Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Extracellular vesicle analysis

Abstract

Cells release small, phospholipid membrane-enclosed particles, collectively referred to as extracellular vesicles (EVs), into their surroundings to enable intercellular communication. EVs have numerous functions in physiological and pathophysiological processes and show considerable promise for diagnostic and therapeutic applications. Technologies have rapidly evolved over the past two decades, providing a powerful, versatile toolset for preparing and characterizing EVs to facilitate research and translational efforts. However, considering the plethora of methods available, it is challenging to understand what makes one method more suited for a given experiment than another. The heterogeneity of EVs as well as the diversity in composition of their surroundings further add to this challenge. This Primer provides guidance for EV analysis across ecosystems, including accessible body- and environment-derived sources. We summarize the multi-step process of EV preparation, cover the guiding principles and considerations when performing and interpreting EV experiments, and reflect on the limitations and challenges in the fields of fundamental biology, biomarker development and therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extracellular vesicles.
Fig. 2: Extracellular vesicle preparation.
Fig. 3: Extracellular vesicle preparation methodology.
Fig. 4: Extracellular vesicle characterization.
Fig. 5: Extracellular vesicle characterization methodology.
Fig. 6: Extracellular vesicle applications.
Fig. 7: Limitations, optimizations and challenges for extracellular vesicle research.

Similar content being viewed by others

References

  1. Buzas, E. I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00763-8 (2022).

    Article  Google Scholar 

  2. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  Google Scholar 

  3. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).

    Article  ADS  Google Scholar 

  4. Ferreira, J. V. et al. LAMP2A regulates the loading of proteins into exosomes. Sci. Adv. 8, eabm1140 (2022).

    Article  Google Scholar 

  5. Tóth, E. Á. et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J. Extracell. Vesicles 10, e12140 (2021).

    Article  Google Scholar 

  6. Vergauwen, G. et al. Robust sequential biophysical fractionation of blood plasma to study variations in the biomolecular landscape of systemically circulating extracellular vesicles across clinical conditions. J. Extracell. Vesicles 10, e12122 (2021).

    Article  Google Scholar 

  7. Wolf, M. et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. J. Extracell. Vesicles 11, e12207 (2022).

    Article  Google Scholar 

  8. Buzas, E. I. Opportunities and challenges in studying the extracellular vesicle corona. Nat. Cell Biol. 24, 1322–1325 (2022).

    Article  Google Scholar 

  9. Hendrix, A. The nature of blood(y) extracellular vesicles. Nat. Rev. Mol. Cell Biol. 22, 243–243 (2021).

    Article  Google Scholar 

  10. Geeurickx, E. & Hendrix, A. Targets, pitfalls and reference materials for liquid biopsy tests in cancer diagnostics. Mol. Asp. Med. 72, 100828 (2020).

    Article  Google Scholar 

  11. Van Deun, J. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017).

    Article  Google Scholar 

  12. De Wever, O. & Hendrix, A. A supporting ecosystem to mature extracellular vesicles into clinical application. EMBO J. 38, e101412 (2019).

    Article  Google Scholar 

  13. Toyofuku, M., Nomura, N. & Eberl, L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17, 13–24 (2019).

    Article  Google Scholar 

  14. Toyofuku, M., Schild, S., Kaparakis-Liaskos, M. & Eberl, L. Composition and functions of bacterial membrane vesicles. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-023-00875-5 (2023).

    Article  Google Scholar 

  15. Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).

    Article  Google Scholar 

  16. György, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688 (2011).

    Article  Google Scholar 

  17. Théry, C. et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  Google Scholar 

  18. Lötvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  Google Scholar 

  19. Tulkens, J. et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 69, 191–193 (2020).

    Article  Google Scholar 

  20. Tulkens, J., De Wever, O. & Hendrix, A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nat. Protoc. 15, 40–67 (2020).

    Article  Google Scholar 

  21. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  Google Scholar 

  22. Hendrix, A. & De Wever, O. Systemically circulating bacterial extracellular vesicles: origin, fate, and function. Trends Microbiol. 30, 213–216 (2022).

    Article  Google Scholar 

  23. Samuel, M. et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat. Commun. 12, 3950 (2021).

    Article  ADS  Google Scholar 

  24. Nemati, M. et al. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun. Signal. 20, 69 (2022).

    Article  Google Scholar 

  25. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    Article  Google Scholar 

  26. Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    Article  Google Scholar 

  27. Hoshino, A. et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 182, 1044–1061.e18 (2020).

    Article  Google Scholar 

  28. Simonsen, J. B. What are we looking at? Extracellular vesicles, lipoproteins, or both? Circ. Res. 121, 920–922 (2017).

    Article  Google Scholar 

  29. Dhondt, B. et al. Unravelling the proteomic landscape of extracellular vesicles in prostate cancer by density-based fractionation of urine. J. Extracell. Vesicles 9, 1736935 (2020).

    Article  Google Scholar 

  30. Cocozza, F., Grisard, E., Martin-Jaular, L., Mathieu, M. & Théry, C. SnapShot: extracellular vesicles. Cell 182, 262–262.e1 (2020).

    Article  Google Scholar 

  31. Van Deun, J. et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 3, 24858 (2014).

    Article  Google Scholar 

  32. Willms, E., Cabañas, C., Mäger, I., Wood, M. J. A. & Vader, P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 9, 738 (2018).

    Article  Google Scholar 

  33. Roux, Q. et al. Depletion of soluble cytokines unlocks the immunomodulatory bioactivity of extracellular vesicles. J. Extracell. Vesicles https://doi.org/10.1002/jev2.12339 (2023).

  34. Maas, S. L. N. et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J. Control. Release 200, 87–96 (2015).

    Article  Google Scholar 

  35. Arab, T. et al. Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. J. Extracell. Vesicles 10, e12079 (2021).

    Article  Google Scholar 

  36. Grange, C. & Bussolati, B. Extracellular vesicles in kidney disease. Nat. Rev. Nephrol. 18, 499–513 (2022).

    Article  Google Scholar 

  37. Théry, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb0322s30 (2006).

    Article  Google Scholar 

  38. Pinedo, M., de la Canal, L. & de Marcos Lousa, C. A call for rigor and standardization in plant extracellular vesicle research. J. Extracell. Vesicles 10, e12048 (2021).

    Article  Google Scholar 

  39. Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014).

    Article  ADS  Google Scholar 

  40. Karimi, N. et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell. Mol. Life Sci. 75, 2873–2886 (2018).

    Article  Google Scholar 

  41. Li, Y. et al. EV-origin: enumerating the tissue-cellular origin of circulating extracellular vesicles using exLR profile. Comput. Struct. Biotechnol. J. 18, 2851–2859 (2020).

    Article  MathSciNet  Google Scholar 

  42. Geeurickx, E. et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat. Commun. 10, 3288 (2019).

    Article  ADS  Google Scholar 

  43. Erdbrügger, U. et al. Urinary extracellular vesicles: a position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles 10, e12093 (2021).

    Article  Google Scholar 

  44. Merchant, M. L., Rood, I. M., Deegens, J. K. J. & Klein, J. B. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat. Rev. Nephrol. 13, 731–749 (2017).

    Article  Google Scholar 

  45. Linxweiler, J. & Junker, K. Extracellular vesicles in urological malignancies: an update. Nat. Rev. Urol. 17, 11–27 (2020).

    Article  Google Scholar 

  46. Crescitelli, R., Lässer, C. & Lötvall, J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat. Protoc. 16, 1548–1580 (2021).

    Article  Google Scholar 

  47. Vella, L. J. et al. A rigorous method to enrich for exosomes from brain tissue. J. Extracell. Vesicles 6, 1348885 (2017).

    Article  Google Scholar 

  48. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445.e18 (2019).

    Article  Google Scholar 

  49. Crescitelli, R. et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J. Extracell. Vesicles 9, 1722433 (2020).

    Article  Google Scholar 

  50. Urzì, O., Bagge, R. O. & Crescitelli, R. The dark side of foetal bovine serum in extracellular vesicle studies. J. Extracell. Vesicles 11, e12271 (2022).

    Article  Google Scholar 

  51. Lehrich, B. M., Liang, Y. & Fiandaca, M. S. Foetal bovine serum influence on in vitro extracellular vesicle analyses. J. Extracell. Vesicles 10, e12061 (2021).

    Article  Google Scholar 

  52. Li, J. et al. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J. Extracell. Vesicles 4, 26883 (2015).

    Article  Google Scholar 

  53. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

    Article  Google Scholar 

  54. Yáñez-Mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  Google Scholar 

  55. De Palma, M. et al. Plant roots release small extracellular vesicles with antifungal activity. Plants 9, E1777 (2020).

    Article  Google Scholar 

  56. Schatz, D. & Vardi, A. Extracellular vesicles — new players in cell–cell communication in aquatic environments. Curr. Opin. Microbiol. 43, 148–154 (2018).

    Article  Google Scholar 

  57. Biller, S. J. et al. Environmental and taxonomic drivers of bacterial extracellular vesicle production in marine ecosystems. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.00594-23 (2023).

    Article  Google Scholar 

  58. Vergauwen, G. et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci. Rep. 7, 2704 (2017).

    Article  ADS  Google Scholar 

  59. Zonneveld, M. I. et al. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.24215 (2014).

    Article  Google Scholar 

  60. Lacroix, R. et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J. Thromb. Haemost. 10, 437–446 (2012).

    Article  Google Scholar 

  61. Visan, K. S. et al. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J. Extracell. Vesicles 11, 12266 (2022).

    Article  Google Scholar 

  62. Zhang, X., Borg, E. G. F., Liaci, A. M., Vos, H. R. & Stoorvogel, W. A novel three step protocol to isolate extracellular vesicles from plasma or cell culture medium with both high yield and purity. J. Extracell. Vesicles 9, 1791450 (2020).

    Article  Google Scholar 

  63. Böing, A. N. et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 3, 23430 (2014).

    Article  Google Scholar 

  64. Welton, J. L., Webber, J. P., Botos, L.-A., Jones, M. & Clayton, A. Ready-made chromatography columns for extracellular vesicle isolation from plasma. J. Extracell. Vesicles 4, 27269 (2015).

    Article  Google Scholar 

  65. Giddings, J. C., Yang, F. J. & Myers, M. N. Flow-field-flow fractionation: a versatile new separation method. Science 193, 1244–1245 (1976).

    Article  ADS  Google Scholar 

  66. Wahlund, K. G. & Giddings, J. C. Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal. Chem. 59, 1332–1339 (1987).

    Article  Google Scholar 

  67. Sitar, S. et al. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal. Chem. 87, 9225–9233 (2015).

    Article  Google Scholar 

  68. Zhang, H. & Lyden, D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat. Protoc. 14, 1027–1053 (2019).

    Article  Google Scholar 

  69. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  Google Scholar 

  70. Lozano-Ramos, I. et al. Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. J. Extracell. Vesicles 4, 27369 (2015).

    Article  Google Scholar 

  71. Coumans Frank, A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    Article  Google Scholar 

  72. Jeppesen, D. K. et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles 3, 25011 (2014).

    Article  Google Scholar 

  73. Cvjetkovic, A., Lötvall, J. & Lässer, C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.23111 (2014).

    Article  Google Scholar 

  74. Linares, R., Tan, S., Gounou, C., Arraud, N. & Brisson, A. R. High-speed centrifugation induces aggregation of extracellular vesicles. J. Extracell. Vesicles 4, 29509 (2015).

    Article  Google Scholar 

  75. Gupta, S. et al. An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res. Ther. 9, 180 (2018).

    Article  Google Scholar 

  76. Seo, N. et al. Distinguishing functional exosomes and other extracellular vesicles as a nucleic acid cargo by the anion-exchange method. J. Extracell. Vesicles 11, e12205 (2022).

    Article  Google Scholar 

  77. Midekessa, G. et al. Zeta potential of extracellular vesicles: toward understanding the attributes that determine colloidal stability. ACS Omega 5, 16701–16710 (2020).

    Article  Google Scholar 

  78. Van Deun, J. et al. Integrated dual-mode chromatography to enrich extracellular vesicles from plasma. Adv. Biosyst. 4, e1900310 (2020).

    Article  Google Scholar 

  79. Lewis, J. M. et al. Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano 12, 3311–3320 (2018).

    Article  Google Scholar 

  80. Multia, E., Tear, C. J. Y., Palviainen, M., Siljander, P. & Riekkola, M.-L. Fast isolation of highly specific population of platelet-derived extracellular vesicles from blood plasma by affinity monolithic column, immobilized with anti-human CD61 antibody. Anal. Chim. Acta 1091, 160–168 (2019).

    Article  Google Scholar 

  81. Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

    Article  ADS  Google Scholar 

  82. Clayton, A. et al. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods 247, 163–174 (2001).

    Article  Google Scholar 

  83. Sharma, P. et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J. Extracell. Vesicles 7, 1435138 (2018).

    Article  Google Scholar 

  84. Onódi, Z. et al. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front. Physiol. 9, 1479 (2018).

    Article  Google Scholar 

  85. Willms, E. et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 6, 22519 (2016).

    Article  ADS  Google Scholar 

  86. Guan, S. et al. Size-dependent sub-proteome analysis of urinary exosomes. Anal. Bioanal. Chem. 411, 4141–4149 (2019).

    Article  Google Scholar 

  87. Ashby, J. et al. Distribution profiling of circulating microRNAs in serum. Anal. Chem. 86, 9343–9349 (2014).

    Article  Google Scholar 

  88. Kim, Y. B., Yang, J. S., Lee, G. B. & Moon, M. H. Evaluation of exosome separation from human serum by frit-inlet asymmetrical flow field-flow fractionation and multiangle light scattering. Anal. Chim. Acta 1124, 137–145 (2020).

    Article  Google Scholar 

  89. Wu, B. et al. Separation and characterization of extracellular vesicles from human plasma by asymmetrical flow field-flow fractionation. Anal. Chim. Acta 1127, 234–245 (2020).

    Article  Google Scholar 

  90. R, C. et al. Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. J. Extracell. Vesicles 9, 1722433 (2020).

    Article  Google Scholar 

  91. Lázaro-Ibáñez, E. et al. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J. Extracell. Vesicles 8, 1656993 (2019).

    Article  Google Scholar 

  92. Lässer, C. et al. Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next-generation sequencing. RNA Biol. 14, 58–72 (2017).

    Article  Google Scholar 

  93. Martin-Jaular, L. et al. Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIV-1 infection. EMBO J. 40, e105492 (2021).

    Article  Google Scholar 

  94. Cantin, R., Diou, J., Bélanger, D., Tremblay, A. M. & Gilbert, C. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J. Immunol. Methods 338, 21–30 (2008).

    Article  Google Scholar 

  95. Liao, Z. et al. Acetylcholinesterase is not a generic marker of extracellular vesicles. J. Extracell. Vesicles 8, 1628592 (2019).

    Article  Google Scholar 

  96. Tauro, B. J. et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol. Cell. Proteom. 12, 587–598 (2013).

    Article  Google Scholar 

  97. Barreiro, K. et al. Urinary extracellular vesicles: assessment of pre-analytical variables and development of a quality control with focus on transcriptomic biomarker research. J. Extracell. Vesicles 10, e12158 (2021).

    Article  Google Scholar 

  98. Gelibter, S. et al. The impact of storage on extracellular vesicles: a systematic study. J. Extracell. Vesicles 11, e12162 (2022).

    Article  Google Scholar 

  99. Görgens, A. et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J. Extracell. Vesicles 11, e12238 (2022).

    Article  Google Scholar 

  100. Trenkenschuh, E. et al. Enhancing the stabilization potential of lyophilization for extracellular vesicles. Adv. Healthc. Mater. 11, e2100538 (2022).

    Article  Google Scholar 

  101. Rupert, D. L. M., Claudio, V., Lässer, C. & Bally, M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim. Biophys. Acta Gen. Subj. 1861, 3164–3179 (2017).

    Article  Google Scholar 

  102. Welsh, J. A. et al. Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration. J. Extracell. Vesicles 9, 1816641 (2020).

    Article  Google Scholar 

  103. Welsh, J. A. et al. MPAPASS software enables stitched multiplex, multidimensional EV repertoire analysis and a standard framework for reporting bead-based assays. Cell Rep. Methods 2, 100136 (2022).

    Article  Google Scholar 

  104. van der Pol, E. et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 12, 1182–1192 (2014).

    Article  Google Scholar 

  105. Vogel, R. et al. Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: who is up to the challenge? J. Extracell. Vesicles 10, e12052 (2021).

    Article  Google Scholar 

  106. Gardiner, C. et al. Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. J. Extracell. Vesicles https://doi.org/10.3402/jev.v3.25361 (2014).

    Article  Google Scholar 

  107. Yuana, Y. et al. Cryo-electron microscopy of extracellular vesicles in fresh plasma. J. Extracell. Vesicles 2, 21494 (2013).

    Article  Google Scholar 

  108. Höög, J. L. & Lötvall, J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J. Extracell. Vesicles 4, 28680 (2015).

    Article  Google Scholar 

  109. Poliakov, A., Spilman, M., Dokland, T., Amling, C. L. & Mobley, J. A. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69, 159–167 (2009).

    Article  Google Scholar 

  110. Broad, K. et al. Unraveling multilayered extracellular vesicles: speculation on cause. J. Extracell. Vesicles 12, e12309 (2023).

    Article  Google Scholar 

  111. Mathivanan, S. et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol. Cell. Proteom. 9, 197–208 (2010).

    Article  Google Scholar 

  112. Nanou, A., Zeune, L. L., Bidard, F.-C., Pierga, J.-Y. & Terstappen, L. W. M. M. HER2 expression on tumor-derived extracellular vesicles and circulating tumor cells in metastatic breast cancer. Breast Cancer Res. 22, 86 (2020).

    Article  Google Scholar 

  113. Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

    Article  Google Scholar 

  114. Wei, D. et al. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 31, 157–177 (2021).

    Article  Google Scholar 

  115. Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    Article  Google Scholar 

  116. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).

    Article  ADS  Google Scholar 

  117. Cai, Q. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126–1129 (2018).

    Article  ADS  Google Scholar 

  118. Rutter, B. D. & Innes, R. W. Growing pains: addressing the pitfalls of plant extracellular vesicle research. New Phytol. 228, 1505–1510 (2020).

    Article  Google Scholar 

  119. Driedonks, T. A. P. et al. Y-RNA subtype ratios in plasma extracellular vesicles are cell type-specific and are candidate biomarkers for inflammatory diseases. J. Extracell. Vesicles 9, 1764213 (2020).

    Article  Google Scholar 

  120. Zhou, X. et al. MitoEVs: a new player in multiple disease pathology and treatment. J. Extracell. Vesicles 12, e12320 (2023).

    Article  Google Scholar 

  121. Barman, B. et al. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Dev. Cell 57, 974–994.e8 (2022).

    Article  Google Scholar 

  122. Arya, S. B., Chen, S., Jordan-Javed, F. & Parent, C. A. Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat. Cell Biol. 24, 1019–1028 (2022).

    Article  Google Scholar 

  123. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    Article  Google Scholar 

  124. Hermann, S. et al. Transcriptomic profiling of cell-free and vesicular microRNAs from matched arterial and venous sera. J. Extracell. Vesicles 8, 1670935 (2019).

    Article  Google Scholar 

  125. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  126. McDermaid, A., Monier, B., Zhao, J., Liu, B. & Ma, Q. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief. Bioinform 20, 2044–2054 (2019).

    Article  Google Scholar 

  127. Tyanova, S. & Cox, J. Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol. Biol. 1711, 133–148 (2018).

    Article  Google Scholar 

  128. Taylor, C. F. et al. The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol. 25, 887–893 (2007).

    Article  Google Scholar 

  129. Li, S. et al. Detecting and correcting systematic variation in large-scale RNA sequencing data. Nat. Biotechnol. 32, 888–895 (2014).

    Article  Google Scholar 

  130. Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    Article  Google Scholar 

  131. Verweij, F. J. et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods https://doi.org/10.1038/s41592-021-01206-3 (2021).

    Article  Google Scholar 

  132. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  Google Scholar 

  133. Wu, A. Y.-T. et al. Multiresolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism. Adv. Sci. 7, 2001467 (2020).

    Article  Google Scholar 

  134. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  ADS  Google Scholar 

  135. Magoling, B. J. A. et al. Membrane protein modification modulates big and small extracellular vesicle biodistribution and tumorigenic potential in breast cancers in vivo. Adv. Mater. 35, e2208966 (2023).

    Article  Google Scholar 

  136. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  Google Scholar 

  137. Kang, M., Jordan, V., Blenkiron, C. & Chamley, L. W. Biodistribution of extracellular vesicles following administration into animals: a systematic review. J. Extracell. Vesicles 10, e12085 (2021).

    Article  Google Scholar 

  138. Gupta, D., Zickler, A. M. & El Andaloussi, S. Dosing extracellular vesicles. Adv. Drug Deliv. Rev. 178, 113961 (2021).

    Article  Google Scholar 

  139. Dhondt, B., Lumen, N., De Wever, O. & Hendrix, A. Preparation of multi-omics grade extracellular vesicles by density-based fractionation of urine. STAR Protoc. 1, 100073 (2020).

    Article  Google Scholar 

  140. Lam, S. M. et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat. Metab. 3, 909–922 (2021).

    Article  Google Scholar 

  141. Lischnig, A., Bergqvist, M., Ochiya, T. & Lässer, C. Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Mol. Cell. Proteom. 21, 100273 (2022).

    Article  Google Scholar 

  142. McKiernan, J. et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2, 882–889 (2016).

    Article  Google Scholar 

  143. McKiernan, J. et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/ml at initial biopsy. Eur. Urol. 74, 731–738 (2018).

    Article  Google Scholar 

  144. Kordelas, L. et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970–973 (2014).

    Article  Google Scholar 

  145. Nassar, W. et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater. Res. 20, 21 (2016).

    Article  Google Scholar 

  146. Guo, S.-C. et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics 7, 81–96 (2017).

    Article  Google Scholar 

  147. Dai, S. et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. J. Am. Soc. Gene Ther. 16, 782–790 (2008).

    Article  ADS  Google Scholar 

  148. Petousis-Harris, H. et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet. 390, 1603–1610 (2017).

    Article  Google Scholar 

  149. Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol. Ther. J. Am. Soc. Gene Ther. 29, 1729–1743 (2021).

    Article  Google Scholar 

  150. Wang, Q. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9, 960 (2018).

    Article  ADS  Google Scholar 

  151. Sedlik, C. et al. Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicle-associated forms. J. Extracell. Vesicles 3, 24646 (2014).

    Article  Google Scholar 

  152. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  Google Scholar 

  153. Meyer, C. et al. Pseudotyping exosomes for enhanced protein delivery in mammalian cells. Int. J. Nanomed. 12, 3153–3170 (2017).

    Article  Google Scholar 

  154. Pi, F. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 13, 82–89 (2018).

    Article  ADS  Google Scholar 

  155. Witwer, K. W. & Wolfram, J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat. Rev. Mater. 6, 103–106 (2021).

    Article  ADS  Google Scholar 

  156. Van Deun, J. et al. Feasibility of mechanical extrusion to coat nanoparticles with extracellular vesicle membranes. Cells 9, 1797 (2020).

    Article  Google Scholar 

  157. Gupta, D., Wiklander, O. P. B., Wood, M. J. A. & El-Andaloussi, S. Biodistribution of therapeutic extracellular vesicles. Extracell. Vesicles Circ. Nucleic Acids 4, 170–190 (2023).

    Article  Google Scholar 

  158. Driedonks, T. et al. Pharmacokinetics and biodistribution of extracellular vesicles administered intravenously and intranasally to Macaca nemestrina. J. Extracell. Biol. 1, e59 (2022).

    Article  Google Scholar 

  159. Mattoli, S. & Schmidt, M. Investigational use of mesenchymal stem/stromal cells and their secretome as add-on therapy in severe respiratory virus infections: challenges and perspectives. Adv. Ther. https://doi.org/10.1007/s12325-023-02507-z (2023).

    Article  Google Scholar 

  160. Shapira, S. et al. A novel platform for attenuating immune hyperactivity using EXO-CD24 in COVID-19 and beyond. EMBO Mol. Med. 14, e15997 (2022).

    Article  Google Scholar 

  161. Kwon, H. H. et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study. Acta Derm. Venereol. 100, adv00310 (2020).

    Article  Google Scholar 

  162. Witwer, K. W. et al. Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles. J. Extracell. Vesicles 10, e12182 (2021).

    Article  Google Scholar 

  163. Welsh, J. A. et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J. Extracell. Vesicles 9, 1713526 (2020).

    Article  Google Scholar 

  164. Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).

    Article  Google Scholar 

  165. Keerthikumar, S. et al. ExoCarta: a web-based compendium of exosomal cargo. J. Mol. Biol. 428, 688–692 (2016).

    Article  Google Scholar 

  166. Kim, D.-K., Lee, J., Simpson, R. J., Lötvall, J. & Gho, Y. S. EVpedia: a community web resource for prokaryotic and eukaryotic extracellular vesicles research. Semin. Cell Dev. Biol. 40, 4–7 (2015).

    Article  Google Scholar 

  167. Lai, H. et al. exoRBase 2.0: an atlas of mRNA, lncRNA and circRNA in extracellular vesicles from human biofluids. Nucleic Acids Res. 50, D118–D128 (2022).

    Article  Google Scholar 

  168. Liu, T. et al. EVmiRNA: a database of miRNA profiling in extracellular vesicles. Nucleic Acids Res. 47, D89–D93 (2019).

    Article  Google Scholar 

  169. Tsering, T. et al. EV-ADD, a database for EV-associated DNA in human liquid biopsy samples. J. Extracell. Vesicles 11, e12270 (2022).

    Article  Google Scholar 

  170. Roux, Q., Van Deun, J., Dedeyne, S. & Hendrix, A. The EV-TRACK summary add-on: integration of experimental information in databases to ensure comprehensive interpretation of biological knowledge on extracellular vesicles. J. Extracell. Vesicles 9, 1699367 (2020).

    Article  Google Scholar 

  171. Pathan, M. et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 47, D516–D519 (2019).

    Article  Google Scholar 

  172. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  Google Scholar 

  173. Craig, R., Cortens, J. P. & Beavis, R. C. Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 3, 1234–1242 (2004).

    Article  Google Scholar 

  174. Choi, M. et al. MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets. Nat. Methods 17, 981–984 (2020).

    Article  Google Scholar 

  175. Deutsch, E. W., Lam, H. & Aebersold, R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 9, 429–434 (2008).

    Article  Google Scholar 

  176. Das, S. et al. The extracellular RNA communication consortium: establishing foundational knowledge and technologies for extracellular RNA research. Cell 177, 231–242 (2019).

    Article  Google Scholar 

  177. Edgar, R., Domrachev, M. & Lash, A. E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  Google Scholar 

  178. Rozowsky, J. et al. exceRpt: a comprehensive analytic platform for extracellular RNA profiling. Cell Syst. 8, 352–357.e3 (2019).

    Article  Google Scholar 

  179. Geeurickx, E. et al. Recombinant extracellular vesicles as biological reference material for method development, data normalization and assessment of (pre-)analytical variables. Nat. Protoc. 16, 603–633 (2021).

    Article  Google Scholar 

  180. van Royen, M. E. et al. The quick reference card ‘Storage of urinary EVs’ — a practical guideline tool for research and clinical laboratories. J. Extracell. Vesicles 12, e12286 (2023).

    Article  Google Scholar 

  181. Veerman, R. E. et al. Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J. Extracell. Vesicles 10, e12128 (2021).

    Article  Google Scholar 

  182. Maroto, R. et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J. Extracell. Vesicles 6, 1359478 (2017).

    Article  Google Scholar 

  183. Bebesi, T. et al. Storage conditions determine the characteristics of red blood cell derived extracellular vesicles. Sci. Rep. 12, 977 (2022).

    Article  ADS  Google Scholar 

  184. Yuan, F., Li, Y.-M. & Wang, Z. Preserving extracellular vesicles for biomedical applications: consideration of storage stability before and after isolation. Drug Deliv. 28, 1501–1509 (2021).

    Article  Google Scholar 

  185. van de Wakker, S. I. et al. Influence of short term storage conditions, concentration methods and excipients on extracellular vesicle recovery and function. Eur. J. Pharm. Biopharm. 170, 59–69 (2022).

    Article  Google Scholar 

  186. Clayton, A. et al. Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. J. Extracell. Vesicles 8, 1647027 (2019).

    Article  Google Scholar 

  187. Karimi, N., Dalirfardouei, R., Dias, T., Lötvall, J. & Lässer, C. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma — contributions of platelet extracellular vesicles in plasma samples. J. Extracell. Vesicles 11, e12213 (2022).

    Article  Google Scholar 

  188. Bettin, B. et al. Removal of platelets from blood plasma to improve the quality of extracellular vesicle research. J. Thromb. Haemost. 20, 2679–2685 (2022).

    Article  Google Scholar 

  189. Dauros Singorenko, P. et al. Isolation of membrane vesicles from prokaryotes: a technical and biological comparison reveals heterogeneity. J. Extracell. Vesicles 6, 1324731 (2017).

    Article  Google Scholar 

  190. Abdel-Rahman, M. A. et al. Efficient homofermentative l-(+)-lactic acid production from xylose by a novel lactic acid bacterium, Enterococcus mundtii QU 25. Appl. Environ. Microbiol. 77, 1892–1895 (2011).

    Article  ADS  Google Scholar 

  191. Van Deun, J. & Hendrix, A., EV-TRACK consortium. Is your article EV-TRACKed? J. Extracell. Vesicles 6, 1379835 (2017).

    Article  Google Scholar 

  192. Mathivanan, S. & Simpson, R. J. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9, 4997–5000 (2009).

    Article  Google Scholar 

  193. Mathivanan, S., Fahner, C. J., Reid, G. E. & Simpson, R. J. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40, D1241–D1244 (2012).

    Article  Google Scholar 

  194. Kim, D.-K. et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J. Extracell. Vesicles 2, 20384 (2013).

    Article  Google Scholar 

  195. Kim, D.-K. et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 31, 933–939 (2015).

    Article  Google Scholar 

  196. Li, S. et al. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 46, D106–D112 (2018).

    Article  Google Scholar 

  197. Martens, L. et al. PRIDE: the proteomics identifications database. Proteomics 5, 3537–3545 (2005).

    Article  Google Scholar 

  198. Jones, P. et al. PRIDE: new developments and new datasets. Nucleic Acids Res. 36, D878–D883 (2008).

    Article  ADS  Google Scholar 

  199. Vizcaíno, J. A. et al. The proteomics identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).

    Article  Google Scholar 

  200. Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016).

    Article  Google Scholar 

  201. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Article  Google Scholar 

  202. Deutsch, E. W. et al. Human plasma PeptideAtlas. Proteomics 5, 3497–3500 (2005).

    Article  Google Scholar 

  203. Desiere, F. et al. The PeptideAtlas project. Nucleic Acids Res. 34, D655–D658 (2006).

    Article  Google Scholar 

  204. Murillo, O. D. et al. exRNA Atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell 177, 463–477.e15 (2019).

    Article  Google Scholar 

  205. Lee, J. A. et al. MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73, 926–930 (2008).

    Article  Google Scholar 

  206. Huggett, J. F. et al. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 59, 892–902 (2013).

    Article  Google Scholar 

  207. dMIQE Group & Huggett, J. F. The digital MIQE guidelines update: minimum information for publication of quantitative digital PCR experiments for 2020. Clin. Chem. 66, 1012–1029 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of the Fund for Scientific Research (FWO), Kom Op Tegen Kanker (KOTK) and a European Research Council (ERC) Consolidator Grant (number 101045156). C.T., K.W.W., C.L. and A.H. gratefully acknowledge interactions with participants of the ISEV workshop “Open, reproducible and standardized EV research” (Ghent, Belgium, 2019) and/or the EMBL/EMBO course “Extracellular vesicles: from biology to biomedical applications”, which contributed to the conceptualization of this Primer.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.M.-J., C.T. and A.H.); Experimentation (L.L. and A.H.); Results (C.P., K.W.W. and A.H.); Applications (L.M.-J., C.T., A.F.H., J.L. and A.H.); Reproducibility and data deposition (C.T., K.W.W., A.F.H. and A.H.); Limitations and optimizations (C.L. and A.H.); Outlook (A.H.); Overview of the Primer (A.H.). All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to An Hendrix.

Ethics declarations

Competing interests

A.H., C.T., A.F.H., and K.W.W. are inventors on patents and/or patent applications related to extracellular vesicle products. A.F.H. has consulted for Vivazome, Beagle Biotechnology and FujiFilm Cellular Dynamics in the field of EVs. C.L. and J.L. are inventors on multiple EV-associated patents for putative clinical utilization. J.L. owns equity in Codiak BioSciences Inc. and Exocure Biosciences Inc. and consults in the field of EVs through Vesiclebio AB. C.L. owns equity in Exocure Bioscience Inc. J.L. has previously consulted for Clara Biotech INC, Nanoview Biosciences INC, and is currently consulting for ExoCoBio INC. Ionis Pharmaceuticals, Yuvan Research, and AgriSciX have sponsored research in the laboratory of K.W.W. K.W.W. is or has been an advisory board member of ShiftBio, Exopharm, NovaDip and ReNeuron; K.W.W. holds stock options with NeuroDex; and consults privately as Kenneth Witwer Consulting. L.L., C.P. and L.M.-J. declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Dolores Di Vizio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EV-ADD: http://evdnadatabase.org

EVmiRNA: http://bioinfo.life.hust.edu.cn/EVmiRNA

EV-TRACK: http://evtrack.org

Excerpt: http://github.gersteinlab.org/exceRpt

Exocarta: http://exocarta.org

ExoRBase: http://exorbase.org

exRNA: https://exrna-atlas.org/

Gene Expression Omnibus: https://ncbi.nlm.nih.gov/geo/

MassIVE: https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp

MIFlowCyt-EV: http://evflowcytometry.org/

MISEV: http://isev.org/misev

PeptideAtlas: http://peptideatlas.org

PRIDE: http://ebi.ac.uk/pride

The Global Proteome Machine Database: https://gpmdb.thegpm.org/

Vesiclepedia: http://microvesicles.org

Glossary

Asymmetrical flow field-flow fractionation

Separation method using two perpendicular flows within a channel consisting of an impermeable and a semipermeable plate to separate particles based on size.

Density cushion ultracentrifugation

Enrichment method in which a single layer of a defined density is established at the bottom of the tube, with a larger source volume loaded on top, to enrich or deplete materials displaying higher versus lower density than the cushion.

Density gradient ultracentrifugation

Separation method in which extracellular vesicles are separated from the source based on their intrinsic buoyancy values using a continuous or discontinuous gradient constructed with media of various densities.

Ectosomes

Subtype of extracellular vesicles secreted by cells through direct plasma membrane budding.

Efficiency

The extent to which a method can recover extracellular vesicles present in the source.

Exosomes

Subtype of extracellular vesicles formed within the endosomal compartment and released upon fusion of these multi-vesicular endosomes with the plasma membrane.

Integrity

The extent to which the conformation, membrane structure and extrafacial surface of the extracellular vesicles are preserved and aggregation is prevented.

Specificity

The extent to which a method can selectively separate extracellular vesicles and eliminate other materials.

Zeta potential

Physical property present on the surface of extracellular vesicles, often used as an indicator of surface charge and colloidal stability, represented as the effective net charge (in units of millivolts, mV).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrix, A., Lippens, L., Pinheiro, C. et al. Extracellular vesicle analysis. Nat Rev Methods Primers 3, 56 (2023). https://doi.org/10.1038/s43586-023-00240-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00240-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing