Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Light-based vat-polymerization bioprinting

Abstract

Light-based vat-polymerization bioprinting enables computer-aided patterning of 3D cell-laden structures in a point-by-point, layer-by-layer or volumetric manner, using vat (vats) filled with photoactivatable bioresin (bioresins). This collection of technologies — divided by their modes of operation into stereolithography, digital light processing and volumetric additive manufacturing — has been extensively developed over the past few decades, leading to broad applications in biomedicine. In this Primer, we illustrate the methodology of light-based vat-polymerization 3D bioprinting from the perspectives of hardware, software and bioresin selections. We follow with discussions on methodological variations of these technologies, including their latest advancements, as well as elaborating on key assessments utilized towards ensuring qualities of the bioprinting procedures and products. We conclude by providing insights into future directions of light-based vat-polymerization methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical light-based vat-polymerization techniques.
Fig. 2: Variations in vat-polymerization techniques, taking digital light processing bioprinting as an example.
Fig. 3: Determining light-dose responses and working curves in light-based vat-polymerization bioprinting.
Fig. 4: Resolution assessments in light-based vat-polymerization bioprinting.
Fig. 5: Examples of tissue-engineered constructs.

Similar content being viewed by others

References

  1. Groll, J. et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8, 013001 (2016).

    Article  ADS  Google Scholar 

  2. Levato, R. et al. From shape to function: the next step in bioprinting. Adv. Mater. 32, 1906423 (2020).

    Article  Google Scholar 

  3. Moroni, L. et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 36, 384–402 (2018).

    Article  Google Scholar 

  4. Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).

    Article  ADS  Google Scholar 

  5. Heinrich, M. A. et al. 3D bioprinting: from benches to translational applications. Small 15, 1805510 (2019).

    Article  Google Scholar 

  6. Garciamendez-Mijares, C. E., Agrawal, P., García Martínez, G., Cervantes Juarez, E. & Zhang, Y. S. State-of-art affordable bioprinters: a guide for the DiY community. Appl. Phys. Rev. 8, 031312 (2021).

    Article  ADS  Google Scholar 

  7. Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. US patent US4575330A (1986).

  8. Lu, Y. & Chen, S. C. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv. Drug Del. Rev. 56, 1621–1633 (2004).

    Article  Google Scholar 

  9. Mapili, G., Lu, Y., Chen, S. & Roy, K. Laser‐layered microfabrication of spatially patterned functionalized tissue‐engineering scaffolds. J. Biomed. Mater. Res. A. 75, 414–424 (2005).

    Article  Google Scholar 

  10. Dhariwala, B., Hunt, E. & Boland, T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 10, 1316–1322 (2004).

    Article  Google Scholar 

  11. Li, W. et al. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience 26, 106039 (2023).

    Article  ADS  Google Scholar 

  12. Yu, C. et al. Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem. Rev. 120, 10695–10743 (2020).

    Article  Google Scholar 

  13. Zuev, D. M., Nguyen, A. K., Putlyaev, V. I. & Narayan, R. J. 3D printing and bioprinting using multiphoton lithography. Bioprinting 20, e00090 (2020).

    Article  Google Scholar 

  14. Zandrini, T., Florczak, S., Levato, R. & Ovsianikov, A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 41, 604–614 (2022).

    Article  Google Scholar 

  15. Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3, eaao5496 (2017).

    Article  Google Scholar 

  16. Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).

    Article  ADS  Google Scholar 

  17. Ruskowitz, E. R. & Deforest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    Article  ADS  Google Scholar 

  18. Zhang, Y. S. et al. 3D extrusion bioprinting. Nat. Rev. Methods Primers 1, 75 (2021).

    Article  Google Scholar 

  19. Guillemot, F., Mironov, V. & Nakamura, M. Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux (3B’09). Biofabrication 2, 010201 (2010).

    Article  ADS  Google Scholar 

  20. Groll, J. et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11, 013001 (2018).

    Article  ADS  Google Scholar 

  21. Zhou, X., Hou, Y. & Lin, J. A review on the processing accuracy of two-photon polymerization. AIP Adv. 5, 030701 (2015).

    Article  ADS  Google Scholar 

  22. Lee, M., Rizzo, R., Surman, F. & Zenobi-Wong, M. Guiding lights: tissue bioprinting using photoactivated materials. Chem. Rev. 120, 10950–11027 (2020).

    Article  Google Scholar 

  23. Harinarayana, V. & Shin, Y. C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review. Opt. Laser Technol. 142, 107180 (2021).

    Article  Google Scholar 

  24. Skoog, S. A., Goering, P. L. & Narayan, R. J. Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25, 845–856 (2014).

    Article  Google Scholar 

  25. Kuo, A. P. et al. High-precision stereolithography of biomicrofluidic devices. Adv. Mater. Technol. 4, 1800395 (2019).

    Article  Google Scholar 

  26. Li, H. et al. Digital light processing (DLP)-based (bio)printing strategies for tissue modeling and regeneration. Aggregate 4, e270 (2022).

    Article  Google Scholar 

  27. Kowsari, K., Lee, W., Yoo, S.-S. & Fang, N. X. Scalable visible light 3D printing and bioprinting using an organic light-emitting diode microdisplay. iScience 24, 103372 (2021).

    Article  ADS  Google Scholar 

  28. Hosseinabadi, H. G. et al. Ink material selection and optical design considerations in DLP 3D printing. Appl. Mater. Today 30, 101721 (2023).

    Article  Google Scholar 

  29. Lu, Y., Mapili, G., Suhali, G., Chen, S. & Roy, K. A digital micro‐mirror device‐based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A. 77, 396–405 (2006).

    Article  Google Scholar 

  30. Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proct. Natl Acad. Sci. USA 113, 2206–2211 (2016).

    Article  ADS  Google Scholar 

  31. Gauvin, R. et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824–3834 (2012).

    Article  Google Scholar 

  32. Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).

    Article  ADS  Google Scholar 

  33. Bernal, P. N. et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019).

    Article  Google Scholar 

  34. Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).

    Article  Google Scholar 

  35. Toombs, J. T. et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376, 308–312 (2022).

    Article  ADS  Google Scholar 

  36. Li, W. et al. Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Adv. Healthc. Mater. 9, 2000156 (2020).

    Article  Google Scholar 

  37. Murphy, C. A., Lim, K. S. & Woodfield, T. B. F. Next evolution in organ-scale biofabrication: bioresin design for rapid high-resolution vat polymerization. Adv. Mater. 34, 2107759 (2022).

    Article  Google Scholar 

  38. Bader, C. et al. Making data matter: voxel printing for the digital fabrication of data across scales and domains. Sci. Adv. 4, eaas8652 (2018).

    Article  ADS  Google Scholar 

  39. Hiller, J. & Lipson, H. Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyp. J. 15, 137–149 (2009).

    Article  Google Scholar 

  40. Wu, C., Yi, R., Liu, Y. J., He, Y. & Wang, C. C. L. in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2155–2160 (IEEE, 2016).

  41. Huang, J., Ware, H. O. T., Hai, R., Shao, G. & Sun, C. Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers. Adv. Mater. 33, 2005672 (2021).

    Article  Google Scholar 

  42. Kwok, T.-H. Comparing slicing technologies for digital light processing printing. J. Comput. Inf. Sci. Eng. 19, 044502 (2019).

    Article  Google Scholar 

  43. Madrid‐Wolff, J., Boniface, A., Loterie, D., Delrot, P. & Moser, C. Controlling light in scattering materials for volumetric additive manufacturing. Adv. Sci. 9, 2105144 (2022).

    Article  Google Scholar 

  44. De Beer, M. P. et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv. 5, eaau8723 (2019).

    Article  ADS  Google Scholar 

  45. Lipkowitz, G. et al. Injection continuous liquid interface production of 3D objects. Sci. Adv. 8, eabq3917 (2022).

    Article  ADS  Google Scholar 

  46. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349 (2015).

    Article  ADS  Google Scholar 

  47. Wang, B. et al. Stiffness control in dual color tomographic volumetric 3D printing. Nat. Commun. 13, 367 (2022).

    Article  ADS  Google Scholar 

  48. Sameni, F. et al. Hot lithography vat photopolymerisation 3D printing: vat temperature vs. mixture design. Polymers 14, 2988 (2022).

    Article  Google Scholar 

  49. Morgan, F. L. C., Moroni, L. & Baker, M. B. Dynamic bioinks to advance bioprinting. Adv. Healthc. Mater. 9, e1901798 (2020).

    Article  Google Scholar 

  50. Dong, Y. et al. Engineering the cell microenvironment using novel photoresponsive hydrogels. ACS Appl. Mater. Interfaces 10, 12374–12389 (2018).

    Article  Google Scholar 

  51. Adhikari, J. et al. Effects of processing parameters of 3D bioprinting on the cellular activity of bioinks. Macromol. Biosci. 21, e2000179 (2021).

    Article  Google Scholar 

  52. Ng, W. L. et al. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication 12, 022001 (2020).

    Article  ADS  Google Scholar 

  53. Shadish, J. A., Benuska, G. M. & Deforest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).

    Article  ADS  Google Scholar 

  54. Wang, M. et al. Digital light processing-based bioprinting with composable gradients. Adv. Mater. 34, 2107038 (2022).

    Article  Google Scholar 

  55. Yu, C. et al. A sequential 3D bioprinting and orthogonal bioconjugation approach for precision tissue engineering. Biomaterials 258, 120294 (2020).

    Article  Google Scholar 

  56. Ravanbakhsh, H., Bao, G., Luo, Z., Mongeau, L. G. & Zhang, Y. S. Composite Inks for extrusion printing of biological and biomedical constructs. ACS Biomater. Sci. Eng. 7, 4009–4026 (2021).

    Article  Google Scholar 

  57. Zhang, S. et al. Convergence of 3D bioprinting and nanotechnology in tissue engineering scaffolds. Biomimetics 8, 94 (2023).

    Article  Google Scholar 

  58. Loukelis, K., Helal, Z. A., Mikos, A. G. & Chatzinikolaidou, M. Nanocomposite bioprinting for tissue engineering applications. Gels 9, 103 (2023).

    Article  Google Scholar 

  59. Alcala-Orozco, C. R. et al. Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting 18, e00073 (2020).

    Article  Google Scholar 

  60. Li, L. et al. Methacrylate‐modified gold nanoparticles enable noninvasive monitoring of photocrosslinked hydrogel scaffolds. Adv. NanoBiomed Res. 2, 2200022 (2022).

    Article  Google Scholar 

  61. Tao, J. et al. Nanoparticle‐stabilized emulsion bioink for digital light processing based 3D bioprinting of porous tissue constructs. Adv. Healthc. Mater. 11, 2102810 (2022).

    Article  Google Scholar 

  62. Ouyang, L., Wojciechowski, J. P., Tang, J., Guo, Y. & Stevens, M. M. Tunable microgel‐templated porogel (MTP) bioink for 3D bioprinting applications. Adv. Healthc. Mater. 11, 2200027 (2022).

    Article  Google Scholar 

  63. Ying, G.-L. et al. Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv. Mater. 30, 1805460 (2018).

    Article  Google Scholar 

  64. Yi, S. et al. Micropore-forming gelatin methacryloyl (GelMA) bioink toolbox 2.0: designable tunability and adaptability for 3D bioprinting applications. Small 18, 2106357 (2022).

    Article  Google Scholar 

  65. Lim, K. S. et al. Fundamentals and applications of photo-cross-linking in bioprinting. Chem. Rev. 120, 10662–10694 (2020).

    Article  Google Scholar 

  66. Tomal, W. & Ortyl, J. Water-soluble photoinitiators in biomedical applications. Polymers 12, 1073 (2020).

    Article  Google Scholar 

  67. Lim, K. S. et al. Visible light cross-linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth. Macromol. Biosci. 19, 1900098 (2019).

    Article  Google Scholar 

  68. Wu, Y., Simpson, M. C. & Jin, J. Fast hydrolytically degradable 3D printed object based on aliphatic polycarbonate thiol‐yne photoresins. Macromol. Chem. Phys. 222, 2000435 (2021).

    Article  Google Scholar 

  69. Tibbitt, M. W., Kloxin, A. M., Sawicki, L. & Anseth, K. S. Mechanical properties and degradation of chain and step polymerized photodegradable hydrogels. Macromolecules 46, 2785–2792 (2013).

    Article  ADS  Google Scholar 

  70. Scinto, S. L. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 1, 30 (2021).

    Article  Google Scholar 

  71. Fairbanks, B. D. et al. Photoclick chemistry: a bright idea. Chem. Rev. 121, 6915–6990 (2021).

    Article  Google Scholar 

  72. Albada, B., Keijzer, J. F., Zuilhof, H. & Van Delft, F. Oxidation-induced ‘one-pot’ click chemistry. Chem. Rev. 121, 7032–7058 (2021).

    Article  Google Scholar 

  73. Kim, H. et al. Light‐activated decellularized extracellular matrix‐based bioinks for volumetric tissue analogs at the centimeter scale. Adv. Funct. Mater. 31, 2011252 (2021).

    Article  Google Scholar 

  74. Bjork, J. W., Johnson, S. L. & Tranquillo, R. T. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue. Biomaterials 32, 2479–2488 (2011).

    Article  Google Scholar 

  75. Lim, K. S. et al. New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater. Sci. Eng. 2, 1752–1762 (2016).

    Article  Google Scholar 

  76. Soliman, B. G. et al. Programming delayed dissolution into sacrificial bioinks for dynamic temporal control of architecture within 3D-bioprinted constructs. Adv. Funct. Mater. 33, 2210521 (2023).

    Article  Google Scholar 

  77. Xie, M. et al. Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat. Commun. 14, 210 (2023).

    Article  ADS  Google Scholar 

  78. Rydholm, A. E., Bowman, C. N. & Anseth, K. S. Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials 26, 4495–4506 (2005).

    Article  Google Scholar 

  79. Haris, U., Plank, J. T., Li, B., Page, Z. A. & Lippert, A. R. Visible light chemical micropatterning using a digital light processing fluorescence microscope. ACS Cent. Sci. 8, 67–76 (2022).

    Article  Google Scholar 

  80. Rizzo, R., Ruetsche, D., Liu, H. & Zenobi-Wong, M. Optimized photoclick (bio)resins for fast volumetric bioprinting. Adv. Mater. 33, 2102900 (2021).

    Article  Google Scholar 

  81. Bertassoni, L. E. Bioprinting of complex multicellular organs with advanced functionality-recent progress and challenges ahead. Adv. Mater. 34, e2101321 (2022).

    Article  Google Scholar 

  82. Dhand, A. P. et al. Simultaneous one-pot interpenetrating network formation to expand 3D processing capabilities. Adv. Mater. 34, e2202261 (2022).

    Article  Google Scholar 

  83. Caprioli, M. et al. 3D-printed self-healing hydrogels via digital light processing. Nat. Commun. 12, 2462 (2021).

    Article  ADS  Google Scholar 

  84. Schwab, A. et al. Printability and shape fidelity of bioinks in 3D bioprinting. Chem. Rev. 120, 11028–11055 (2020).

    Article  Google Scholar 

  85. Durand-Silva, A. et al. Balancing self-healing and shape stability in dynamic covalent photoresins for stereolithography 3D printing. ACS Macro Lett. 10, 486–491 (2021).

    Article  Google Scholar 

  86. Robinson, L. L. et al. Chemical and mechanical tunability of 3D-printed dynamic covalent networks based on boronate esters. ACS Macro Lett. 10, 857–863 (2021).

    Article  Google Scholar 

  87. Wilts, E. M. et al. Vat photopolymerization of charged monomers: 3D printing with supramolecular interactions. Polym. Chem. 10, 1442–1451 (2019).

    Article  Google Scholar 

  88. Uzcategui, A. C., Muralidharan, A., Ferguson, V. L., Bryant, S. J. & Mcleod, R. R. Understanding and improving mechanical properties in 3D printed parts using a dual-cure acrylate-based resin for stereolithography. Adv. Eng. Mater. 20, 1800876 (2018).

    Article  Google Scholar 

  89. Stevens, L. M., Tagnon, C. & Page, Z. A. ‘Invisible’ digital light processing 3D printing with near infrared light. ACS Appl. Mater. Interfaces 14, 22912–22920 (2022).

    Article  Google Scholar 

  90. Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

    Article  ADS  Google Scholar 

  91. Thijssen, Q. et al. Volumetric printing of thiol‐ene photo‐cross‐linkable poly (ε‐caprolactone): a tunable material platform serving biomedical applications. Adv. Mater. https://doi.org/10.1002/adma.202210136 (2023).

    Article  Google Scholar 

  92. Hahn, V. et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nat. Photon. 15, 932–938 (2021).

    Article  ADS  Google Scholar 

  93. Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photon. 16, 784–791 (2022).

    Article  ADS  Google Scholar 

  94. Mensov, S. N. et al. Use of photodegradable inhibitors in UV‐curable compositions to form polymeric 2D‐structures by visible light. J. Appl. Polym. Sci. 137, 48976 (2020).

    Article  Google Scholar 

  95. Goodarzi Hosseinabadi, H., Dogan, E., Miri, A. K. & Ionov, L. Digital light processing bioprinting advances for microtissue models. ACS Biomater. Sci. Eng. 8, 1381–1395 (2022).

    Article  Google Scholar 

  96. You, S. et al. High cell density and high resolution 3D bioprinting for fabricating vascularized tissues. Sci. Adv. 9, eade7923 (2023).

    Article  Google Scholar 

  97. Rizzo, R., Petelinšek, N., Bonato, A. & Zenobi-Wong, M. From free-radical to radical-free: a paradigm shift in light-mediated biofabrication. Adv. Sci. 10, e2205302 (2023).

    Article  Google Scholar 

  98. Bao, Y., Paunović, N. & Leroux, J. C. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv. Funct. Mater. 32, 2109864 (2022).

    Article  Google Scholar 

  99. Beh, C. W. et al. A fluid-supported 3D hydrogel bioprinting method. Biomaterials 276, 121034 (2021).

    Article  Google Scholar 

  100. Brown, T. E. et al. Voxel-scale conversion mapping informs intrinsic resolution in stereolithographic additive manufacturing. ACS Appl. Polym. Mater. 3, 290–298 (2020).

    Article  Google Scholar 

  101. Salvekar, A. V. et al. Rapid volumetric additive manufacturing in solid state: a demonstration to produce water-content-dependent cooling/heating/water-responsive shape memory hydrogels. 3D Print. Add. Manuf. https://doi.org/10.1089/3dp.2021.0279 (2022).

    Article  Google Scholar 

  102. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  ADS  Google Scholar 

  103. Mckinnon, D. D., Brown, T. E., Kyburz, K. A., Kiyotake, E. & Anseth, K. S. Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomacromolecules 15, 2808–2816 (2014).

    Article  Google Scholar 

  104. Xie, R., Zheng, W., Guan, L., Ai, Y. & Liang, Q. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small 16, e1902838 (2020).

    Article  Google Scholar 

  105. Brown, T. E., Marozas, I. A. & Anseth, K. S. Amplified photodegradation of cell-laden hydrogels via an addition-fragmentation chain transfer reaction. Adv. Mater. 29, 1605001 (2017).

    Article  Google Scholar 

  106. Nelson, B. R. et al. Photoinduced dithiolane crosslinking for multiresponsive dynamic hydrogels. Adv. Mater. https://doi.org/10.1002/adma.202211209 (2023).

    Article  Google Scholar 

  107. Tavafoghi, M. et al. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication https://doi.org/10.1088/1758-5090/ac0b9a (2021).

    Article  Google Scholar 

  108. Davidson, M. D. et al. Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Sci. Adv. 7, eabi8157 (2021).

    Article  ADS  Google Scholar 

  109. Carberry, B. J. et al. 3D printing of sacrificial thioester elastomers using digital light processing for templating 3D organoid structures in soft biomatrices. Biofabrication 13, 044104 (2021).

    Article  Google Scholar 

  110. Wang, M. et al. Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nat. Commun. 13, 3317 (2022).

    Article  ADS  Google Scholar 

  111. Levato, R. et al. High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Mater. Today Bio 12, 100162 (2021).

    Article  Google Scholar 

  112. Müller, M. Z., Style, R. W., Müller, R. & Qin, X.-H. A phase-separating thiol-ene photoresin for volumetric bioprinting of macroporous hydrogels. Preprint at bioRxiv https://doi.org/10.1101/2022.01.29.478338 (2022).

    Article  Google Scholar 

  113. Qin, X.-S., Wang, M., Li, W. & Zhang, Y. S. Biosurfactant-stabilized micropore-forming GelMA Inks enable improved usability for 3D printing applications. Regen. Eng. Transl. Med. 8, 471–481 (2022).

    Article  Google Scholar 

  114. Sampson, K. L. et al. Multimaterial vat polymerization additive manufacturing. ACS Appl. Polym. Mater. 3, 4304–4324 (2021).

    Article  Google Scholar 

  115. Ravanbakhsh, H. et al. Emerging technologies in multi-material bioprinting. Adv. Mater. 33, 2104730 (2021).

    Article  Google Scholar 

  116. Choi, J.-W., Kim, H.-C. & Wicker, R. Multi-material stereolithography. J. Mater. Process. Technol. 211, 318–328 (2011).

    Article  Google Scholar 

  117. Grigoryan, B. et al. Development, characterization, and applications of multi-material stereolithography bioprinting. Sci. Rep. 11, 3171 (2021).

    Article  ADS  Google Scholar 

  118. Liao, J. et al. 3D-printable colloidal photonic crystals. Mater. Today 56, 29–41 (2022).

    Article  Google Scholar 

  119. Cheng, J. et al. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects. Nat. Commun. 13, 7931 (2022).

    Article  ADS  Google Scholar 

  120. Miri, A. K. et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30, 1800242 (2018).

    Article  Google Scholar 

  121. Han, D., Yang, C., Fang, N. X. & Lee, H. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Add. Manuf. 27, 606–615 (2019).

    Google Scholar 

  122. Liu, J., Hwang, H. H., Wang, P., Whang, G. & Chen, S. Direct 3D-printing of cell-laden constructs in microfluidic architectures. Lab Chip 16, 1430–1438 (2016).

    Article  Google Scholar 

  123. Chansoria, P. et al. Synergizing algorithmic design, photoclick chemistry and multi-material volumetric printing for accelerating complex shape engineering. Preprint at bioRxiv https://doi.org/10.1101/2022.11.29.518318 (2022).

    Article  Google Scholar 

  124. Bialas, S. et al. Access to disparate soft matter materials by curing with two colors of light. Adv. Mater. 31, 1807288 (2019).

    Article  Google Scholar 

  125. Schwartz, J. J. & Boydston, A. J. Multimaterial actinic spatial control 3D and 4D printing. Nat. Commun. 10, 791 (2019).

    Article  ADS  Google Scholar 

  126. Peng, X. et al. Multi-color 3D printing via single-vat grayscale digital light processing. Adv. Funct. Mater. 32, 2112329 (2022).

    Article  Google Scholar 

  127. Kuang, X. et al. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv. 5, eaav5790 (2019).

    Article  ADS  Google Scholar 

  128. Yue, L. et al. Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nat. Commun. 14, 1251 (2023).

    Article  ADS  Google Scholar 

  129. Shanjani, Y., Pan, C. C., Elomaa, L. & Yang, Y. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7, 045008 (2015).

    Article  ADS  Google Scholar 

  130. An, H. S. et al. High-resolution 3D printing of freeform, transparent displays in ambient air. Adv. Sci. 6, 1901603 (2019).

    Article  Google Scholar 

  131. Greenhall, J. & Raeymaekers, B. 3D printing macroscale engineered materials using ultrasound directed self-assembly and stereolithography. Adv. Mater. Technol. 2, 1700122 (2017).

    Article  Google Scholar 

  132. Lu, L., Tang, X., Hu, S. & Pan, Y. Acoustic field-assisted particle patterning for smart polymer composite fabrication in stereolithography. 3D Print. Add. Manuf. 5, 151–159 (2018).

    Google Scholar 

  133. Wang, Y. et al. Acoustic-assisted 3D printing based on acoustofluidic microparticles patterning for conductive polymer composites fabrication. Add. Manuf. 60, 103247 (2022).

    Google Scholar 

  134. Kunwar, P. et al. Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures. Adv. Opt. Mater. 7, 1900656 (2019).

    Article  Google Scholar 

  135. Rizzo, R. et al. Multiscale hybrid fabrication: volumetric printing meets two-photon ablation. Preprint at bioRxiv https://doi.org/10.1002/admt.202201871 (2022).

    Article  Google Scholar 

  136. Größbacher, G. et al. Volumetric printing across melt electrowritten scaffolds fabricates multi-material living constructs with tunable architecture and mechanics. Adv. Mater. https://doi.org/10.1002/adma.202300756 (2023).

    Article  Google Scholar 

  137. Huh, J. et al. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication 13, 034103 (2021).

    Article  Google Scholar 

  138. Bennett, J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Add. Manuf. 18, 203–212 (2017).

    Google Scholar 

  139. Seck, T. M., Melchels, F. P. W., Feijen, J. & Grijpma, D. W. Designed biodegradable hydrogel structures prepared by stereolithography using poly (ethylene glycol)/poly (d,l-lactide)-based resins. J. Control. Rel. 148, 34–41 (2010).

    Article  Google Scholar 

  140. Van Hoorick, J. et al. Cross-linkable gelatins with superior mechanical properties through carboxylic acid modification: increasing the two-photon polymerization potential. Biomacromolecules 18, 3260–3272 (2017).

    Article  Google Scholar 

  141. Galarraga, J. H., Dhand, A. P., Enzmann, B. P., Iii & Burdick, J. A. Synthesis, characterization, and digital light processing of a hydrolytically degradable hyaluronic acid hydrogel. Biomacromolecules 24, 413–425 (2023).

    Article  Google Scholar 

  142. Sanchez Noriega, J. L. et al. Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics. Nat. Commun. 12, 5509 (2021).

    Article  ADS  Google Scholar 

  143. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458 (2019).

    Article  ADS  Google Scholar 

  144. Khoon, S. L. et al. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 10, 034101 (2018).

    Article  Google Scholar 

  145. Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., Mecham, S. J. & Desimone, J. M. Layerless fabrication with continuous liquid interface production. Proc. Natl Acad. Sci. USA 113, 11703–11708 (2016).

    Article  ADS  Google Scholar 

  146. Loterie, D., Delrot, P. & Moser, C. High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 11, 852 (2020).

    Article  ADS  Google Scholar 

  147. Salajeghe, R., Meile, D. H., Kruse, C. S., Marla, D. & Spangenberg, J. Numerical modeling of part sedimentation during volumetric additive manufacturing. Addit. Manuf. 66, 103459 (2022).

    Google Scholar 

  148. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  Google Scholar 

  149. Fedorovich, N. E. et al. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30, 344–353 (2009).

    Article  Google Scholar 

  150. Ruskowitz, E. R. & Deforest, C. A. Proteome-wide analysis of cellular response to ultraviolet light for biomaterial synthesis and modification. ACS Biomater. Sci. Eng. 5, 2111–2116 (2019).

    Article  Google Scholar 

  151. Bartnikowski, M., Bartnikowski, N. J., Woodruff, M. A., Schrobback, K. & Klein, T. J. Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater. 27, 66–76 (2015).

    Article  Google Scholar 

  152. Kratochvil, M. J. et al. Engineered materials for organoid systems. Nat. Rev. Mater. 4, 606–622 (2019).

    Article  ADS  Google Scholar 

  153. Ovsianikov, A., Mironov, V., Stampfl, J. & Liska, R. Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Exp. Rev. Med. Device 9, 613–633 (2012).

    Article  Google Scholar 

  154. Dobos, A. et al. On-chip high-definition bioprinting of microvascular structures. Biofabrication 13, 015016 (2021).

    Article  Google Scholar 

  155. Marino, A. et al. The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater. 10, 4304–4313 (2014).

    Article  Google Scholar 

  156. Marino, A. et al. A 3D real‐scale, biomimetic, and biohybrid model of the blood–brain barrier fabricated through two‐photon lithography. Small 14, 1702959 (2018).

    Article  Google Scholar 

  157. Krüger, H., Asido, M., Wachtveitl, J., Tampé, R. & Wieneke, R. Sensitizer-enhanced two-photon patterning of biomolecules in photoinstructive hydrogels. Commun. Mater. 3, 9 (2022).

    Article  Google Scholar 

  158. Broguiere, N. et al. Morphogenesis guided by 3D patterning of growth factors in biological matrices. Adv. Mater. 32, 1908299 (2020).

    Article  Google Scholar 

  159. Qin, X.-H., Wang, X., Rottmar, M., Nelson, B. J. & Maniura-Weber, K. Near-infrared light-sensitive polyvinyl alcohol hydrogel photoresist for spatiotemporal control of cell-instructive 3D microenvironments. Adv. Mater. 30, 1705564 (2018).

    Article  Google Scholar 

  160. Skylar‐Scott, M. A., Liu, M. C., Wu, Y., Dixit, A. & Yanik, M. F. Guided homing of cells in multi‐photon microfabricated bioscaffolds. Adv. Healthc. Mater. 5, 1233–1243 (2016).

    Article  Google Scholar 

  161. Deforest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925–931 (2011).

    Article  Google Scholar 

  162. Arakawa, C. K., Badeau, B. A., Zheng, Y. & Deforest, C. A. Multicellular vascularized engineered tissues through user-programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).

    Article  Google Scholar 

  163. Rayner, S. G. et al. Multiphoton-guided creation of complex organ-specific microvasculature. Adv. Healthc. Mater. 10, 2100031 (2021).

    Article  Google Scholar 

  164. Enrico, A. et al. 3D microvascularized tissue models by laser-based cavitation molding of collagen. Adv. Mater. 34, 2109823 (2022).

    Article  Google Scholar 

  165. Ovsianikov, A. et al. Laser photofabrication of cell-containing hydrogel constructs. Langmuir 30, 3787–3794 (2014).

    Article  Google Scholar 

  166. Tromayer, M. et al. A biocompatible macromolecular two-photon initiator based on hyaluronan. Polym. Chem. 8, 451–460 (2017).

    Article  Google Scholar 

  167. Tromayer, M. et al. A biocompatible diazosulfonate initiator for direct encapsulation of human stem cells via two-photon polymerization. Polym. Chem. 9, 3108–3117 (2018).

    Article  Google Scholar 

  168. Lee, S. et al. A needle-type microrobot for targeted drug delivery by affixing to a microtissue. Adv. Healthc. Mater. 9, 1901697 (2020).

    Article  ADS  Google Scholar 

  169. Cabanach, P. et al. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv. Mater. 32, 2003013 (2020).

    Article  Google Scholar 

  170. Ceylan, H. et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13, 3353–3362 (2019).

    Article  Google Scholar 

  171. Yasa, I. C., Tabak, A. F., Yasa, O., Ceylan, H. & Sitti, M. 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv. Funct. Mater. 29, 1808992 (2019).

    Article  Google Scholar 

  172. Cordeiro, A. S. et al. Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharmac. Res. 37, 174 (2020).

    Article  Google Scholar 

  173. Lemma, E. D., Spagnolo, B., De Vittorio, M. & Pisanello, F. Studying cell mechanobiology in 3D: the two-photon lithography approach. Trends Biotechnol. 37, 358–372 (2019).

    Article  Google Scholar 

  174. Tibbitt, M. W., Kloxin, A. M., Dyamenahalli, K. U. & Anseth, K. S. Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. Soft Matter 6, 5100–5108 (2010).

    Article  ADS  Google Scholar 

  175. Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).

    Article  Google Scholar 

  176. Abele, T. et al. Two-photon 3D laser printing inside synthetic cells. Adv. Mater. 34, 2106709 (2022).

    Article  Google Scholar 

  177. Zhong, Z. et al. Rapid 3D bioprinting of a multicellular model recapitulating pterygium microenvironment. Biomaterials 282, 121391 (2022).

    Article  Google Scholar 

  178. Soliman, B. G. et al. Development and characterization of gelatin-norbornene bioink to understand the interplay between physical architecture and micro-capillary formation in biofabricated vascularized constructs. Adv. Healthc. Mater. 11, 2101873 (2022).

    Article  Google Scholar 

  179. Sun, A. X., Lin, H., Beck, A. M., Kilroy, E. J. & Tuan, R. S. Projection stereolithographic fabrication of human adipose stem cell-incorporated biodegradable scaffolds for cartilage tissue engineering. Front. Bioeng. Biotechnol. 3, 115 (2015).

    Article  Google Scholar 

  180. He, B. et al. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration. Bioact. Mater. 17, 234–247 (2022).

    Article  Google Scholar 

  181. Elomaa, L. et al. Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography. J. Mater. Chem. B 3, 8348–8358 (2015).

    Article  Google Scholar 

  182. Zhu, W. et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124, 106–115 (2017).

    Article  ADS  Google Scholar 

  183. Kiratitanaporn, W. et al. 3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss. Biomater. Adv. 142, 213171 (2022).

    Article  Google Scholar 

  184. Ma, X. et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials 185, 310–321 (2018).

    Article  Google Scholar 

  185. Grix, T. et al. Bioprinting perfusion-enabled liver equivalents for advanced organ-on-a-chip applications. Genes 9, 176 (2018).

    Article  Google Scholar 

  186. Ma, Y. et al. Biomacromolecule-based agent for high-precision light-based 3D hydrogel bioprinting. Cell Rep. Phys. Sci. 3, 100985 (2022).

    Article  Google Scholar 

  187. Kim, S. H. et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9, 1620 (2018).

    Article  ADS  Google Scholar 

  188. Tang, M. et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 30, 833–853 (2020).

    Article  Google Scholar 

  189. Bracaglia, L. G. et al. 3D printed pericardium hydrogels to promote wound healing in vascular applications. Biomacromolecules 18, 3802–3811 (2017).

    Article  Google Scholar 

  190. 3D Systems. 3D systems announces breakthrough in bioprinting technology and expansion of regenerative medicine initiative. 3D Systems https://www.3dsystems.com/press-releases/3d-systems-announces-breakthrough-bioprinting-technology-and-expansion-0 (2021).

  191. Anandakrishnan, N. et al. Fast stereolithography printing of large-scale biocompatible hydrogel models. Adv. Healthc. Mater. 10, 2002103 (2021).

    Article  Google Scholar 

  192. Shopperly, L. K. et al. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients. J. Biomed. Mater. Res. B 110, 2310–2322 (2022).

    Article  Google Scholar 

  193. Xie, C. et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials 288, 121741 (2022).

    Article  Google Scholar 

  194. Yang, H. et al. Fabricating hydrogels to mimic biological tissues of complex shapes and high fatigue resistance. Matter 4, 1935–1946 (2021).

    Article  Google Scholar 

  195. Wei, Y. et al. Stereolithography-based additive manufacturing of high-performance osteoinductive calcium phosphate ceramics by a digital light-processing system. ACS Biomater. Sci. Eng. 6, 1787–1797 (2020).

    Article  Google Scholar 

  196. Zhang, B. et al. Three-dimensional printing of large-scale, high-resolution bioceramics with micronano inner porosity and customized surface characterization design for bone regeneration. ACS Appl. Mater. Interfaces 14, 8804–8815 (2022).

    Article  Google Scholar 

  197. De Oliveira, M. F., Da Silva, L. C. E. & De Oliveira, M. G. 3D printed bioresorbable nitric oxide-releasing vascular stents. Bioprinting 22, e00137 (2021).

    Article  Google Scholar 

  198. Zhu, W. et al. Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Mater. Today 21, 951–959 (2018).

    Article  Google Scholar 

  199. Tao, J. et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater. 90, 49–59 (2019).

    Article  Google Scholar 

  200. Koffler, J. et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 25, 263–269 (2019).

    Article  Google Scholar 

  201. Liu, H. et al. Filamented light (FLight) biofabrication of highly aligned tissue-engineered constructs. Adv. Mater. 34, 2204301 (2022).

    Article  Google Scholar 

  202. Chen, Y. et al. Noninvasive in vivo 3D bioprinting. Sci. Adv. 6, eaba7406 (2020).

    Article  ADS  Google Scholar 

  203. Wang, Y. et al. 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration. ACS Appl. Mater. Interfaces 13, 12746–12758 (2021).

    Article  Google Scholar 

  204. Dong, M. et al. Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements. Adv. Mater. 34, 2204333 (2022).

    Article  Google Scholar 

  205. Xue, D., Zhang, J., Wang, Y. & Mei, D. Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness. ACS Biomater. Sci. Eng. 5, 4825–4833 (2019).

    Article  Google Scholar 

  206. Gehlen, J., Qiu, W., Schädli, G. N., Müller, R. & Qin, X.-H. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomater. 156, 49–60 (2022).

    Article  Google Scholar 

  207. Wolf, K. J., Weiss, J. D., Uzel, S. G. M., Skylar-Scott, M. A. & Lewis, J. A. Biomanufacturing human tissues via organ building blocks. Cell Stem Cell 29, 667–677 (2022).

    Article  Google Scholar 

  208. Rackson, C. M. et al. Latent image volumetric additive manufacturing. Opt. Lett. 47, 1279–1282 (2022).

    Article  ADS  Google Scholar 

  209. Van Der Laan, H. L., Burns, M. A. & Scott, T. F. Volumetric photopolymerization confinement through dual-wavelength photoinitiation and photoinhibition. ACS Macro Lett. 8, 899–904 (2019).

    Article  Google Scholar 

  210. Rackson, C. M. et al. Object-space optimization of tomographic reconstructions for additive manufacturing. Add. Manuf. 48, 102367 (2021).

    Google Scholar 

  211. Corbett, D. C. et al. Thermofluidic heat exchangers for actuation of transcription in artificial tissues. Sci. Adv. 6, eabb9062 (2020).

    Article  ADS  Google Scholar 

  212. Walker David, A., Hedrick James, L. & Mirkin Chad, A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).

    Article  ADS  Google Scholar 

  213. Madrid-Sánchez, A. et al. Fabrication of large-scale scaffolds with microscale features using light sheet stereolithography. Int. J. Bioprint. 9, 650 (2023).

    Article  Google Scholar 

  214. Geng, Q., Wang, D., Chen, P. & Chen, S.-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).

    Article  ADS  Google Scholar 

  215. Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Sci. Rep. 10, 8740 (2020).

    Article  ADS  Google Scholar 

  216. Oran, D. et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 362, 1281–1285 (2018).

    Article  ADS  Google Scholar 

  217. Gong, J. et al. Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nat. Commun. 11, 1267 (2020).

    Article  ADS  Google Scholar 

  218. Wang, M., Li, W., Garciamendez-Mijares, C. E. & Zhang, Y. S. Engineering (bio)materials through shrinkage and expansion. Adv. Healthc. Mater. 21, 2100380 (2021).

    Article  Google Scholar 

  219. Chung Li, C., Toombs, J. & Taylor, H. in SCF ‘20: Proceedings of the 5th Annual ACM Symposium on Computational Fabrication 1–7 (ACM, 2020).

  220. You, S., Wang, P., Schimelman, J., Hwang, H. H. & Chen, S. High-fidelity 3D printing using flashing photopolymerization. Add. Manuf. 30, 100834 (2019).

    Google Scholar 

  221. Guan, J. et al. Compensating the cell-induced light scattering effect in light-based bioprinting using deep learning. Biofabrication 14, 015011 (2021).

    Article  ADS  Google Scholar 

  222. You, S. et al. Mitigating scattering effects in light-based three-dimensional printing using machine learning. J. Manuf. Sci. Eng. 142, 081002 (2020).

    Article  Google Scholar 

  223. Hsiao, K. et al. Single-digit-micrometer-resolution continuous liquid interface production. Sci. Eng. 8, eabq2846 (2022).

    Google Scholar 

  224. FDA. U.S. Food and Drug Administration Discussion Paper: 3D Printing Medical Devices at the Point of Care (FDA, 2021).

  225. Tahayeri, A. et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 34, 192–200 (2018).

    Article  Google Scholar 

  226. Liaw, C.-Y. & Guvendiren, M. Current and emerging applications of 3D printing in medicine. Biofabrication 9, 024102 (2017).

    Article  ADS  Google Scholar 

  227. Shen, E. M. & Mccloskey, K. E. Affordable, high-resolution bioprinting with embedded concentration gradients. Bioprinting 21, e00113 (2021).

    Article  Google Scholar 

  228. Malda, J. et al. 25th Anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).

    Article  Google Scholar 

  229. Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019).

    Article  Google Scholar 

  230. Mouser, V. H. M. et al. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication 8, 035003 (2016).

    Article  ADS  Google Scholar 

  231. Sharaf, A. et al. Two-photon polymerization of 2.5 D and 3D microstructures fostering a ramified resting phenotype in primary microglia. Front. Bioeng. Biotechnol. 10, 926642 (2022).

    Article  Google Scholar 

  232. Arcaute, K., Mann, B. K. & Wicker, R. B. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed. Eng. 34, 1429–1441 (2006).

    Article  Google Scholar 

  233. Arcaute, K., Mann, B. K. & Wicker, R. B. Fabrication of off-the-shelf multilumen poly (ethylene glycol) nerve guidance conduits using stereolithography. Tissue Eng. C 17, 27–38 (2011).

    Article  Google Scholar 

  234. Rakin, R. H. et al. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication 13, 044109 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

R.L. acknowledges funding from the European Research Council and from the FET-OPEN scheme under the European Union’s Horizon 2020 research and innovation programme (grant agreement Nos. 949806 and 964497) and from the Netherlands Organization for Scientific Research (024.004.013 and NWA.1228.192.105). B.E.K. and K.S.A. acknowledge funding from the NIH (R01DE16523 and R01DK120921). J.S. acknowledges funding support from the NIH (F31NS125986). S.C. acknowledges funding from the NIH (R01CA253615, R33HD090662 and R21ES034455) and the National Science Foundation (1907434 and 2135720). M.Z.-W. acknowledges funding from Innosuisse (55019.1 IP-ENG). Y.S.Z. acknowledges funding from the NIH (R21EB025270, R01EB028143, R01HL165176 and R01HL166522), the National Science Foundation (1936105) and the Brigham Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.L., O.D. and Y.S.Z.); Experimentation (R.L., O.D., C.E.G.-M., B.E.K., K.S.A. and Y.S.Z.); Results (R.L., O.D. and Y.S.Z.); Applications (R.R., M.Z.-W. and Y.S.Z.); Reproducibility and data deposition (R.L., O.D., C.E.G.-M. and Y.S.Z.); Limitations and optimizations (Y.S.Z. and R.L.); Outlook (J.S., S.C. and Y.S.Z.); Overview of the Primer (R.L. and Y.S.Z.); Reviewing and editing (all authors).

Corresponding authors

Correspondence to Riccardo Levato or Yu Shrike Zhang.

Ethics declarations

Competing interests

Y.S.Z. consults for Allevi by 3D Systems and sits on the scientific advisory board and holds options of Xellar, both of which, however, did not participate in or bias the work. R.L. is a scientific advisor for Readily3D SA, which did not participate in or bias the work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Yan Han Huang, Liliang Ouyang and Wai Yee Yeong for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

3D Printing Database: http://cect.umd.edu/3d-printing-database

GitHub: http://github.com

Mendeley Data: http://data.mendeley.com

OpenExposer: https://hackaday.io/project/1129-openexposer

Zenodo: http://zenodo.org

Supplementary information

Glossary

Green strength

The strength of the 3D-bioprinted material before it is processed to its final strength.

Melt electrowriting

A 3D printing method that uses electric fields to draw molten polymer filaments at microscale or nanoscale diameters with defined patterns before bending instabilities occur.

Multi-wavelength bioprinting

Bioprinting using multiple wavelengths, where each wavelength crosslinks a specific component within the bioresin.

Porogens

An additive that can disperse in the bioresin and may leach out or dissolve away to form pores in the material.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levato, R., Dudaryeva, O., Garciamendez-Mijares, C.E. et al. Light-based vat-polymerization bioprinting. Nat Rev Methods Primers 3, 47 (2023). https://doi.org/10.1038/s43586-023-00231-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00231-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research