

    Article  Google Scholar 

  175. Damkham, N., Issaragrisil, S. & Lorthongpanich, C. Role of YAP as a mechanosensing molecule in stem cells and stem cell-derived hematopoietic cells. Int. J. Mol. Sci. 23, 14634 (2022).

    Article  Google Scholar 

  176. Fletcher, D. & Mullins, R. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  ADS  Google Scholar 

  177. Wang, L. et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579–582 (2016).

    Article  ADS  Google Scholar 

  178. Baik, S. et al. Bioinspired adhesive architectures: from skin patch to integrated bioelectronics. Adv. Mater. 31, e1803309 (2019).

    Article  Google Scholar 

  179. Sarkar, N., Bhumiratana, S., Geris, L., Papantoniou, I. & Grayson, W. L. Bioreactors for engineering patient-specific tissue grafts. Nat. Rev. Bioeng. 1, 361–377 (2023).

    Article  Google Scholar 

  180. Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A. & Laurencin, C. T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020).

    Article  Google Scholar 

  181. Manfrin, A. et al. Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. Nat. Methods 16, 640–648 (2019).

    Article  Google Scholar 

  182. Britton, G., Chhabra, S., Massey, J. & Warmflash, A. in Programmed Morphogenesis: Methods and Protocols (eds Ebrahimkhani, M. R. & Hislop, J.) 119–130 (Humana Press, 2021).

  183. Stronati, E. et al. YAP1 regulates the self-organized fate patterning of hESC-derived gastruloids. Stem Cell Rep. 17, 211–220 (2022).

    Article  Google Scholar 

  184. Ashammakhi, N. et al. Advancing frontiers in bone bioprinting. Adv. Healthcare Mater. 8, 1801048 (2019).

    Article  Google Scholar 

  185. Daly, A. C. et al. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv. Healthcare Mater. 6, 1700298 (2017).

    Article  Google Scholar 

  186. Vijayavenkataraman, S., Lu, W. F. & Fuh, J. Y. H. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 8, 032001 (2016).

    Article  ADS  Google Scholar 

  187. Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl Acad. Sci. USA 113, 2206–2211 (2016).

    Article  ADS  Google Scholar 

  188. Knowlton, S., Anand, S., Shah, T. & Tasoglu, S. Bioprinting for neural tissue engineering. Trends Neurosci. 41, 31–46 (2018).

    Article  Google Scholar 

  189. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotech. 32, 773–785 (2014).

    Article  Google Scholar 

  190. Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).

    Article  ADS  Google Scholar 

  191. Derakhshanfar, S. et al. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact. Mater. 3, 144–156 (2018).

    Article  Google Scholar 

  192. Ahadian, S. & Khademhosseini, A. A perspective on 3D bioprinting in tissue regeneration. Bio-Des. Manuf. 1, 157–160 (2018).

    Article  Google Scholar 

  193. Li, H. et al. Handheld bioprinting strategies for in situ wound dressing. Essays Biochem. 65, 533–543 (2021).

    Article  Google Scholar 

  194. Ashammakhi, N. et al. In situ three-dimensional printing for reparative and regenerative therapy. Biomed. Microdev. 21, 42 (2019).

    Article  Google Scholar 

  195. Wu, Y., Ravnic, D. J. & Ozbolat, I. T. Intraoperative bioprinting: repairing tissues and organs in a surgical setting. Trends Biotechnol. 38, 594–605 (2020).

    Article  Google Scholar 

  196. Eremeyev, V. A. in Encyclopedia of Continuum Mechanics (eds Altenbach, H. & Öchsner, A.) 2290–2291 (Springer, 2020).

  197. Ruiz-Esparza, G. U. et al. Nanoengineered shear-thinning hydrogel barrier for preventing postoperative abdominal adhesions. Nano-Micro Lett. 13, 212 (2021).

    Article  ADS  Google Scholar 

  198. Tian, H. et al. Core–shell dry adhesives for rough surfaces via electrically responsive self-growing strategy. Nat. Commun. 13, 7659 (2022).

    Article  ADS  Google Scholar 

  199. Hu, S. & Xia, Z. Rational design and nanofabrication of gecko-inspired fibrillar adhesives. Small 8, 2464–2468 (2012).

    Article  Google Scholar 

  200. Chen, C. M., Chiang, C. L., Lai, C. L., Xie, T. & Yang, S. Buckling-based strong dry adhesives via interlocking. Adv. Funct. Mater. 23, 3813–3823 (2013).

    Article  Google Scholar 

  201. Zhu, M., Zhang, F. & Chen, X. Bioinspired mechanically interlocking structures. Small Struct. 1, 2000045 (2020).

    Article  Google Scholar 

  202. Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019).

    Article  ADS  Google Scholar 

  203. Chen, Y. et al. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion. Adv. Funct. Mater. 30, 1905287 (2020).

    Article  Google Scholar 

  204. Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).

    Article  ADS  Google Scholar 

  205. Autumn, K. et al. Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annu. Rev. Ecol. Evol. Syst. 45, 445–470 (2014).

    Article  Google Scholar 

  206. Bartlett, M. D. et al. Looking beyond fibrillar features to scale gecko-like adhesion. Adv. Mater. 24, 1078–1083 (2012).

    Article  Google Scholar 

  207. Aksak, B. et al. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 23, 3322–3332 (2007).

    Article  Google Scholar 

  208. Qu, L. et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322, 238–242 (2008).

    Article  ADS  Google Scholar 

  209. Gillies, A. G. et al. Dry self-cleaning properties of hard and soft fibrillar structures. ACS Appl. Mater. Interfaces 5, 6081–6088 (2013).

    Article  Google Scholar 

  210. Xu, Q. et al. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nat. Commun. 6, 8949 (2015).

    Article  ADS  Google Scholar 

  211. Murphy, M. P. et al. Gecko-inspired directional and controllable adhesion. Small 5, 170–175 (2009).

    Article  Google Scholar 

  212. Lee, H., Lee, B. P. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338–341 (2007).

    Article  ADS  Google Scholar 

  213. Huber, G. et al. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl Acad. Sci. USA 102, 16293–16296 (2005).

    Article  ADS  Google Scholar 

  214. Zhang, C. et al. Hydraulically coupled dielectric elastomer actuators for a bioinspired suction cup. Polymers 13, 3481 (2021).

    Article  Google Scholar 

  215. Blossey, R. Self-cleaning surfaces — virtual realities. Nat. Mater. 2, 301–306 (2003).

    Article  ADS  Google Scholar 

  216. Bhushan, B., Jung, Y. C. & Koch, K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. R. Soc. A 367, 1631–1672 (2009).

    Article  ADS  Google Scholar 

  217. Koch, K., Bhushan, B. & Barthlott, W. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4, 1943–1963 (2008).

    Article  ADS  Google Scholar 

  218. Fürstner, R., Barthlott, W., Neinhuis, C. & Walzel, P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956–961 (2005).

    Article  Google Scholar 

  219. Wang, D. et al. Design of robust superhydrophobic surfaces. Nature 582, 55–59 (2020).

    Article  ADS  Google Scholar 

  220. Toma, M., Loget, G. & Corn, R. M. Flexible teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning. ACS Appl. Mater. Interfaces 6, 11110–11117 (2014).

    Article  Google Scholar 

  221. Gao, X. & Jiang, L. Water-repellent legs of water striders. Nature 432, 36–36 (2004).

    Article  ADS  Google Scholar 

  222. Yang, Y. et al. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv. Mater. 30, 1704912 (2018).

    Article  Google Scholar 

  223. Liu, T. L. & Kim, C. J. C. Turning a surface superrepellent even to completely wetting liquids. Science 346, 1096–1100 (2014).

    Article  ADS  Google Scholar 

  224. Bohn, H. F. & Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl Acad. Sci. USA 101, 14138–14143 (2004).

    Article  ADS  Google Scholar 

  225. Deng, X., Mammen, L., Butt, H. J. & Vollmer, D. Candle soot as a template for a transparent robust superamphiphobic coating. Science 335, 67–70 (2012).

    Article  ADS  Google Scholar 

  226. Tuteja, A., Choi, W., Mabry, J. M., McKinley, G. H. & Cohen, R. E. Robust omniphobic surfaces. Proc. Natl Acad. Sci. USA 105, 18200–18205 (2008).

    Article  ADS  Google Scholar 

  227. Saison, T. et al. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol–gel films. Bioinspir. Biomim. 3, 046004 (2008).

    Article  ADS  Google Scholar 

  228. Liu, Y., Chen, X. & Xin, J. H. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinspir. Biomim. 3, 046007 (2008).

    Article  ADS  Google Scholar 

  229. Gan, Z., Turner, M. D. & Gu, M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci. Adv. 2, e1600084 (2016).

    Article  ADS  Google Scholar 

  230. Shen, Q. et al. Subtractive structural modification of morpho butterfly wings. Small 11, 5705–5711 (2015).

    Article  Google Scholar 

  231. Li, C. & Qi, L. Colloidal-crystal-assisted patterning of crystalline materials. Adv. Mater. 22, 1494–1497 (2010).

    Article  Google Scholar 

  232. Yang, S. M., Jang, S. G., Choi, D. G., Kim, S. & Yu, H. K. Nanomachining by colloidal lithography. Small 2, 458–475 (2006).

    Article  Google Scholar 

  233. Wang, F., Zhang, X., Lin, Y., Wang, L. & Zhu, J. Structural coloration pigments based on carbon modified ZnS@SiO2 nanospheres with low-angle dependence, high color saturation, and enhanced stability. ACS Appl. Mater. Interfaces 8, 5009–5016 (2016).

    Article  Google Scholar 

  234. England, G. T. et al. The optical Janus effect: asymmetric structural color reflection materials. Adv. Mater. 29, 1606876 (2017).

    Article  Google Scholar 

  235. Fu, F., Shang, L., Chen, Z., Yu, Y. & Zhao, Y. Bioinspired living structural color hydrogels. Sci. Rob. 3, eaar8580 (2018).

    Article  Google Scholar 

  236. Goerlitzer, E. S. A., Klupp Taylor, R. N. & Vogel, N. Bioinspired photonic pigments from colloidal self-assembly. Adv. Mater. 30, 1706654 (2018).

    Article  Google Scholar 

  237. Bogatyrev, N. & Bogatyreva, O. in Eco-Innovation and the Development of Business Models: Lessons from Experience and New Frontiers in Theory and Practice (eds Garrido Azevedo, S., Brandenburg, M., Carvalho, H. & Cruz-Machado, V.) 297–314 (Springer International Publishing, 2014).

  238. Vincent, J. F. V., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. & Pahl, A. K. Biomimetics: its practice and theory. J. R. Soc. Interface 3, 471–482 (2006).

    Article  Google Scholar 

  239. Abdala, L. N., Fernandes, R. B., Ogliari, A., Löwer, M. & Feldhusen, J. Creative contributions of the methods of inventive principles of TRIZ and BioTRIZ to problem solving. ASME J. Mech. Des. 139, 082001 (2017).

    Article  Google Scholar 

  240. Badarnah, L. & Kadri, U. A methodology for the generation of biomimetic design concepts. Architect. Sci. Rev. 58, 120–133 (2015).

    Article  Google Scholar 

  241. Imani, N. & Vale, B. A framework for finding inspiration in nature: biomimetic energy efficient building design. Energy Build. 225, 110296 (2020).

    Article  Google Scholar 

  242. Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).

    Article  Google Scholar 

  243. Fang, G., Chen, Y. C., Lu, H. & Jin, D. Advances in spheroids and organoids on a chip. Adv. Funct. Mater. 33, 2215043(2023).

    Article  Google Scholar 

  244. Liu, L. et al. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13, 19352–19366 (2021).

    Article  Google Scholar 

  245. Wang, B. et al. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat. Commun. 14, 1341 (2023).

    Article  ADS  Google Scholar 

  246. Wang, X., Xie, P., Chen, B. & Zhang, X. Chip-based high-dimensional optical neural network. Nano-Micro Lett. 14, 221 (2022).

    Article  ADS  Google Scholar 

  247. Yang, Z. et al. Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 20, 116–134 (2023).

    Article  Google Scholar 

  248. Yang, L. et al. Diffusion models: a comprehensive survey of methods and applications. Preprint at https://doi.org/10.48550/arXiv.2209.00796 (2022).

  249. Mahdavi, A. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl Acad. Sci. USA 105, 2307–2312 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

X.Z. specially acknowledges the love and support from grandparents W. Zhang and Y. Qiu and MIT Professor M. Dresselhaus.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (Y.W., G.Z., M.G., Y.S.Z. and X.Z.); Experimentation (Y.W., G.Z., N.J., G.Y., Y.S.Z. and X.Z.); Results (Y.W., G.Z., J.M., Y.S.Z. and X.Z.); Applications (Y.W., G.Z., L.M., Y.S.Z. and X.Z.); Reproducibility and data deposition (Y.W., G.Z., X.C., Y.S.Z. and X.Z.); Limitations and optimizations (Y.W., G.Z., Y.S.Z. and X.Z.); Outlook (Y.W., G.Z., Y.L., X.C., M.G., Y.S.Z. and X.Z.); and overview of the Primer (all authors).

Corresponding authors

Correspondence to Guoxia Zheng or Xingcai Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Mehmet Sarikaya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AskNature: https://asknature.org/

Glossary

Biomimetic

Biomimetics is the interdisciplinary cooperation of biology and technology to solve practical problems through functional analysis of biological systems, abstraction into models and application to a solution.

Bioinspiration

A creative approach based on the observation of biological systems, extraction of functional principles and use of those principles in engineered systems. Although a biomimetic design must imitate its natural counterpart, bioinspiration is influenced or informed by a biological system.

Material islands

Small, isolated regions or patches of a material that are uniquely patterned on the substrate surface.

Micro-electromechanical systems

(MEMS). Integrated mechanical elements, sensors, actuators and electronics that are fabricated using microfabrication technologies derived from the semiconductor industry.

Surface wettability

The character of a surface that allows liquids to adhere. Surface wettability can be described by contact angles (CAs), the tangent angle between the solid surface and liquid meniscus. When CA > 90°, the liquid tends to form a droplet on the surface, and the surface is hydrophobic. Conversely, when CA < 90°, the liquids tend to spread on the surface and the surface is hydrophilic.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zheng, G., Jiang, N. et al. Nature-inspired micropatterns. Nat Rev Methods Primers 3, 68 (2023). https://doi.org/10.1038/s43586-023-00251-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00251-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research