Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Inductively coupled plasma mass spectrometry

Abstract

Inductively coupled plasma mass spectrometry (ICP-MS) combines plasma chemistry, which produces singly charged elemental ions, with mass spectrometric detection. Unlike other mass spectrometry ionization sources, the ICP can efficiently handle liquid, solid and gaseous samples. Nuclides of metals, metalloids and some non-metals — such as sulfur, phosphorus and halogens — can be ionized, with an ionization degree that depends on the intrinsic properties of the element and sample matrix. As a stand-alone technique, ICP-MS excels in (ultra-)trace multi-elemental analysis and isotopic analysis. Combined with chromatographic separations, molecules are assessed as elemental species, whereas laser ablation-ICP-MS enables direct sampling from solid surfaces, either in the imaging modality or for bulk analysis. Scanning-type mass analysers, such as quadrupole-based mass spectrometers and sector field mass spectrometers, dominate the field. Time-of-flight ICP mass spectrometers are considered the go-to instruments for multi-elemental analysis of microscale and nanoscale particles and single cells as discrete entities in a time-resolved manner. This Primer covers the major analytical applications of ICP-MS — multi-element, single-particle, single-cell, laser ablation, speciation and isotopic analysis — and outlines the underlying measurement strategies, challenges and example applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of ICP mass spectrometers.
Fig. 2: Calibration strategies and limits of detection for ICP-MS analysis.
Fig. 3: Analytical variants of ICP-MS analysis.
Fig. 4: Applications of ICP-MS across research fields.

Similar content being viewed by others

References

  1. Houk, R. S. et al. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal. Chem. 52, 2283–2289 (1980). To our knowledge, this pioneering work reports the first coupling of an argon-based ICP ion source to a quadrupole-based mass spectrometer for trace elemental analysis.

    Article  Google Scholar 

  2. Gray, A. L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 110, 551–556 (1985). To our knowledge, this work was the first to couple a laser ablation unit to an ICP-mass spectrometer for direct solid sample analysis.

    Article  ADS  Google Scholar 

  3. Jakubowski, N., Moens, L. & Vanhaecke, F. Sector field mass spectrometers in ICPMS. Spectrochim. Acta Part. B 53, 1739–1763 (1998).

    Article  ADS  Google Scholar 

  4. Bradshaw, N., Hall, E. F. H. & Sanderson, N. E. Inductively coupled plasma as an ion source for high-resolution mass spectrometry. J. Anal. At. Spectrom. 4, 801–803 (1989). This introduction of high-resolution sector field-based ICP mass spectrometers is a massive advancement as the majority of spectral interferences can be resolved by relying on physical resolution.

    Article  Google Scholar 

  5. Rowan, J. T. & Houk, R. S. Attenuation of polyatomic ion interferences in inductively coupled plasma mass spectrometry by gas-phase collisions. Appl. Spectrosc. 43, 976–980 (1989).

    Article  ADS  Google Scholar 

  6. Walder, A. J. & Freedman, P. A. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J. Anal. At. Spectrom. 7, 571–575 (1992). This work evaluates the analytical figures of merit of multi-collector ICP-MS for high-precision isotopic analysis of uranium and lead in reference materials and demonstrates that similar internal and external precision could be achieved with TIMS, which was considered the gold-standard technique at that time.

    Article  Google Scholar 

  7. Myers, D. P. & Hieftje, G. M. Preliminary design considerations and characteristics of an inductively coupled plasma-time-of-flight mass spectrometer. Microchem. J. 48, 259–277 (1993). To our knowledge, this pioneering work describes the fundamental principles of the first time of flight-based ICP-mass spectrometer allowing fast quasi-simultaneous monitoring of the entire elemental mass range.

    Article  Google Scholar 

  8. Myers, D. P., Li, G., Yang, P. & Hieftje, G. M. An inductively coupled plasma-time-of-flight mass spectrometer for elemental analysis. Part I: optimization and characteristics. J. Am. Soc. Mass. Spectrom. 5, 1008–1016 (1994).

    Article  Google Scholar 

  9. Date, A. R. & Gray, A. L. Plasma source mass spectrometry using an inductively coupled plasma and a high resolution quadrupole mass filter. Analyst 106, 1255–1267 (1981).

    Article  ADS  Google Scholar 

  10. Houk, R. S., Fassel, V. A. & Svec, H. J. in Dynamic Mass Spectrometry (eds. Price, D. & Todd, J. F. J.) 234–251 (Heyden, 1981).

  11. Gray, A. L. It all depends on the source. Proc. Soc. Anal. Chem. 11, 182–183 (1974).

    Article  Google Scholar 

  12. Montaser, A. Inductively Coupled Plasma Mass Spectrometry (Wiley, 1998).

  13. Houk, R. S. Mass spectrometry of inductively coupled plasmas. Anal. Chem. 58, 97A–105A (1986).

    Article  Google Scholar 

  14. Nelms, S. M. Inductively Coupled Plasma Mass Spectrometry Handbook (Wiley, 2005).

  15. Hill, S. J. Inductively Coupled Plasma Spectrometry and its Applications (Wiley-Blackwell, 2007).

  16. Thomas, R. Practical Guide to ICP-MS (CRC, 2013).

  17. Sharp, B. L. Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry. A review. Part 1. Nebulisers. J. Anal. At. Spectrom. 3, 613–652 (1988).

    Article  Google Scholar 

  18. Sharp, B. L. Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry. A review. Part 2. Spray chambers. J. Anal. At. Spectrom. 3, 939–963 (1988).

    Article  Google Scholar 

  19. Wilson, D. A., Vickers, G. H. & Hieftje, G. M. Ionization temperatures in the inductively coupled plasma determined by mass spectrometry. Appl. Spectrosc. 41, 875–880 (1987).

    Article  ADS  Google Scholar 

  20. Douglas, D. J. & French, J. B. Gas dynamics of the inductively coupled plasma mass spectrometry interface. J. Anal. At. Spectrom. 3, 743–747 (1988).

    Article  Google Scholar 

  21. Niu, H. & Houk, R. S. Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 51, 779–815 (1996).

    Article  ADS  Google Scholar 

  22. Vanhaecke, F. & Degryse, P. Isotopic Analysis: Fundamentals and Applications Using ICP-MS (Wiley-VCH Verlag, 2012).

  23. Seah, M. P. Channel electron multipliers: quantitative intensity measurement — efficiency, gain, linearity and bias effects. J. Electron. Spectros. Relat. Phenom. 50, 137–157 (1990).

    Article  Google Scholar 

  24. Restek. Electron multipliers for mass spectrometry. Restek https://www.restek.com/globalassets/pdfs/literature/gnbr1000a-unv.pdf (2014).

  25. Tan, S. H. & Horlick, G. Background spectral features in inductively coupled plasma/mass spectrometry. Appl. Spectrosc. 40, 445–460 (1986).

    Article  ADS  Google Scholar 

  26. Vaughan, M. A. & Horlick, G. Oxide, hydroxide, and doubly charged analyte species in inductively coupled plasma/mass spectrometry. Appl. Spectrosc. 40, 434–445 (1986).

    Article  ADS  Google Scholar 

  27. Lum, T. S. & Sze-Yin Leung, K. Strategies to overcome spectral interference in ICP-MS detection. J. Anal. At. Spectrom. 31, 1078–1088 (2016).

    Article  Google Scholar 

  28. Jakubowski, N., Prohaska, T., Rottmann, L. & Vanhaecke, F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry: Part I. Tutorial: fundamentals and instrumentation. J. Anal. At. Spectrom. 26, 693–726 (2011).

    Article  Google Scholar 

  29. Tanner, S. D., Baranov, V. I. & Bandura, D. R. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta Part. B 57, 1361–1452 (2002). A major breakthrough in quadrupole-based ICP-MS is the introduction of CRC technology and this review article gives a highly comprehensive overview of the fundamentals of ion collision and reaction, including thermochemistry, energy transfer and reaction kinetics.

    Article  ADS  Google Scholar 

  30. Yamada, N. Kinetic energy discrimination in collision/reaction cell ICP-MS: theoretical review of principles and limitations. Spectrochim. Acta — Part B At. Spectrosc. 110, 31–44 (2015).

    Article  ADS  Google Scholar 

  31. Balcaen, L., Bolea-Fernandez, E., Resano, M. & Vanhaecke, F. Inductively coupled plasma–tandem mass spectrometry (ICP-MS/MS): a powerful and universal tool for the interference-free determination of (ultra)trace elements — a tutorial review. Anal. Chim. Acta 894, 7–19 (2015).

    Article  Google Scholar 

  32. Bolea-Fernandez, E., Balcaen, L., Resano, M. & Vanhaecke, F. Overcoming spectral overlap via inductively coupled plasma–tandem mass spectrometry (ICP-MS/MS). A tutorial review. J. Anal. At. Spectrom. 32, 1660–1679 (2017).

    Article  Google Scholar 

  33. Walder, A. J., Platzner, I. & Freedman, P. A. Isotope ratio measurement of lead, neodymium and neodymium–samarium mixtures, hafnium and hafnium–lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer. J. Anal. At. Spectrom. 8, 19–23 (1993).

    Article  Google Scholar 

  34. Vanhaecke, F., Balcaen, L. & Malinovsky, D. Use of single-collector and multi-collector ICP-mass spectrometry for isotopic analysis. J. Anal. At. Spectrom. 24, 863–886 (2009).

    Article  Google Scholar 

  35. Douthitt, C. B. The evolution and applications of multicollector ICPMS (MC-ICPMS). Anal. Bioanal. Chem. 390, 437–440 (2008).

    Article  Google Scholar 

  36. Penanes, P. A. et al. Isotopic measurements using ICP-MS: a tutorial review. J. Anal. At. Spectrom. 37, 701–726 (2022).

    Article  Google Scholar 

  37. Borovinskaya, O., Hattendorf, B., Tanner, M., Gschwind, S. & Günther, D. A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J. Anal. At. Spectrom. 28, 226–233 (2013).

    Article  Google Scholar 

  38. Beauchemin, D. Sample Introduction Systems in ICPMS and ICPOES (Elsevier, 2020).

  39. Koch, J. & Günther, D. Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry. Appl. Spectrosc. 65, 155–162 (2011).

    Article  ADS  Google Scholar 

  40. Becker, J. S. et al. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass. Spectrom. Rev. 29, 156–175 (2010).

    Article  ADS  Google Scholar 

  41. Wang, H. A. O. et al. Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 85, 10107–10116 (2013).

    Article  Google Scholar 

  42. Van Malderen, S. J. M., van Elteren, J. T. & Vanhaecke, F. Development of a fast laser ablation-inductively coupled plasma-mass spectrometry cell for sub-μm scanning of layered materials. J. Anal. At. Spectrom. 30, 119–125 (2015).

    Article  Google Scholar 

  43. Van Malderen, S. J. M., Van Acker, T. & Vanhaecke, F. Sub-micrometer nanosecond LA-ICP-MS imaging at pixel acquisition rates above 250 Hz via a low-dispersion setup. Anal. Chem. 92, 5756–5764 (2020).

    Article  Google Scholar 

  44. Thompson, J. J. & Houk, R. S. Inductively coupled plasma mass spectrometric detection for multielement flow injection analysis and elemental speciation by reversed-phase liquid chromatography. Anal. Chem. 58, 2541–2548 (1986).

    Article  Google Scholar 

  45. Montes-Bayón, M., DeNicola, K. & Caruso, J. A. Liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 1000, 457–476 (2003).

    Article  Google Scholar 

  46. Rosen, A. L. & Hieftje, G. M. Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis: applications and instrumentation. Spectrochim. Acta — Part. B At. Spectrosc. 59, 135–146 (2004).

    Article  ADS  Google Scholar 

  47. Popp, M., Hann, S. & Koellensperger, G. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry — a review. Anal. Chim. Acta 668, 114–129 (2010).

    Article  Google Scholar 

  48. Chong, N. S. & Houk, R. S. Inductively coupled plasma-mass spectrometry for elemental analysis and isotope ratio determinations in individual organic compounds separated by gas chromatography. Appl. Spectrosc. 41, 66–74 (1987).

    Article  ADS  Google Scholar 

  49. Bouyssiere, B., Szpunar, J. & Lobinski, R. Gas chromatography with inductively coupled plasma mass spectrometric detection in speciation analysis. Spectrochim. Acta — Part B At. Spectrosc. 57, 805–828 (2002).

    Article  ADS  Google Scholar 

  50. Meermann, B. & Nischwitz, V. ICP-MS for the analysis at the nanoscale — a tutorial review. J. Anal. At. Spectrom. 33, 1432–1468 (2018).

    Article  Google Scholar 

  51. Kannamkumarath, S. S., Wrobel, K., Wrobel, K., B’Hymer, C. & Caruso, J. A. Capillary electrophoresis–inductively coupled plasma-mass spectrometry: an attractive complementary technique for elemental speciation analysis. J. Chromatogr. A 975, 245–266 (2002).

    Article  Google Scholar 

  52. Michalke, B. Capillary electrophoresis-inductively coupled plasma-mass spectrometry: a report on technical principles and problem solutions, potential, and limitations of this technology as well as on examples of application. Electrophoresis 26, 1584–1597 (2005).

    Article  Google Scholar 

  53. Álvarez-Llamas, G., del R. Fernández de laCampa, M. & Sanz-Medel, A. ICP-MS for specific detection in capillary electrophoresis. Trends Analyt. Chem. 24, 28–36 (2005).

    Article  Google Scholar 

  54. Meermann, B. Field-flow fractionation coupled to ICP–MS: separation at the nanoscale, previous and recent application trends. Anal. Bioanal. Chem. 407, 2665–2674 (2015).

    Article  Google Scholar 

  55. Sussulini, A. & Becker, J. S. Combination of PAGE and LA-ICP-MS as an analytical workflow in metallomics: state of the art, new quantification strategies, advantages and limitations. Metallomics 3, 1271–1279 (2011).

    Article  Google Scholar 

  56. Alves, L. C., Wiederin, D. R. & Houk, R. S. Reduction of polyatomic ion interferences in inductively coupled plasma mass spectrometry by cryogenic desolvation. Anal. Chem. 64, 1164–1169 (1992).

    Article  Google Scholar 

  57. Minnich, M. G. & Houk, R. S. Comparison of cryogenic and membrane desolvation for attenuation of oxide, hydride and hydroxide ions and ions containing chlorine in inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 13, 167–174 (1998).

    Article  Google Scholar 

  58. Ribeiro, A. S., Vieira, M. A. & Curtius, A. J. Determination of hydride forming elements (As, Sb, Se, Sn) and Hg in environmental reference materials as acid slurries by on-line hydride generation inductively coupled plasma mass spectrometry. Spectrochim. Acta — Part B At. Spectrosc. 59, 243–253 (2004).

    Article  ADS  Google Scholar 

  59. Hassler, D. R., Peucker-Ehrenbrink, B. & Ravizza, G. E. Rapid determination of Os isotopic composition by sparging OsO4 into a magnetic-sector ICP-MS. Chem. Geol. 166, 1–14 (2000).

    Article  ADS  Google Scholar 

  60. Foucher, D. & Hintelmann, H. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 384, 1470–1478 (2006).

    Article  Google Scholar 

  61. Resano, M. et al. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Chem. Sci. 13, 4436–4473 (2022).

    Article  Google Scholar 

  62. Montaño, M. D., Olesik, J. W., Barber, A. G., Challis, K. & Ranville, J. F. Single particle ICP-MS: advances toward routine analysis of nanomaterials. Anal. Bioanal. Chem. 408, 5053–5074 (2016).

    Article  Google Scholar 

  63. Theiner, S., Loehr, K., Koellensperger, G., Mueller, L. & Jakubowski, N. Single-cell analysis by use of ICP-MS. J. Anal. At. Spectrom. 35, 1784–1813 (2020).

    Article  Google Scholar 

  64. Liu, T., Bolea-Fernandez, E., Mangodt, C., De Wever, O. & Vanhaecke, F. Single-event tandem ICP-mass spectrometry for the quantification of chemotherapeutic drug-derived Pt and endogenous elements in individual human cells. Anal. Chim. Acta 1077, 95–106 (2021).

    Google Scholar 

  65. Bolea-Fernandez, E. et al. On the effect of using collision/reaction cell (CRC) technology in single-particle ICP-mass spectrometry (SP-ICP-MS). Anal. Chim. Acta 1077, 95–106 (2019).

    Article  Google Scholar 

  66. Praetorius, A. et al. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci. Nano 4, 307–314 (2017).

    Article  Google Scholar 

  67. Harycki, S. & Gundlach-Graham, A. Characterization of a high-sensitivity ICP-TOFMS instrument for microdroplet, nanoparticle, and microplastic analyses. J. Anal. At. Spectrom. 38, 111–120 (2023).

    Article  Google Scholar 

  68. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  Google Scholar 

  69. Tanner, S. D., Baranov, V. I., Ornatsky, O. I., Bandura, D. R. & George, T. C. An introduction to mass cytometry: fundamentals and applications. Cancer Immunol. Immunother. 62, 955–965 (2013).

    Article  Google Scholar 

  70. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  Google Scholar 

  71. Tanner, S. D. et al. Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl. Chem. 80, 2627–2641 (2008). This work forms the basis of mass cytometry, multiplexed proteomic single-cell ICP-TOF-MS, enabled by the use of antibodies tagged with isotopically mass labels.

    Article  Google Scholar 

  72. Bolea-Fernandez, E., Rua-Ibarz, A., Velimirovic, M., Tirez, K. & Vanhaecke, F. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode. J. Anal. At. Spectrom. 35, 455–460 (2020).

    Article  Google Scholar 

  73. Velimirovic, M. et al. Mass spectrometry as a powerful analytical tool for the characterization of indoor airborne microplastics and nanoplastics. J. Anal. At. Spectrom. 36, 695–705 (2021).

    Article  Google Scholar 

  74. Pozebon, D., Scheffler, G. L. & Dressler, V. L. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review. J. Anal. At. Spectrom. 32, 890–919 (2017).

    Article  Google Scholar 

  75. Chew, D., Drost, K., Marsh, J. H. & Petrus, J. A. LA-ICP-MS imaging in the geosciences and its applications to geochronology. Chem. Geol. 559, 119917 (2021).

    Article  ADS  Google Scholar 

  76. Almirall, J. R. & Trejos, T. Applications of LA-ICP-MS to forensic science. Elements 12, 335–340 (2016).

    Article  Google Scholar 

  77. Tanner, M. & Günther, D. In torch laser ablation sampling for inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 20, 987–989 (2005).

    Article  Google Scholar 

  78. Van Malderen, S. J. M., Managh, A. J., Sharp, B. L. & Vanhaecke, F. Recent developments in the design of rapid response cells for laser ablation-inductively coupled plasma-mass spectrometry and their impact on bioimaging applications. J. Anal. At. Spectrom. 31, 423–439 (2016).

    Article  Google Scholar 

  79. Van Acker, T. et al. Analytical figures of merit of a low-dispersion aerosol transport system for high-throughput LA-ICP-MS analysis. J. Anal. At. Spectrom. 36, 1201–1209 (2021).

    Article  Google Scholar 

  80. Douglas, D. N., Managh, A. J., Reid, H. J. & Sharp, B. L. High-speed, integrated ablation cell and dual concentric injector plasma torch for laser ablation-inductively coupled plasma mass spectrometry. Anal. Chem. 87, 11285–11294 (2015).

    Article  Google Scholar 

  81. Limbeck, A. et al. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal. Bioanal. Chem. 407, 6593–6617 (2015).

    Article  Google Scholar 

  82. Gundlach-Graham, A. et al. High-speed, high-resolution, multielemental laser ablation-inductively coupled plasma-time-of-flight mass spectrometry imaging: part I. Instrumentation and two-dimensional imaging of geological samples. Anal. Chem. 87, 8250–8258 (2015).

    Article  Google Scholar 

  83. Burger, M. et al. High-speed, high-resolution, multielemental LA-ICP-TOFMS imaging: part II. Critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples. Anal. Chem. 87, 8259–8267 (2015).

    Article  Google Scholar 

  84. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014). This work establishes the concept of imaging mass cytometry; by coupling immunohistochemical methods with high-resolution LA-ICP-TOF-MS mapping, spatially resolved analysis of 32 proteins is enabled at subcellular resolution.

    Article  Google Scholar 

  85. Hare, D. J. et al. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal. Chem. 84, 3990–3997 (2012).

    Article  Google Scholar 

  86. Fernández, S. D., Sugishama, N., Encinar, J. R. & Sanz-Medel, A. Triple quad ICPMS (ICPQQQ) as a new tool for absolute quantitative proteomics and phosphoproteomics. Anal. Chem. 84, 5851–5857 (2012).

    Article  Google Scholar 

  87. Sanz-Medel, A., Montes-Bayón, M., De La Campa, M. D. R. F., Encinar, J. R. & Bettmer, J. Elemental mass spectrometry for quantitative proteomics. Anal. Bioanal. Chem. 390, 3–16 (2008).

    Article  Google Scholar 

  88. Łobiński, R., Schaumlöffel, D. & Szpunar, J. Mass spectrometry in bioinorganic analytical chemistry. Mass. Spectrom. Rev. 25, 255–289 (2006).

    Article  ADS  Google Scholar 

  89. Heumann, K. G. Isotope-dilution ICP-MS for trace element determination and speciation: from a reference method to a routine method? Anal. Bioanal. Chem. 378, 318–329 (2004).

    Article  Google Scholar 

  90. Alonso, J. & Gonzalez, P. Isotope Dilution Mass Spectrometry (Royal Society of Chemistry, 2019).

  91. Stürup, S., Hansen, H. R. & Gammelgaard, B. Application of enriched stable isotopes as tracers in biological systems: a critical review. Anal. Bioanal. Chem. 390, 541–554 (2008).

    Article  Google Scholar 

  92. Walczyk, T. The potential of inorganic mass spectrometry in mineral and trace element nutrition research. Fresenius. J. Anal. Chem. 370, 444–453 (2001).

    Article  Google Scholar 

  93. Komárek, M., Ettler, V., Chrastný, V. & Mihaljevič, M. Lead isotopes in environmental sciences: a review. Environ. Int. 34, 562–577 (2008).

    Article  Google Scholar 

  94. Balcaen, L., Moens, L. & Vanhaecke, F. Determination of isotope ratios of metals (and metalloids) by means of inductively coupled plasma-mass spectrometry for provenancing purposes — a review. Spectrochim. Acta — Part B At. Spectrosc. 65, 769–786 (2010).

    Article  ADS  Google Scholar 

  95. Halliday, A. N. et al. Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim. Cosmochim. Acta 62, 919–940 (1998).

    Article  ADS  Google Scholar 

  96. Johnson, C. M., Beard, B. L. & Albarède, F. Geochemistry of Non-Traditional Stable Isotopes (De Gruyter, 2004).

  97. Irrgeher, J. & Prohaska, T. Application of non-traditional stable isotopes in analytical ecogeochemistry assessed by MC ICP-MS — a critical review. Anal. Bioanal. Chem. 408, 369–385 (2016).

    Article  Google Scholar 

  98. Tsui, M. T. K., Blum, J. D. & Kwon, S. Y. Review of stable mercury isotopes in ecology and biogeochemistry. Sci. Total. Environ. 716, 135386 (2020).

    Article  ADS  Google Scholar 

  99. Costas-Rodríguez, M., Delanghe, J. & Vanhaecke, F. High-precision isotopic analysis of essential mineral elements in biomedicine: natural isotope ratio variations as potential diagnostic and/or prognostic markers. TrAC–Trends Anal. Chem. 76, 182–193 (2016).

    Article  Google Scholar 

  100. Vanhaecke, F. & Costas‐Rodríguez, M. High‐precision isotopic analysis of essential mineral elements: capabilities as a diagnostic/prognostic tool. View 2, 20200094 (2021).

    Article  Google Scholar 

  101. Bulska, E. & Wagner, B. Quantitative aspects of inductively coupled plasma mass spectrometry. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150369 (2016).

    ADS  Google Scholar 

  102. Danzer, K. & Currie, L. A. Guideline for calibration in analytical chemistry — part 1. Fundamentals and single component calibration. Pure Appl. Chem. 70, 993–1014 (1998).

    Article  Google Scholar 

  103. Schlemmer, G., Balcaen, L. & Hinds, M. W. Elemental Analysis: An Introduction to Modern Spectrometric Techniques (De Gruyter, 2019).

  104. Mermet, J. M. & Granier, G. Potential of accuracy profile for method validation in inductively coupled plasma spectrochemistry. Spectrochim. Acta — Part B At. Spectrosc. 76, 214–220 (2012).

    Article  ADS  Google Scholar 

  105. Mermet, J. M., Granier, G. & Fichet, P. A logical way through the limits of quantitation in inductively coupled plasma spectrochemistry. Spectrochim. Acta — Part B At. Spectrosc. 76, 221–225 (2012).

    Article  ADS  Google Scholar 

  106. Carré, M., Excoffier, S. & Mermet, J. M. A study of the relation between the limit of detection and the limit of quantitation in inductively coupled plasma spectrochemistry. Spectrochim. Acta — Part B At. Spectrosc. 52, 2043–2049 (1997).

    Article  ADS  Google Scholar 

  107. Engström, E. et al. Effects of sample preparation and calibration strategy on accuracy and precision in the multi-elemental analysis of soil by sector-field ICP-MS. J. Anal. At. Spectrom. 19, 858–866 (2004).

    Article  Google Scholar 

  108. Vanhaecke, F., Vanhoe, H., Dams, R. & Vandecasteele, C. The use of internal standards in ICP-MS. Talanta 39, 737–742 (1992).

    Article  Google Scholar 

  109. Agatemor, C. & Beauchemin, D. Matrix effects in inductively coupled plasma mass spectrometry: a review. Anal. Chim. Acta 706, 66–83 (2011).

    Article  Google Scholar 

  110. García-Poyo, M. C., Grindlay, G., Gras, L., De Loos-Vollebregt, M. T. C. & Mora, J. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry. Spectrochim. Acta — Part B At. Spectrosc. 105, 71–76 (2015).

    Article  ADS  Google Scholar 

  111. Agatemor, C. & Beauchemin, D. Towards the reduction of matrix effects in inductively coupled plasma mass spectrometry without compromising detection limits: the use of argon–nitrogen mixed-gas plasma. Spectrochim. Acta — Part B At. Spectrosc. 66, 1–11 (2011).

    Article  ADS  Google Scholar 

  112. Rodríguez-González, P., Marchante-Gayón, J. M., García Alonso, J. I. & Sanz-Medel, A. Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim. Acta — Part B At. Spectrosc. 60, 151–207 (2005).

    Article  ADS  Google Scholar 

  113. Krzciuk, K. Intelligent analysis of samples by semiquantitative inductively coupled plasma-mass spectrometry (ICP-MS) technique: a review. Crit. Rev. Anal. Chem. 46, 284–290 (2016).

    Article  Google Scholar 

  114. Chen, H., Dabek-Zlotorzynska, E., Rasmussen, P. E., Hassan, N. & Lanouette, M. Evaluation of semiquantitative analysis mode in ICP-MS. Talanta 74, 1547–1555 (2008).

    Article  Google Scholar 

  115. Cornelis, R., Caruso, J. A., Crews, H. & Heumann, K. G. Handbook of Elemental Speciation: Techniques and Methodology (Wiley, 2003).

  116. Degueldre, C. & Favarger, P. Y. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf. A Physicochem. Eng. Asp 217, 137–142 (2003). To our knowledge, this work is the first to report on operating an ICP-mass spectrometer in the fast transient single-particle mode to enable the detection of individual particles in colloids, and nowadays this operation mode is used for high-end applications, for example analysis of engineered metallic nanoparticles, single cells, microplastics and nanoplastics.

    Article  Google Scholar 

  117. Degueldre, C., Favarger, P. Y. & Wold, S. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal. Chim. Acta 555, 263–268 (2006).

    Article  Google Scholar 

  118. Laborda, F., Jiménez-Lamana, J., Bolea, E. & Castillo, J. R. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J. Anal. At. Spectrom. 28, 1220–1232 (2013).

    Article  Google Scholar 

  119. Pace, H. E. et al. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 83, 9361–9369 (2011).

    Article  Google Scholar 

  120. Pace, H. E. et al. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 46, 12272–12280 (2012).

    Article  ADS  Google Scholar 

  121. Hendriks, L., Gundlach-Graham, A., Hattendorf, B., Gunther, D. & Günther, D. Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions. J. Anal. At. Spectrom. 32, 548–561 (2017).

    Article  Google Scholar 

  122. Gundlach-Graham, A. in Analysis and Characterisation of Metal-Based Nanomaterials Vol. 93 (eds Milačič, R., Ščančar, J., Goenaga-Infante, H. & Vidmar, J.) 69–101 (Elsevier, 2021).

  123. Bendall, S. C., Nolan, G. P., Roederer, M. & Chattopadhyay, P. K. A deep profiler’s guide to cytometry. Trends Immunol 33, 323–332 (2012).

    Article  Google Scholar 

  124. Stern, A. D., Rahman, A. H. & Birtwistle, M. R. Cell size assays for mass cytometry. Cytom. Part. A 91, 14–24 (2017).

    Article  Google Scholar 

  125. Jackson, S. E. in Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.) 169–188 (Mineralogical Association of Canada, 2008).

  126. Van Malderen, S. J. M. et al. Three-dimensional reconstruction of the tissue-specific multielemental distribution within Ceriodaphnia dubia via multimodal registration using laser ablation ICP-mass spectrometry and X-ray spectroscopic techniques. Anal. Chem. 89, 4161–4168 (2017).

    Article  Google Scholar 

  127. Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2022).

    Article  Google Scholar 

  128. Van Acker, T. et al. High-resolution imaging and single-cell analysis via laser ablation-inductively coupled plasma-mass spectrometry for the determination of membranous receptor expression levels in breast cancer cell lines using receptor-specific hybrid tracers. Anal. Chim. Acta 1074, 43–53 (2019).

    Article  Google Scholar 

  129. Valencia, E. et al. Imaging of proteins in biological tissues by fluorescence microscopy and laser ablation-ICP-MS using natural and isotopically-enriched silver nanoclusters. J. Anal. At. Spectrom. 35, 1868–1879 (2020).

    Article  Google Scholar 

  130. Bishop, D. P., Cole, N., Zhang, T., Doble, P. A. & Hare, D. J. A guide to integrating immunohistochemistry and chemical imaging. Chem. Soc. Rev. 47, 3770–3787 (2018).

    Article  Google Scholar 

  131. Pisonero, J. et al. Critical evaluation of fast and highly resolved elemental distribution in single cells using LA-ICP-SFMS. J. Anal. At. Spectrom. 34, 655–663 (2019).

    Article  Google Scholar 

  132. Cruz-Alonso, M. et al. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags. Microchim. Acta 185, 64 (2018).

    Article  Google Scholar 

  133. Seuma, J. et al. Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. Proteomics 8, 3775–3784 (2008).

    Article  Google Scholar 

  134. Lores-Padín, A. et al. Gold nanoclusters as elemental label for the sequential quantification of apolipoprotein E and metallothionein 2A in individual human cells of the retinal pigment epithelium using single cell-ICP-MS. Anal. Chim. Acta 1203, 339701 (2022).

    Article  Google Scholar 

  135. Rehkämper, M., Schönbächler, M. & Stirling, C. H. Multiple collector ICP-MS: introduction to instrumentation, measurement techniques and analytical capabilities. Geostand. Newsl. 25, 23–40 (2001).

    Article  Google Scholar 

  136. Woodhead, J. A simple method for obtaining highly accurate Pb isotope data by MC-ICP-MS. J. Anal. At. Spectrom. 17, 1381–1385 (2002).

    Article  Google Scholar 

  137. Baxter, D. C., Rodushkin, I., Engström, E. & Malinovsky, D. Revised exponential model for mass bias correction using an internal standard for isotope abundance ratio measurements by multi-collector inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 21, 427–430 (2006).

    Article  Google Scholar 

  138. Yang, L. Accurate and precise determination of isotopic ratios by MC‐ICP‐MS: a review. Mass. Spectrom. Rev. 28, 990–1011 (2009).

    Article  ADS  Google Scholar 

  139. Klein, O., Zimmermann, T. & Pröfrock, D. Improved determination of technologically critical elements in sediment digests by ICP-MS/MS using N2O as a reaction gas. J. Anal. At. Spectrom. 36, 1524–1532 (2021).

    Article  Google Scholar 

  140. Swain, B., Akcil, A. & Lee, J. C. Red mud valorization an industrial waste circular economy challenge; review over processes and their chemistry. Crit. Rev. Environ. Sci. Technol 52, 520–570 (2022).

    Article  Google Scholar 

  141. Romero-Freire, A., Santos-Echeandía, J., Neira, P. & Cobelo-García, A. Less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) in the marine environment: review on their concentrations in water and organisms. Front. Mar. Sci. 6, 1–9 (2019).

    Article  Google Scholar 

  142. Black, E. E. et al. Ironing out Fe residence time in the dynamic upper ocean. Global Biogeochem. Cycles 34, e2020GB006592 (2020).

    Article  ADS  Google Scholar 

  143. Fischer, L., Smith, G., Hann, S. & Bruland, K. W. Ultra-trace analysis of silver and platinum in seawater by ICP-SFMS after off-line matrix separation and pre-concentration. Mar. Chem. 199, 44–52 (2018).

    Article  Google Scholar 

  144. Lagerström, M. E. et al. Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: application to the GEOTRACES program. Mar. Chem. 155, 71–80 (2013).

    Article  Google Scholar 

  145. Field, M. P., LaVigne, M., Murphy, K. R., Ruiz, G. M. & Sherrell, R. M. Direct determination of P, V, Mn, As, Mo, Ba and U in seawater by SF-ICP-MS. J. Anal. At. Spectrom. 22, 1145 (2007).

    Article  Google Scholar 

  146. Buck, C. S., Aguilar-Islas, A., Marsay, C., Kadko, D. & Landing, W. M. Trace element concentrations, elemental ratios, and enrichment factors observed in aerosol samples collected during the US GEOTRACES eastern Pacific Ocean transect (GP16). Chem. Geol. 511, 212–224 (2019).

    Article  ADS  Google Scholar 

  147. Konz, T. et al. ICP-MS/MS-based ionomics: a validated methodology to investigate the biological variability of the human ionome. J. Proteome Res. 16, 2080–2090 (2017).

    Article  Google Scholar 

  148. Konz, T. et al. Multielemental analysis of low-volume samples reveals cancer-specific profile in serum and sorted immune cells. Anal. Chem. 92, 8750–8758 (2020).

    Article  Google Scholar 

  149. Mazarakioti, E. C. et al. Inductively coupled plasma-mass spectrometry (ICP-MS), a useful tool in authenticity of agricultural products’ and foods’ origin. Foods (Basel, Switzerland) 11, 3705 (2022).

    Google Scholar 

  150. Šelih, V. S., Šala, M. & Drgan, V. Multi-element analysis of wines by ICP-MS and ICP-OES and their classification according to geographical origin in Slovenia. Food Chem. 153, 414–423 (2014).

    Article  Google Scholar 

  151. Li, F., Armstrong, D. W. & Houk, R. S. Behavior of bacteria in the inductively coupled plasma: atomization and production of atomic ions for mass spectrometry. Anal. Chem. 77, 1407–1413 (2005). To our knowledge, this work reports the first application of SC-ICP-MS upon introducing a suspension of bacterial cells into the ICP.

    Article  Google Scholar 

  152. Haraguchi, H., Ishii, A., Hasegawa, T., Matsuura, H. & Umemura, T. Metallomics study on all-elements analysis of salmon egg cells and fractionation analysis of metals in cell cytoplasm. Pure Appl. Chem. 80, 2595–2608 (2008).

    Article  Google Scholar 

  153. da Silva, A. B. S. & Arruda, M. A. Z. Single-cell ICP-MS to address the role of trace elements at a cellular level. J. Trace Elem. Med. Biol. 75, 127086 (2023).

    Article  Google Scholar 

  154. Corte Rodríguez, M., Álvarez-Fernández García, R., Blanco, E., Bettmer, J. & Montes-Bayón, M. Quantitative evaluation of cisplatin uptake in sensitive and resistant individual cells by single-cell ICP-MS (SC-ICP-MS). Anal. Chem. 89, 11491–11497 (2017).

    Article  Google Scholar 

  155. Zhou, Y., Li, H. & Sun, H. Cytotoxicity of arsenic trioxide in single leukemia cells by time-resolved ICP-MS together with lanthanide tags. Chem. Commun. 53, 2970–2973 (2017).

    Article  ADS  Google Scholar 

  156. Shen, X. et al. Evaluating the treatment effectiveness of copper-based algaecides on toxic algae Microcystis aeruginosa using single cell-inductively coupled plasma-mass spectrometry. Anal. Bioanal. Chem. 411, 5531–5543 (2019).

    Article  Google Scholar 

  157. Managh, A. J. et al. Single cell tracking of gadolinium labeled CD4+ T cells by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 85, 10627–10634 (2013).

    Article  Google Scholar 

  158. Simoni, Y., Chng, M. H. Y., Li, S., Fehlings, M. & Newell, E. W. Mass cytometry: a powerful tool for dissecting the immune landscape. Curr. Opin. Immunol. 51, 187–196 (2018).

    Article  Google Scholar 

  159. Di Palma, S. & Bodenmiller, B. Unraveling cell populations in tumors by single-cell mass cytometry. Curr. Opin. Biotechnol. 31, 122–129 (2015).

    Article  Google Scholar 

  160. Wagner, J. et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177, 1330–1345.e18 (2019).

    Article  Google Scholar 

  161. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e18 (2017).

    Article  Google Scholar 

  162. Benn, T. M. & Westerhoff, P. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42, 7025–7026 (2008).

    Article  ADS  Google Scholar 

  163. Szakal, C. et al. Measurement of nanomaterials in foods: integrative consideration of challenges and future prospects. ACS Nano 8, 3128–3135 (2014).

    Article  Google Scholar 

  164. Farkas, J. et al. Characterization of the effluent from a nanosilver producing washing machine. Environ. Int. 37, 1057–1062 (2011).

    Article  Google Scholar 

  165. Mitrano, D. M. et al. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem. 31, 115–121 (2012).

    Article  Google Scholar 

  166. Tuoriniemi, J., Cornelis, G. & Hassellöv, M. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal. Chem. 84, 3965–3972 (2012).

    Article  Google Scholar 

  167. Laborda, F., Trujillo, C. & Lobinski, R. Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope. Talanta 221, 121486 (2021).

    Article  Google Scholar 

  168. Jackson, S. E., Longerich, H. P., Dunning, G. R. & Fryer, B. J. The application of laser-ablation microprobe–inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can. Mineral. 30, 1049–1064 (1992).

    Google Scholar 

  169. Watling, R. J., Herbert, H. K., Delev, D. & Abell, I. D. Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 49, 205–219 (1994).

    Article  ADS  Google Scholar 

  170. Devos, W., Senn-Luder, M., Moor, C. & Salter, C. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for spatially resolved trace analysis of early-medieval archaeological iron finds. Fresenius. J. Anal. Chem. 366, 873–880 (2000).

    Article  Google Scholar 

  171. Fryer, B. J., Jackson, S. E. & Longerich, H. P. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)–Pb geochronology. Chem. Geol. 109, 1–8 (1993).

    Article  ADS  Google Scholar 

  172. Chang, Q. et al. Imaging mass cytometry. Cytom. Part. A 91, 160–169 (2017).

    Article  ADS  Google Scholar 

  173. Giesen, C. et al. Multiplexed immunohistochemical detection of tumor markers in breast cancer tissue using laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 83, 8177–8183 (2011).

    Article  Google Scholar 

  174. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  ADS  Google Scholar 

  175. Paul, B. et al. Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging. Chem. Sci. 6, 5383–5393 (2015).

    Article  Google Scholar 

  176. Van Malderen, S. J. M., Laforce, B., Van Acker, T., Vincze, L. & Vanhaecke, F. Imaging the 3D trace metal and metalloid distribution in mature wheat and rye grains via laser ablation-ICP-mass spectrometry and micro-X-ray fluorescence spectrometry. J. Anal. At. Spectrom. 32, 289–298 (2017).

    Article  Google Scholar 

  177. Van Malderen, S. J. M. et al. Three-dimensional reconstruction of the distribution of elemental tags in single cells using laser ablation ICP-mass spectrometry via registration approaches. Anal. Bioanal. Chem. 411, 4849–4859 (2019).

    Article  Google Scholar 

  178. Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2022).

    Article  Google Scholar 

  179. Beckers, F. & Rinklebe, J. Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit. Rev. Environ. Sci. Technol. 47, 693–794 (2017).

    Article  Google Scholar 

  180. O’Connor, D. et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environ. Int. 126, 747–761 (2019).

    Article  Google Scholar 

  181. Batista, B. L., Souza, J. M. O., De Souza, S. S. & Barbosa, F. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J. Hazard. Mater. 191, 342–348 (2011).

    Article  Google Scholar 

  182. Del Castillo Busto, M. E., Montes-Bayón, M., Blanco-González, E., Meija, J. & Sanz-Medel, A. Strategies to study human serum transferrin isoforms using integrated liquid chromatography ICPMS, MALDI-TOF, and ESI-Q-TOF detection: application to chronic alcohol abuse. Anal. Chem. 77, 5615–5621 (2005).

    Article  Google Scholar 

  183. Del Castillo Busto, M. E., Montes-Bayón, M. & Sanz-Medel, A. Accurate determination of human serum transferrin isoforms: exploring metal-specific isotope dilution analysis as a quantitative proteomic tool. Anal. Chem. 78, 8218–8226 (2006).

    Article  Google Scholar 

  184. Sulyok, M. et al. Two dimensional separation schemes for investigation of the interaction of an anticancer ruthenium(III) compound with plasma proteins. J. Anal. At. Spectrom. 20, 856–863 (2005).

    Article  Google Scholar 

  185. Bergquist, B. A. & Blum, J. D. The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation. Elements 5, 353–357 (2009).

    Article  Google Scholar 

  186. Foucher, D., Ogrinc, N. & Hintelmann, H. Tracing mercury contamination from the Idrija mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements. Environ. Sci. Technol. 43, 33–39 (2009).

    Article  ADS  Google Scholar 

  187. Feng, X. et al. Tracing mercury contamination sources in sediments using mercury isotope compositions. Environ. Sci. Technol. 44, 3363–3368 (2010).

    Article  ADS  Google Scholar 

  188. Rua-Ibarz, A. et al. Tracing mercury pollution along the Norwegian coast via elemental, speciation, and isotopic analysis of liver and muscle tissue of deep-water marine fish (Brosme brosme). Environ. Sci. Technol. 53, 1776–1785 (2019).

    Article  ADS  Google Scholar 

  189. Bergquist, B. A. & Blum, J. D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318, 417–420 (2007).

    Article  ADS  Google Scholar 

  190. Rua-Ibarz, A. et al. Assessment of Hg pollution released from a WWII submarine wreck (U-864) by Hg isotopic analysis of sediments and Cancer pagurus tissues. Environ. Sci. Technol. 50, 10361–10369 (2016).

    Article  ADS  Google Scholar 

  191. Jiskra, M. et al. Mercury stable isotopes constrain atmospheric sources to the ocean. Nature 597, 678–682 (2021).

    Article  ADS  Google Scholar 

  192. Sherman, L. S., Blum, J. D., Franzblau, A. & Basu, N. New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ. Sci. Technol. 47, 3403–3409 (2013).

    Article  ADS  Google Scholar 

  193. Bolea-Fernandez, E., Rua-Ibarz, A., Krupp, E. M., Feldmann, J. & Vanhaecke, F. High-precision isotopic analysis sheds new light on mercury metabolism in long-finned pilot whales (Globicephala melas). Sci. Rep. 9, 7262 (2019).

    Article  ADS  Google Scholar 

  194. Li, M. L. et al. Internal dynamics and metabolism of mercury in biota: a review of insights from mercury stable isotopes. Environ. Sci. Technol. 56, 9182–9195 (2022).

    Article  ADS  Google Scholar 

  195. Bazzano, A., Latruwe, K., Grotti, M. & Vanhaecke, F. Determination of the isotopic composition of sub-ng amounts of Sr in Antarctic snow by multi-collector ICP-mass spectrometry. J. Anal. At. Spectrom. 32, 1004–1008 (2017).

    Article  Google Scholar 

  196. Balaram, V., Rahaman, W. & Roy, P. Recent advances in MC-ICP-MS applications in Earth and environmental sciences: challenges and solutions. Geosyst. Geoenviron. 1, 100019 (2022).

    Article  Google Scholar 

  197. Halliday, A. N. & Canup, R. M. The accretion of planet Earth. Nat. Rev. Earth Environ. 4, 19–35 (2023).

    Article  ADS  Google Scholar 

  198. Goderis, S., Chakrabarti, R., Debaille, V. & Kodolányi, J. Isotopes in cosmochemistry: recipe for a solar system. J. Anal. At. Spectrom. 31, 841–862 (2016).

    Article  Google Scholar 

  199. Hemming, N. G. & Hanson, G. N. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56, 537–543 (1992).

    Article  ADS  Google Scholar 

  200. Hastuti, A. A. M. B. et al. Cu and Zn isotope ratio variations in plasma for survival prediction in hematological malignancy cases. Sci. Rep. 10, 16389 (2020).

    Article  ADS  Google Scholar 

  201. Garbe-Schönberg, D. & Müller, S. Nano-particulate pressed powder tablets for LA-ICP-MS. J. Anal. At. Spectrom. 29, 990–1000 (2014).

    Article  Google Scholar 

  202. Tabersky, D. et al. Development and characterization of custom-engineered and compacted nanoparticles as calibration materials for quantification using LA-ICP-MS. J. Anal. At. Spectrom. 29, 955–962 (2014).

    Article  Google Scholar 

  203. Jochum, K. P. et al. Nano-powdered calcium carbonate reference materials: significant progress for microanalysis? Geostand. Geoanal. Res. 43, 595–609 (2019).

    Article  Google Scholar 

  204. Boer, W. et al. New calcium carbonate nano-particulate pressed powder pellet (NFHS-2-NP) for LA-ICP-OES, LA-(MC)-ICP-MS and µXRF. Geostand. Geoanal. Res. 46, 411–432 (2022).

    Article  Google Scholar 

  205. Abdelrahman, A. I. et al. Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays. J. Am. Chem. Soc. 131, 15276–15283 (2009).

    Article  Google Scholar 

  206. Minelli, C. et al. Versailles Project on Advanced Materials and Standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale 14, 4690–4704 (2022).

    Article  Google Scholar 

  207. Korin, B., Dubovik, T. & Rolls, A. Mass cytometry analysis of immune cells in the brain. Nat. Protoc. 13, 377–391 (2018).

    Article  Google Scholar 

  208. Alcántara-Hernández, M. & Idoyaga, J. Mass cytometry profiling of human dendritic cells in blood and tissues. Nat. Protoc. 16, 4855–4877 (2021).

    Article  Google Scholar 

  209. Leipold, M. D. & Maecker, H. T. Phenotyping of live human PBMC using CyTOFTM mass. Cytometry. Bio Protoc. 5, e1382 (2015).

    Google Scholar 

  210. Liu, J. et al. Metal-encoded polystyrene microbeads as a mass cytometry calibration/normalization standard covering channels from yttrium (89 amu) to bismuth (209 amu). Anal. Chem. 92, 999–1006 (2020).

    Article  Google Scholar 

  211. Schlitzer, R. et al. The GEOTRACES intermediate data product 2017. Chem. Geol. 493, 210–223 (2018).

    Article  ADS  Google Scholar 

  212. Hawrylycz, M. et al. in The Allen Brain Atlas BT — Springer Handbook of Bio-/Neuroinformatics (ed. Kasabov, N.) 1111–1126 (Springer, 2014).

  213. Schwartz, A. J. et al. New inductively coupled plasma for atomic spectrometry: the microwave-sustained, inductively coupled, atmospheric-pressure plasma (MICAP). J. Anal. At. Spectrom. 31, 440–449 (2016).

    Article  Google Scholar 

  214. Schild, M. et al. Replacing the argon ICP: nitrogen microwave inductively coupled atmospheric-pressure plasma (MICAP) for mass spectrometry. Anal. Chem. 90, 13443–13450 (2018).

    Article  Google Scholar 

  215. Neff, C., Becker, P., Hattendorf, B. & Günther, D. LA-ICP-MS using a nitrogen plasma source. J. Anal. At. Spectrom. 36, 1750–1757 (2021).

    Article  Google Scholar 

  216. Neff, C., Becker, P. & Gunther, D. Parallel flow ablation cell for short signal duration in LA-ICP-TOFMS element imaging. J. Anal. At. Spectrom. 37, 677–683 (2022).

    Article  Google Scholar 

  217. Vonderach, T., Hattendorf, B. & Günther, D. New orientation: a downward-pointing vertical inductively coupled plasma mass spectrometer for the analysis of microsamples. Anal. Chem. 93, 1001–1008 (2021).

    Article  Google Scholar 

  218. Vonderach, T. & Gunther, D. Fundamental studies on droplet throughput and the analysis of single cells using a downward-pointing ICP-time-of-flight mass spectrometer. J. Anal. At. Spectrom. 36, 2617–2630 (2021).

    Article  Google Scholar 

  219. Agilent Technologies. Applications of ICP-MS: measuring inorganic impurities in semiconductor manufacturing. Agilent Technologies https://www.agilent.com/cs/library/applications/appcompendium-semiconductor-icp-ms-5991-9495EN-us-agilent.pdf (2022).

  220. Van Cauwenberghe, L. & Janssen, C. R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70 (2014).

    Article  Google Scholar 

  221. Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 14, 362–368 (2019).

    Article  ADS  Google Scholar 

  222. Hendriks, L. et al. Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing. J. Anal. At. Spectrom. 34, 716–728 (2019).

    Article  Google Scholar 

  223. Mehrabi, K., Günther, D. & Gundlach-graham, A. Single-particle ICP-TOFMS with online microdroplet calibration for the simultaneous quantification of diverse nanoparticles in complex matrices. Environ. Sci. Nano 6, 3349–3358 (2019).

    Article  Google Scholar 

  224. Schweikert, A. et al. Micro-droplet-based calibration for quantitative elemental bioimaging by LA-ICPMS. Anal. Bioanal. Chem. 414, 485–495 (2022).

    Article  Google Scholar 

  225. Schweikert, A. et al. Quantification in bioimaging by LA-ICPMS — evaluation of isotope dilution and standard addition enabled by micro-droplets. Anal. Chim. Acta 1223, 340200 (2022).

    Article  Google Scholar 

  226. Metarapi, D., Šala, M., Vogel-Mikuš, K., Šelih, V. S. & Van Elteren, J. T. Nanoparticle analysis in biomaterials using laser ablation-single particle-inductively coupled plasma mass spectrometry. Anal. Chem. 91, 6200–6205 (2019).

    Article  Google Scholar 

  227. Metarapi, D. & Van Elteren, J. T. Fundamentals of single particle analysis in biomatrices by laser ablation-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 35, 784–793 (2020).

    Article  Google Scholar 

  228. Tanner, M. Vendor perspectives: mass spectrometry. Spectrosc. Online 35, 48 (2020).

    Google Scholar 

  229. Bland, G. D. et al. Single-particle metal fingerprint analysis and machine learning pipeline for source apportionment of metal-containing fine particles in air. Environ. Sci. Technol. Lett. https://doi.org/10.1021/acs.estlett.2c00835 (2022).

    Article  Google Scholar 

  230. Schwarz, G. et al. Demonstrating rapid qualitative elemental analyses of participant-supplied objects at a public outreach event. J. Chem. Educ. 93, 1749–1753 (2016).

    Article  Google Scholar 

  231. Schoeberl, A., Theiner, S. & Koellensperger, G. Single-cell analysis by ICP-MS — current status and future trends. Spectrosc. Online 35, 17–20 (2020).

    Google Scholar 

  232. Long, L. E. in Rubidium-Strontium method BT - Geochemistry. Encyclopedia of Earth Science (eds. Marshall, C. P. & Fairbridge R. W.) 556–561 (Springer Netherlands, 1998).

Download references

Acknowledgements

T.V.A. thanks the Research Foundation Flanders for support from a postdoctoral research fellowship (FWO.3E0.2022.0048.01). F.V. thanks BOF-UGent for financial support from a GOA grant. E.B.-F. acknowledges financial support from the Ramón y Cajal programme (RYC2021-031093-I) funded by MCIN/AEI/10.13039/501100011033 and the European Union (NextGenerationEU/PRTR).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (E.B.-F., F.V. and G.K.); Experimentation (T.V.A., S.T., E.B.-F., F.V. and G.K.); Results (T.V.A., S.T., E.B.-F., F.V. and G.K.); Applications (T.V.A., S.T., E.B.-F., F.V. and G.K.); Reproducibility and data deposition (T.V.A., S.T., F.V. and G.K.); Limitations and optimizations (T.V.A.); Outlook (T.V.A.); Overview of the Primer (all authors).

Corresponding authors

Correspondence to Frank Vanhaecke or Gunda Koellensperger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Allen Brain atlas project: https://portal.brain-map.org/

Food fraud and quality databases: https://knowledge4policy.ec.europa.eu/publication/food-fraud-data-bases_en

GEOTRACES: https://www.geotraces.org/

The Human Immune Monitoring Center protocols: https://iti.stanford.edu/himc/protocols.html

Glossary

Dwell times

Periods of time an instrument collects signals for one or more points on a peak.

Faraday cup detectors

Metal hollow collectors, open at one end and closed at the other, used to collect beams of charged particles (ions) in vacuum. The electric current measured is used to determine the total number of ions collected during a specific time period.

Laser ablation

The process of removing material from a solid or liquid surface upon irradiation with a highly energetic laser beam.

Limit of detection

The lowest analyte concentration or quantity that can be detected in a matrix with reasonable certainty (3s.d. criterion).

Limit of quantification

The lowest analyte concentration or quantity that can be quantified in a matrix with reasonable certainty (10s.d. criterion).

M+ atomic ions

Singly positively charged metal ions that are created in the inductively coupled plasma and analysed via the mass analyser.

Mass discrimination

The bias between the experimental and true isotope ratio obtained via inductively coupled plasma mass spectrometry caused by differences in ion extraction, transmission and detection efficiency as a function of the mass-to-charge ratio.

Multi-collector ICP-MS instrument

A type of double-focusing sector field inductively coupled plasma (ICP) mass spectrometer in Nier–Johnson geometry with multiple detectors enabling high-precision isotopic analysis.

Quadrupole

A type of mass spectrometer that separates ions as a function of their mass-to-charge ratio (m/z) by transmitting ions with a m/z within a narrow range (1 amu). Ions with a desired m/z follow a stable path under the effect of a static and high-frequency electric field. Ions with a different m/z follow an unstable path and are rejected from the ion beam.

Scanning-type instruments

Inductively coupled plasma mass spectrometers that scan each nuclide sequentially.

Sector field-type instruments

Mass spectrometers comprising a static electric and magnetic sector that separates the ions in space as a function of their mass-to-charge ratio.

Supersonic expansion

Adiabatic gas expansion upon transition from a high-pressure to low-pressure region via a small orifice.

Tandem mass spectrometry

A method using a mass spectrometer equipped with two quadrupole mass filters and a collision/reaction cell in between that provides enhanced capabilities to overcome spectral overlap via chemical resolution.

Time of flight

A method using a mass spectrometer that separates ions in time in a field-free flight tube as a function of their mass-to-charge ratio. Ion packages are accelerated to the same kinetic energy and subsequently introduced in the flight tube. Lighter ions travel faster than heavier ions and arrive at the detector faster.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Acker, T., Theiner, S., Bolea-Fernandez, E. et al. Inductively coupled plasma mass spectrometry. Nat Rev Methods Primers 3, 52 (2023). https://doi.org/10.1038/s43586-023-00235-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00235-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing