Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Upcycling chlorinated waste plastics

Abstract

Over the past decade, chlorinated plastics have been widely used as an indispensable thermoplastic owing to their low cost, durability, wide processing adaptability and good overall performance in plenty of end-use applications. One effective pathway to reduce plastic white pollution is to upcycle chlorinated plastics for added value and versatility rather than recycle them. This Primer focuses on upcycling technologies for converting chlorinated waste plastics into additional valuable products and endowing them with added versatility. We describe several upcycling strategies for the conversion of chlorinated waste plastics into value-added products, which involve pretreatment to reduce the chlorine content; pyrolysis, carbonization or catalytic cracking; or chemical modifications such as substitution with functional groups and plasticizers, and grafting with other polymers. Additionally, solvent-based processing is discussed, including solvent extraction, and dissolution, gel casting and solvothermal treatments are also included. This Primer aims to stimulate both research and industry to produce high-quality and high-value chemicals from upcycled chlorinated plastics that are suitable for value-added manufacture to provide the necessary environmental and economic push in the context of carbon neutrality and sustainable development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of conventional chemical recovery and representative upcycling methods for the treatment of chlorinated thermoplastics.
Fig. 2: Chemical upcycling of PVC.
Fig. 3: PVC degradation mechanisms.
Fig. 4: Upcycling chlorinated plastics for added value and versatility.
Fig. 5: Life cycle assessment and output properties measurement.
Fig. 6: Upcycling chlorinated plastics for diverse applications.

Similar content being viewed by others

References

  1. Zhao, X., et al. Upcycling to sustainably reuse plastics. Adv. Mater. 34, 2100843 (2022).

    Article  Google Scholar 

  2. Chen, X., Wang, Y. & Zhang, L. Recent progress in the chemical upcycling of plastic wastes. ChemSusChem 14, 4137–4151 (2021).

    Article  Google Scholar 

  3. Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    Article  Google Scholar 

  4. Skolia, E., Mountanea, O. G. & Kokotos, C. G. Photochemical upcycling of polystyrene plastics. Trends Chem. 5, 116–120 (2022).

    Article  Google Scholar 

  5. Wang, C., Kelley, S. S. & Venditti, R. A. Lignin‐based thermoplastic materials. ChemSusChem 9, 770–783 (2016).

    Article  Google Scholar 

  6. Jiang, G., Sanchez Monsalve, D., Clough, P., Jiang, Y. & Leeke, G. A. Understanding the dechlorination of chlorinated hydrocarbons in the pyrolysis of mixed plastics. ACS Sustain. Chem. Eng. 9, 1576–1589 (2021).

    Article  Google Scholar 

  7. Li, N., et al. Conversion of plastic waste into fuels: a critical review. J. Hazard. Mater. 424, 127460 (2022).

    Article  Google Scholar 

  8. Liu, Y., Zhou, C., Li, F., Liu, H. & Yang, J. Stocks and flows of polyvinyl chloride (PVC) in China: 1980–2050. Resour. Conserv. Recycl. 154, 104584 (2020).

    Article  Google Scholar 

  9. International Council of Chemical Associations. UNEA-5 and A Global Framework to End Plastic Waste (ICCA, 2023).

  10. Zhang, G. et al. Room-temperature rapid synthesis of metal-free doped carbon materials. Carbon 115, 28–33 (2017).

    Article  Google Scholar 

  11. Chang, Y. et al. Polymer dehalogenation-enabled fast fabrication of N,S-codoped carbon materials for superior supercapacitor and deionization applications. ACS Appl. Mater. Interfaces 9, 29753–29759 (2017).

    Article  ADS  Google Scholar 

  12. Xu, C., Wang, S., Shao, L., Zhao, J. & Feng, Y. Structure and properties of chlorinated polyvinyl chloride graft copolymer with higher property. Polym. Adv. Technol. 23, 470–477 (2012).

    Article  Google Scholar 

  13. Ma, Y., et al. Physical and chemical modifications of poly(vinyl chloride) materials to prevent plasticizer migration—still on the run. React. Funct. Polym. 147, 104458 (2020).

    Article  Google Scholar 

  14. Begum S. A., Rane, A. V. & Kanny, K. in Applications of compatibilized polymer blends in automobile industry (eds Ajitha, A. R. & Sabu, T.) 563–593 (Elsevier, 2020).

  15. Mathew, J., Joy, J. & George, S. C. Potential applications of nanotechnology in transportation: a review. J. King Saud. Univ. Sci. 31, 586–594 (2019).

    Article  Google Scholar 

  16. Grand View Research. PVC Packaging Market Size, Share & Trends Analysis Report by Product (Durable, Non-durable), by Application (Food & Beverage, Pharmaceuticals, Cosmetics & Personal Care), by Region, and Segment Forecasts, 2021–2028 (Grand View Research, 2021).

  17. Data Bridge Market Research. Global Polyvinyl Chloride (PVC) Market Report. DBMR https://www.databridgemarketresearch.com/reports/global-polyvinyl-chloride-pvc-market (2022).

  18. Zion Market Research. Global PVC Market Set for Rapid Growth, to Reach Around USD 78.90 Billion by 2021 (GlobeNewswire, 2016).

  19. Patrick, S. Practical Guide to Polyvinyl Chloride (iSmithers Rapra, 2005).

  20. Chanda, M. & Roy, S. K. Industrial Polymers, Specialty Polymers, and Their Applications (CRC, 2008).

  21. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  22. Iles, A., Martin, A. & Rosen, C. M. in Ethics of Chemistry: From Poison Gas to Climate Engineering (eds Schummer, J. & Borsen, T.) 113–316 (World Scientific, 2021).

  23. Cruz, P. P. R., Da Silva, L. C., Fiuza-Jr, R. A. & Polli, H. Thermal dehydrochlorination of pure PVC polymer: part I — thermal degradation kinetics by thermogravimetric analysis. J. Appl. Polym. Sci. 138, 50598 (2021).

    Article  Google Scholar 

  24. Liu, P., Chen, W., Liu, Y., Bai, S. & Wang, Q. Thermal melt processing to prepare halogen-free flame retardant poly(vinyl alcohol). Polym. Degrad. Stab. 109, 261–269 (2014).

    Article  Google Scholar 

  25. Tullo, A. H. Plasticizer makers want a piece of the phthalates pie. Chem. Eng. News 93, 16–18 (2015).

    Google Scholar 

  26. Zedan, H. Red List of Threatened Species: A Global Species Assessment (IUCN, 2004).

  27. Zhang, F. et al. From trash to treasure: chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. J. Energy Chem. 69, 369–388 (2022).

    Article  Google Scholar 

  28. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021). This work discusses closed-loop recycling of PE plastics through depolymerization, solvolysis, common recycled moulding and polycondensation of long-chain building blocks derived from plant oil feedstocks or microalgal oils using cutting-edge catalytic techniques.

    Article  ADS  Google Scholar 

  29. Lee, A. & Liew, M. S. Tertiary recycling of plastics waste: an analysis of feedstock, chemical and biological degradation methods. J. Mater. Cycles Waste Manag. 23, 32–43 (2021).

    Article  Google Scholar 

  30. Wang, M.-M., Zhang, C.-C. & Zhang, F.-S. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process. Waste Manag. 67, 232–239 (2017).

    Article  Google Scholar 

  31. Kameda, T., Wachi, S., Grause, G., Mizoguchi, T. & Yoshioka, T. Dehydrochlorination of poly(vinyl chloride) with Ca(OH)2 in ethylene glycol and the effect of ball milling. J. Polym. Res. 18, 1687–1691 (2011).

    Article  Google Scholar 

  32. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022). This work presents a perspective on the upcycling of plastic waste into specialized polymers, fine chemicals and new materials with added value for a sustainable plastics economy.

    Article  ADS  Google Scholar 

  33. Hou, Q. et al. Upcycling and catalytic degradation of plastic wastes. Cell Rep. Phys. Sci. 2, 100514 (2021).

    Article  Google Scholar 

  34. Duangchan, A. & Samart, C. Tertiary recycling of PVC-containing plastic waste by copyrolysis with cattle manure. Waste Manag. 28, 2415–2421 (2008).

    Article  Google Scholar 

  35. Organisation for Economic Co-operation and Development (OECD). Global plastics outlook database. OECD https://www.oecd-ilibrary.org/environment/data/global-plastic-outlook_c0821f81-en (2023).

  36. Hundertmark, T., Mayer, M., McNally, C., Simons, T. J. & Witte, C. How plastics waste recycling could transform the chemical industry. McKinsey & Company https://www.mckinsey.com/industries/chemicals/our-insights/how-plastics-waste-recycling-could-transform-the-chemical-industry#/ (2018).

  37. Miliute-Plepiene, J., Fråne, A. & Almasi, A. M. Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Clean. Eng. Technol. 4, 100246 (2021).

    Article  Google Scholar 

  38. Glas, D., Hulsbosch, J., Dubois, P., Binnemans, K. & Devos, D. E. End-of-life treatment of poly(vinyl chloride) and chlorinated polyethylene by dehydrochlorination in ionic liquids. ChemSusChem 7, 610–617 (2014).

    Article  Google Scholar 

  39. Wang, H. et al. Solid base assisted dual-promoted heterogeneous conversion of PVC to metal-free porous carbon catalyst. Chem. Eur. J. 28, e202200124 (2022). This work presents a solvent and solid-base dual-promoted solvothermal method for converting PVC into high-value chemicals at a relatively low temperature (<200 °C), which has the potential to inexpensively recover PVC with low chlorinated content and high conversion yields for commercial application.

    Google Scholar 

  40. Zhou, Q. et al. Lanthania promoted MgO: simultaneous highly efficient catalytic degradation and dehydrochlorination of polypropylene/polyvinyl chloride. Appl. Catal. B. 80, 141–146 (2008).

    Article  Google Scholar 

  41. Jiao, X. et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angew. Chem. Int. Ed. 59, 15497–15501 (2020). This work presents a novel photo-induced C–C cleavage and coupling route for converting chlorinated waste polymers into C2 chemicals under normal external conditions.

    Article  Google Scholar 

  42. Jia, P. et al. Cardanol groups grafted on poly (vinyl chloride) — synthesis, performance and plasticization mechanism. Polymers 9, 621 (2017).

    Article  Google Scholar 

  43. Beveridge, J. M., Chenot, H. M., Crich, A., Jacob, A. & Finn, M. Covalent functionalization of flexible polyvinyl chloride tubing. Langmuir 34, 10407–10412 (2018).

    Article  Google Scholar 

  44. Lee, K. W., Chung, J. W. & Kwak, S.-Y. Structurally enhanced self‐plasticization of poly(vinyl chloride) via click grafting of hyperbranched polyglycerol. Macromol. Rapid Commun. 37, 2045–2051 (2016).

    Article  Google Scholar 

  45. Kim, J. K., Lee, C. S., Lee, S.-Y., Cho, H. H. & Kim, J. H. Bimodal porous TiO2 structures templated by graft copolymer/homopolymer blend for dye-sensitized solar cells with polymer electrolyte. J. Power Sources 336, 286–297 (2016).

    Article  ADS  Google Scholar 

  46. Chi, W. S. et al. Direct organization of morphology-controllable mesoporous SnO2 using amphiphilic graft copolymer for gas-sensing applications. ACS Appl. Mater. Interface 9, 37246–37253 (2017).

    Article  Google Scholar 

  47. Park, M. S., Walsh, D., Zhang, J., Kim, J. H. & Eslava, S. Efficient hematite photoanodes prepared by hydrochloric acid-treated solutions with amphiphilic graft copolymer. J. Power Sources 404, 149–158 (2018).

    Article  ADS  Google Scholar 

  48. Gates, B. C. Catalytic Chemistry (Wiley, 1991).

  49. Zinovyev, S., Perosa, A., Yufit, S. & Tundo, P. Hydrodechlorination and hydrogenation over Raney–Ni under multiphase conditions: role of multiphase environment in reaction kinetics and selectivity. J. Catal. 211, 347–354 (2002).

    Article  Google Scholar 

  50. Assefa, M. K. & Fieser, M. E. Divergent silylium catalysis enables facile poly (vinyl chloride) upcycling to poly(ethylene-co-styrene) derivatives. J. Mater. Chem. A. 11, 2128–2132 (2023). This recent report highlights the ability to turn PVC into polyethylene-co-styrene using an in situ-generated silylium catalyst.

    Article  Google Scholar 

  51. Wu, Y.-H., et al. Poly(ethylene glycol) enhanced dehydrochlorination of poly(vinyl chloride). J. Hazard. Mater. 163, 1408–1411 (2009).

    Article  Google Scholar 

  52. Fagnani, D. E., Kim, D., Camarero, S. I., Alfaro, J. F. & Mcneil, A. J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro (de)chlorination. Nat. Chem. 15, 222–229 (2023). This recent paper highlights how waste PVC can be used as a chlorine source in place of HCl, using electrocatalytic methods.

    Article  Google Scholar 

  53. Shapoval, G., Tomilov, A., Pud, A. & Batsalova, K. The electrochemical reductive degradation of polyvinyl chloride. Polym. Sci. 29, 1564–1572 (1987).

    Google Scholar 

  54. Greco, A., Ferrari, F. & Maffezzoli, A. UV and thermal stability of soft PVC plasticized with cardanol derivatives. J. Clean. Prod. 164, 757–764 (2017).

    Article  Google Scholar 

  55. Laukaitienė, A., et al. Investigation of polyvinyl chloride and thermoplastic polyurethane waste blend miscibility. Mater. Sci. 19, 397–402 (2013).

    Google Scholar 

  56. Elshekeil, Y., Sapuan, S., Jawaid, M. & Al-Shujaa, O. Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibers reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater. Des. 58, 130–135 (2014).

    Article  Google Scholar 

  57. Brookman, R. S. A new PVC based polymer for medical applications. J. Vinyl Addit. Technol. 13, 191–194 (1991).

    Article  Google Scholar 

  58. Teyssie, P. & Smets, G. Polymers and group interactions. II. Friedel–Crafts reactions on polyvinyl chloride, a route to poly‐1,3‐methyleneindans. J. Polym. Sci. 20, 351–369 (1956). This work shows how Friedel–Crafts reactions can graft styrenic groups onto the polymer backbone of PVC (and release HCl), which is one of the first examples of chemical substitution on the PVC backbone.

    Article  ADS  Google Scholar 

  59. Kabir, G. & Hameed, B. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sust. Energ. Rev. 70, 945–967 (2017).

    Article  Google Scholar 

  60. Harvey, A. N., Snape, I. & Siciliano, S. D. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil. Environ. Toxicol. Chem. 31, 402–407 (2012).

    Article  Google Scholar 

  61. Corwin, D. L. in Encyclopedia of Water Science (eds Stewart, B. A. & Howell, T.) 4–7 (CRC press, 2003).

  62. Li, J., Cai, J., Yuan, T., Guo, H. & Qi, F. A thermal decomposition study of polymers by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1269–1274 (2009).

    Article  ADS  Google Scholar 

  63. Moulay, S. Chemical modification of poly(vinyl chloride) — still on the run. Prog. Polym. Sci. 35, 303–331 (2010).

    Article  Google Scholar 

  64. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 114, 2708–2711 (2002).

    Article  ADS  Google Scholar 

  65. Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev. 121, 7122–7154 (2021).

    Article  Google Scholar 

  66. Liang, L. & Astruc, D. The copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 255, 2933–2945 (2011).

    Article  Google Scholar 

  67. Earla, A., Li, L., Costanzo, P. & Braslau, R. Phthalate plasticizers covalently linked to PVC via copper-free or copper catalyzed azide–alkyne cycloadditions. Polymer 109, 1–12 (2017).

    Article  Google Scholar 

  68. Öztürk, T., Meyvacı, E. & Arslan, T. Synthesis and characterization of poly(vinyl chloride-g-ε-caprolactone) brush type graft copolymers by ring-opening polymerization and “click” chemistry. J. Macromol. Sci. A 57, 171–180 (2020).

    Article  Google Scholar 

  69. Baxter, I. Sustainable Polymers: Upcycling Poly(Vinyl Chloride) and Mimicking Low Density Polyethylene (Univ. of South Carolina, 2022).

  70. Thornton, J. Environmental Impacts of Polyvinyl Chloride (PVC) Building Materials (Healthy Building Network, 2002).

  71. Kaminsky, W. Chemical recycling of plastics by fluidized bed pyrolysis. Fuel Commun. 8, 100023 (2021).

    Article  Google Scholar 

  72. Zhou, S., Liu, C. & Zhang, L. Critical review on the chemical reaction pathways underpinning the primary decomposition behavior of chlorine-bearing compounds under simulated municipal solid waste incineration conditions. Energy Fuel 34, 1–15 (2019).

    Article  Google Scholar 

  73. Chen, Y. et al. Catalytic dechlorination and charring reaction of polyvinyl chloride by CuAl layered double hydroxide. Energy Fuels 32, 2407–2413 (2018).

    Article  Google Scholar 

  74. Bae, S. Y., et al. Dehydrochlorination of polyvinylchloride using Al-modified graphitic-C3N4. RSC Adv. 6, 20728–20733 (2016).

    Article  ADS  Google Scholar 

  75. Dai, M. et al. Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride. Appl. Therm. Eng. 136, 9–15 (2018).

    Article  Google Scholar 

  76. Dwivedi, P., Mishra, P., Mondal, M. K. & Srivastava, N. Non-biodegradable polymeric waste pyrolysis for energy recovery. Heliyon 5, e02198 (2019).

    Article  Google Scholar 

  77. Zhou, N. et al. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chem. Eng. J. 418, 129412 (2021).

    Article  Google Scholar 

  78. Gopinath, K. P., Nagarajan, V. M., Krishnan, A. & Malolan, R. A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: development of a comprehensive index. J. Clean. Prod. 274, 123031 (2020).

    Article  Google Scholar 

  79. Anikeeva, I., et al. Synthesis of carbon materials via mechanically activated dehydrochlorination of polyvinyl chloride. Russ. J. Appl. Chem. 91, 1830–1834 (2018).

    Article  Google Scholar 

  80. Kryazhev, Y. G. et al. Porous carbon–carbon composite materials obtained by alkaline dehydrochlorination of polyvinyl xhloride. Materials 15, 7636 (2022).

    Article  ADS  Google Scholar 

  81. Cheng, L. X., Zhang, L., Chen, X. Y. & Zhang, Z. J. Efficient conversion of waste polyvinyl chloride into nanoporous carbon incorporated with MnOx exhibiting superior electrochemical performance for supercapacitor application. Electrochim. Acta. 176, 197–206 (2015).

    Article  Google Scholar 

  82. Sheng, Z. et al. Green synthesis of nitrogen-doped hierarchical porous carbon nanosheets derived from polyvinyl chloride towards high-performance supercapacitor. J. Power Sources 515, 230629 (2021).

    Article  Google Scholar 

  83. Chang, Y. et al. Converting polyvinyl chloride plastic wastes to carbonaceous materials via room-temperature dehalogenation for high-performance supercapacitor. ACS Appl. Energy Mater. 1, 5685–5693 (2018).

    Google Scholar 

  84. Zhang, N. & Shen, Y. One-step pyrolysis of lignin and polyvinyl chloride for synthesis of porous carbon and its application for toluene sorption. Bioresour. Technol. 284, 325–332 (2019).

    Article  Google Scholar 

  85. Min, J. et al. A general approach towards carbonization of plastic waste into a well-designed 3D porous carbon framework for super lithium-ion batteries. Chem. Commun. 56, 9142–9145 (2020).

    Article  Google Scholar 

  86. Kobayashi, N., Inden, Y. & Endo, M. Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery. J. Power Sources 326, 235–241 (2016).

    Article  ADS  Google Scholar 

  87. Zhang, Z., Zhou, D., Zhou, L., Yu, H. & Huang, B. NiFe LDH-CoPc/CNTs as novel bifunctional electrocatalyst complex for zinc-air battery. Ionics 24, 1709–1714 (2018).

    Article  ADS  Google Scholar 

  88. Cho, M.-H., Choi, Y.-K. & Kim, J.-S. Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy 87, 586–593 (2015).

    Article  Google Scholar 

  89. Li, Q., et al. Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination. J. Colloid Interface Sci. 584, 602–609 (2021).

    Article  ADS  Google Scholar 

  90. Tian, C. et al. Sandwich photothermal membrane with confined hierarchical carbon cells enabling high-efficiency solar steam generation. Small 16, 2000573 (2020).

    Article  Google Scholar 

  91. Gong, F. F. et al. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 58, 322–330 (2019).

    Article  Google Scholar 

  92. Gao, Y., Zhao, H., Chen, D., Chen, C. & Ciucci, F. In situ synthesis of mesoporous manganese oxide/sulfur-doped graphitized carbon as a bifunctional catalyst for oxygen evolution/reduction reactions. Carbon 94, 1028–1036 (2015).

    Article  Google Scholar 

  93. Wang, J. et al. Polyvinyl chloride-derived carbon spheres for CO2 adsorption. ChemSusChem 13, 6426–6432 (2020).

    Google Scholar 

  94. Qian, M., Chen, I.-W. & Huang, F. Solar activated crude oil cleanup using net-shape-formed ultralight graphene tiles. Appl. Mater. Today 19, 100551 (2020).

    Article  Google Scholar 

  95. Qian, M. et al. Ultra-light graphene tile-based phase-change material for efficient thermal and solar energy harvest. ACS Appl. Energy Mater. 3, 5517–5522 (2020).

    Article  Google Scholar 

  96. Lu, L.,et al. A new strategy for CO2 utilization with waste plastics: conversion of hydrogen carbonate into formate using polyvinyl chloride in water. Green Chem. 22, 352–358 (2020).

    Article  Google Scholar 

  97. Wang, L., Zhang, R.-Z., Deng, R. & Luo, Y.-H. Oxygen-induced enhancement in low-temperature dechlorination of PVC: an experimental and DFT study on the oxidative pyrolysis process. ACS Sustain. Chem. Eng. 9, 2835–2843 (2021).

    Article  Google Scholar 

  98. Peng, C. et al. Low temperature co-pyrolysis of food waste with PVC-derived char: products distributions, char properties and mechanism of bio-oil upgrading. Energy 219, 119670 (2021).

    Article  Google Scholar 

  99. Seino, A., Nishizaki, T., Kanda, Y., Sugioka, M. & Uemichi, Y. Development of chlorine tolerant degradation catalyst for chemical recycling of polyethylene. J. Jpn. Pet. Inst. 52, 70–71 (2009).

    Article  Google Scholar 

  100. Aguado, J., Serrano, D., Sotelo, J., Van Grieken, R. & Escola, J. M. Influence of the operating variables on the catalytic conversion of a polyolefin mixture over HMCM-41 and nanosized HZSM-5. Ind. Eng. Chem. Res. 40, 5696–5704 (2001).

    Article  Google Scholar 

  101. Uekert, T., Kasap, H. & Reisner, E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 141, 15201–15210 (2019).

    Article  Google Scholar 

  102. Zang, X., Dong, Y., Jian, C., Ferralis, N. & Grossman, J. C. Upgrading carbonaceous materials: coal, tar, pitch, and beyond. Matter 5, 430–447 (2022).

    Article  Google Scholar 

  103. Lü, X. et al. Low-temperature rapid synthesis of high-quality pristine or boron-doped graphene via Wurtz-type reductive coupling reaction. J. Mater. Chem. 21, 10685–10689 (2011).

    Article  Google Scholar 

  104. Weng, B., Wu, Z., Li, Z. & Yang, H. Hydrogen generation from hydrolysis of NH3BH3/MH (M = Li, Na) binary hydrides. Int. J. Hydrog. Energy 37, 5152–5160 (2012).

    Article  Google Scholar 

  105. Lin, T., Huang, F., Liang, J. & Wang, Y. A facile preparation route for boron-doped graphene, and its CdTe solar cell application. Energy Environ. Sci. 4, 862–865 (2011).

    Article  Google Scholar 

  106. Yoshioka, T., Furukawa, K. & Okuwaki, A. Chemical recycling of rigid-PVC by oxygen oxidation in NaOH solutions at elevated temperatures. Polym. Degrad. Stab. 67, 285–290 (2000).

    Article  Google Scholar 

  107. Inoue, T., Miyazaki, M., Kamitani, M., Kano, J. & Saito, F. Dechlorination of polyvinyl chloride by its grinding with KOH and NaOH. Adv. Powder Technol. 16, 27–34 (2005).

    Article  Google Scholar 

  108. Zhao, P., Li, T., Yan, W. & Yuan, L. Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives. Environ. Technol. 39, 977–985 (2018).

    Article  Google Scholar 

  109. Ma, D. et al. Dechlorination of polyvinyl chloride by hydrothermal treatment with cupric ion. Process. Saf. Environ. 146, 108–117 (2021).

    Article  Google Scholar 

  110. Fuentes, J. A. et al. On the functional group tolerance of ester hydrogenation and polyester depolymerization catalyzed by ruthenium complexes of tridentate aminophosphine ligands. Chem. Eur. J. 21, 10851–10860 (2015).

    Article  Google Scholar 

  111. Lu, X., Ma, X., Chen, X., Yao, Z. & Zhang, C. Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production. Bioresour. Technol. 301, 122763 (2020).

    Article  Google Scholar 

  112. Yao, Z. & Ma, X. Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo. Bioresour. Technol. 247, 302–309 (2018).

    Article  Google Scholar 

  113. Ma, D., et al. Insight into chlorine evolution during hydrothermal carbonization of medical waste model. J. Hazard. Mater. 380, 120847 (2019).

    Article  Google Scholar 

  114. Hashimoto, K., Suga, S., Wakayama, Y. & Funazukuri, T. Hydrothermal dechlorination of PVC in the presence of ammonia. J. Mater. Sci. 43, 2457–2462 (2008).

    Article  ADS  Google Scholar 

  115. Lieberzeit, P., Bekchanov, D. & Mukhamediev, M. Polyvinyl chloride modifications, properties, and applications. Adv. Polym. Technol. 33, 1809–1820 (2022).

    Article  Google Scholar 

  116. Queiroz, A., Pedroso, G. B., Kuriyama, S. N. & Fidalgo-Neto, A. A. Subcritical and supercritical water for chemical recycling of plastic waste. Curr. Opin. Green. Sustain. Chem. 25, 100364 (2020).

    Article  Google Scholar 

  117. Čolnik, M., Kotnik, P., Knez, Ž. & Škerget, M. Degradation of polyvinyl chloride (PVC) waste with supercritical water. Processes 10, 1940 (2022).

    Article  Google Scholar 

  118. Jia, C., et al. Applications, treatments, and reuse of plastics from electrical and electronic equipment. J. Ind. Eng. Chem. 110, 84–99 (2022).

    Article  Google Scholar 

  119. Yu, C.-H. et al. Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. Chemosphere 306, 135656 (2022).

    Article  ADS  Google Scholar 

  120. Yan, B., et al. Review on porous carbon materials engineered by ZnO templates: design, synthesis and capacitance performance. Mater. Des. 201, 109518 (2021).

    Article  Google Scholar 

  121. Xu, S. M., Liang, X., Ren, Z. C., Wang, K. X. & Chen, J. S. Free-standing air cathodes based on 3D hierarchically porous carbon membranes: kinetic overpotential of continuous macropores in Li–O2 batteries. Angew. Chem. Int. Ed. 130, 6941–6945 (2018).

    Article  ADS  Google Scholar 

  122. Oster, K., et al. Dehydrochlorination of PVC in multi-layered blisterpacks using ionic liquids. Green. Chem. 22, 5132–5142 (2020).

    Article  Google Scholar 

  123. Zhao, T. et al. A highly efficient approach for dehydrochlorinating polyvinyl chloride: catalysis by 1-butyl-3-methylimidazolium chloride. Green. Chem. 12, 1062–1065 (2010).

    Article  Google Scholar 

  124. Klöpffer, W. The critical review of life cycle assessment studies according to ISO 14040 and 14044. Int. J. LCA 17, 1087–1093 (2012).

    Article  Google Scholar 

  125. Serajiantehrani, R. Development of a Machine Learning-based Prediction Model for Construction and Environmental Costs of Trenchless Spray-applied Pipe Linings, Cured-in-Place Pipe, and Slip Lining Methods in Large Diameter Culverts (Univ. of Texas at Arlington, 2019).

  126. Larosa, A. et al. Life cycle assessment of a novel hybrid glass-hemp/thermoset composite. J. Clean. Prod. 44, 69–76 (2013).

    Article  Google Scholar 

  127. Mark, G. SimaPro 9.1.1 (PRé Sustainability, 2020).

  128. Galvez-Martos, J.-L. & Schoenberger, H. An analysis of the use of life cycle assessment for waste co-incineration in cement kilns. Resour. Recycl. 86, 118–131 (2014).

    Article  Google Scholar 

  129. Yung, K. C., Chan, C. & Zhang, Y. Application Guideline for Embedded GHG Emissions Database and G-BOM Analyzer (Computer Science, 2015).

  130. Rosenbaum, R. K. et al. USEtox—the UNEP-SETAC toxicity model: recommended characterization factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. LCA 13, 532–546 (2008).

    Article  Google Scholar 

  131. Dudek, A. Z., Arodz, T. & Gálvez, J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb. Chem. High. Throughput Screen. 9, 213–228 (2006).

    Article  Google Scholar 

  132. Cronin, M. T. in Recent advances in QSAR studies. Challenges and advances in computational chemistry and physics (eds Puzyn, T., Leszczynski, J. & Cronin, M.) 3–11 (Springer, 2010).

  133. Nolte, T. M., Peijnenburg, W. J., Hendriks, A. J. & van de-Meent, D. Quantitative structure–activity relationships for green algae growth inhibition by polymer particles. Chemosphere 179, 49–56 (2017).

    Article  ADS  Google Scholar 

  134. Tait, M. W. & Cheung, W. M. A comparative cradle-to-gate life cycle assessment of three concrete mix designs. Int. J. LCA 21, 847–860 (2016).

    Article  Google Scholar 

  135. Yung, W. K., Muthu, S. S. & Subramanian, K. in Carbon Footprint Analysis of Printed Circuit Board (ed. Subramanian, S.) 365–431 (Butterworth-Heinemann, 2018).

  136. Jiménez-González, C., Kim, S. & Overcash, M. R. Methodology for developing gate-to-gate life cycle inventory information. Int. J. LCA 5, 153–159 (2000).

    Article  Google Scholar 

  137. Mohanty, A. K. et al. Sustainable polymers. Nat. Rev. Methods Primers 2, 1–27 (2022).

    Article  Google Scholar 

  138. Yang, M., Zhao, P., Cui, X., Geng, F. & Guo, Q. Kinetics study on hydrothermal dechlorination of poly(vinyl chloride) by in-situ sampling. Environ. Technol. Innov. 23, 101703 (2021).

    Article  Google Scholar 

  139. Jia, P., et al. Self-plasticization of PVC materials via chemical modification of mannich base of cardanol butyl ether. ACS Sustain. Chem. Eng. 5, 6665–6673 (2017).

    Article  Google Scholar 

  140. Noorani, N. & Mehrdad, A. Modification of PVC with 1-vinylimidazole for CO2/CH4 separation: sorption, permeation and DFT studies. Phys. Chem. Res. 8, 689–703 (2020).

    Google Scholar 

  141. Vancsó, G., Nagy, T., Turcsányi, B., Kelen, T. & Tüdós, F. Formation of fixed paramagnetic solitons in a polyacetylene analogue polymer matrices: ESR studies in thermally decomposed PVC. J. Phys. Colloq. 44, 703–704 (1983).

    Article  Google Scholar 

  142. Li, T., Zhao, P., Lei, M. & Li, Z. Understanding hydrothermal dechlorination of PVC by focusing on the operating conditions and hydrochar characteristics. Appl. Sci. 7, 256 (2017).

    Article  ADS  Google Scholar 

  143. Lin, Y.-H., Tseng, C.-C., Wei, T.-T. & Hsu, C.-T. Recycling of dual hazardous wastes in a catalytic fluidizing process. Catal. Today 174, 37–45 (2011).

    Article  Google Scholar 

  144. Chen, X., et al. Fabrication of a high water flux conductive MWCNTs/PVC composite membrane with effective electrically enhanced antifouling behavior. Coatings 11, 1548 (2021).

    Article  Google Scholar 

  145. Wang, C., Song, X., Liu, Y. & Zhang, C. PVC-g-PVP amphiphilic polymer synthesis by ATRP and its membrane separation performance for silicone-containing wastewater. Polymer 229, 123965 (2021).

    Article  Google Scholar 

  146. Matsumoto, M., Takemori, S. & Tahara, Y. Lactic acid permeation through deep eutectic solvents-based polymer inclusion membranes. Membranes 10, 244 (2020).

    Article  Google Scholar 

  147. Zhang, M. et al. A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 13, 298–305 (2015).

    Article  Google Scholar 

  148. Sil, D. & Chakrabarti, S. Photocatalytic degradation of PVC–ZnO composite film under tropical sunlight and artificial UV radiation: a comparative study. Sol. Energy 84, 476–485 (2010).

    Article  ADS  Google Scholar 

  149. Lin, H. et al. Photocatalytic and antibacterial properties of medical-grade PVC material coated with TiO2 film. J. Biomed. Mater. Res. B 87, 425–431 (2008).

    Article  Google Scholar 

  150. Hwang, T., Frank, Z., Neubauer, J. & Kim, K. J. High-performance polyvinyl chloride gel artificial muscle actuator with graphene oxide and plasticizer. Sci. Rep. 9, 9658 (2019).

    Article  ADS  Google Scholar 

  151. Hines, L., Petersen, K., Lum, G. Z. & Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 29, 1603483 (2017).

    Article  Google Scholar 

  152. Taghavi, M., Chen, H. Y., Conn, A. T. & Rossiter, J. Stiffness graded electroactive artificial muscle. Adv. Funct. Mater. 32, 2200994 (2022).

    Article  Google Scholar 

  153. Dong, T.-Y., Zhang, X.-I. & Liu, T. Artificial muscles for wearable assistance and rehabilitation. Front. Inf. Technol. Electron. Eng. 19, 1303–1315 (2018).

    Article  Google Scholar 

  154. Li, Y., & Hashimoto, M. A proposal of a light-weight walking assist wear using PVC gel artificial muscles. in IEEE Int. Conf. Robotics and Automation 2920–2925 (IEEE, 2015).

  155. Li, Y., Li, Y. & Hashimoto, M. Low-voltage planar PVC gel actuator with high performances. Sens. Actuators B Chem. 282, 482–489 (2019).

    Article  Google Scholar 

  156. Gent, A. & Shimizu, N. Elasticity, tear strength, and strength of adhesion of soft PVC gels. J. Appl. Polym. Sci. 32, 5385–5398 (1986).

    Article  Google Scholar 

  157. Li, Y., Guo, M. & Li, Y. Recent advances in plasticized PVC gels for soft actuators and devices: a review. J. Mater. Chem. C. 7, 12991–13009 (2019).

    Article  Google Scholar 

  158. Wang, Z., et al. 3D printing of electrically responsive PVC gel actuators. ACS Appl. Mater. Interfaces 13, 24164–24172 (2021).

    Article  Google Scholar 

  159. Hirai, T., et al. Electrically active artificial pupil showing amoeba-like pseudopodial deformation. Adv. Mater. 21, 2886–2888 (2009).

    Article  Google Scholar 

  160. Ge, D. et al. A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv. Mater. 27, 2489–2495 (2015).

    Article  Google Scholar 

  161. Ke, Y. et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9, 1902066 (2019).

    Article  Google Scholar 

  162. Li, Y., Maeda, Y. & Hashimoto, M. Lightweight, soft variable stiffness gel spats for walking assistance. Int. J. Adv. Robot. 12, 175 (2015).

    Google Scholar 

  163. Kato, Y. et al. Sheet-type Braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans. Electron. Device. 54, 202–209 (2007).

    Article  ADS  Google Scholar 

  164. Kameda, T., Ono, M., Grause, G., Mizoguchi, T. & Yoshioka, T. Chemical modification of poly(vinyl chloride) by nucleophilic substitution. Polym. Degrad. 94, 107–112 (2009).

    Article  Google Scholar 

  165. Liu, R., et al. Assessing the influence of various imidazolium groups on the properties of poly(vinyl chloride) based high temperature proton exchange membranes. Eur. Polym. J. 137, 109948 (2020).

    Article  Google Scholar 

  166. Choi, J. K., Kim, Y. W., Koh, J. H. & Kim, J. H. Proton conducting membranes based on poly(vinyl chloride) graft copolymer electrolytes. Adv. Polym. Tech. 19, 915–921 (2008).

    Article  Google Scholar 

  167. Allan, J. T., Prest, L. E. & Easton, E. B. The sulfonation of polyvinyl chloride: synthesis and characterization for proton conducting membrane applications. J. Membr. Sci. 489, 175–182 (2015).

    Article  Google Scholar 

  168. Nayak, V., Jyothi, M., Balakrishna, R. G., Padaki, M. & Isloor, A. M. Synthesis and characterization of novel sulfanilic acid–polyvinyl chloride–polysulfone blend membranes for metal ion rejection. RSC Adv. 6, 25492–25502 (2016).

    Article  ADS  Google Scholar 

  169. Kim, J., Lee, J., Jo, C. & Kang, C. Development of low cost carbon fibers based on chlorinated polyvinyl chloride (CPVC) for automotive applications. Mater. Des. 204, 109682 (2021).

    Article  Google Scholar 

  170. Forsyth, D. & Jay, B. Organotin leachates in drinking water from chlorinated poly(vinyl chloride) (CPVC) pipe. Appl. Organomet. Chem. 11, 551–558 (1997).

    Article  Google Scholar 

  171. Marino, A. et al. ZSM-5 zeolites performance assessment in catalytic pyrolysis of PVC-containing real WEEE plastic wastes. Catal. Today. 390, 210–220 (2022).

    Article  Google Scholar 

  172. Al-Harahsheh, M., Al-Nu’airat, J., Al-Otoom, A., Al-Jabali, H. & Al-Zoubi, M. Treatments of electric arc furnace dust and halogenated plastic wastes: a review. J. Environ. Chem. Eng. 7, 102856 (2019).

    Article  Google Scholar 

  173. Muir, D., Stern, G. & Tomy, G. in Anthropogenic Compounds Part K. The Handbook of Environmental Chemistry Vol. 3K (eds Hutzinger, O. & Paasivirta, J.) 203–236 (Springer, 2000).

  174. Morrison, R. D. & Murphy, B. L. Chlorinated Solvents: A Forensic Evaluation (RSC, 2015).

  175. Mishra, S., Roy, M. & Mohanty, K. Microalgal bioenergy production under zero-waste biorefinery approach: recent advances and future perspectives. Bioresour. Technol. 292, 122008 (2019).

    Article  Google Scholar 

  176. Brundage, M. P., Lechevalier, D. & Morris, K. C. Toward standards-based generation of reusable life cycle inventory data models for manufacturing processes. J. Manuf. Sci. Eng 141, 4041947 (2018).

    Google Scholar 

  177. Verma, R., Vinoda, K., Papireddy, M. & Gowda, A. Toxic pollutants from plastic waste — a review. Procedia Environ. Sci. 35, 701–708 (2016).

    Article  Google Scholar 

  178. European Commission. The Behaviour of PVC in Landfill (Argus, 2021).

  179. Martín, A. J., Mondelli, C., Jaydev, S. D. & Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem 7, 1487–1533 (2021).

    Article  Google Scholar 

  180. Everard, M. Twenty years of the polyvinyl chloride sustainability challenges. J. Vinyl Addit. Technol. 26, 390–402 (2020).

    Article  Google Scholar 

  181. Yu, H. et al. Co-pyrolysis of biomass and polyvinyl chloride under microwave irradiation: distribution of chlorine. Sci. Total. Environ. 806, 150903 (2022).

    Article  ADS  Google Scholar 

  182. Al-Harahsheh, M., Kingman, S., Al-Makhadmah, L. & Hamilton, I. E. Microwave treatment of electric arc furnace dust with PVC: dielectric characterization and pyrolysis-leaching. J. Hazard. Mater. 274, 87–97 (2014).

    Article  Google Scholar 

  183. Zhao, S., Wang, C., Bai, B., Jin, H. & Wei, W. Study on the polystyrene plastic degradation in supercritical water/CO2 mixed environment and carbon fixation of polystyrene plastic in CO2 environment. J. Hazard. Mater. 421, 126763 (2022).

    Article  Google Scholar 

  184. Xu, B., Zhao, X., Chen, H., Su, S. & Yu, H. Effects of carbonization conditions on structure and gas adsorption of carbon membranes derived from polyvinyl chloride. Chem. Sel. 5, 957–961 (2020).

    Google Scholar 

  185. Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z. & Wei, L. The New Plastics Economy Global Commitment 2020 Progress Report (UN Environment Programme, 2020).

  186. Sato, Y., Kato, K., Takeshita, Y., Takahashi, K. & Nishi, S. Decomposition of ployvinylchloride using supercritical water. J. Appl. Phys. 37, 6270 (1998).

    Article  Google Scholar 

  187. Du, J. et al. Environmental distribution, transport and ecotoxicity of microplastics: a review. J. Appl. Toxicol. 41, 52–64 (2021).

    Article  Google Scholar 

  188. Dong, J. et al. Feasibility evaluation of the terminated waste energy in situ conversion strategy toward carbon neutralization in metallurgical processes. ACS Sustain. Chem. Eng. 9, 14079–14089 (2021).

    Article  Google Scholar 

  189. Fantozzi, F., D’Alessandro, B. & Bidini, G. IPRP (integrated-pyrolysis regenerated plant): gas turbine and externally heated rotary-kiln pyrolysis as a biomass and waste energy conversion system. Influence of thermodynamic parameters. J. Power Energy 217, 519–527 (2003).

    Article  Google Scholar 

  190. Genuino, H. C., Ruiz, M. P., Heeres, H. J. & Kersten, S. R. Pyrolysis of mixed plastic waste (DKR-350): effect of washing pre-treatment and fate of chlorine. Fuel Process. Technol. 233, 107304 (2022).

    Article  Google Scholar 

  191. European Commission. The Usage of PVC (Polyvinyl Chloride) in the Context of a Non-Toxic Environment (Ramboll, 2020).

Download references

Acknowledgements

F.H. acknowledges support from the Key Research Program of Frontier Science, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC013). T.Z. acknowledges support from the Department of Engineering Science and Mechanics, the Materials Research Institute and the Huck Institutes of the Life Sciences at Pennsylvania State University. T.L. and S.X. acknowledge support from the National Natural Science Foundation (Grant No. 22205254 and 51922103). T.L. also acknowledges the support from the National Key Research and Development Program of China (Grant No. 2019YFA0210600) and Shanghai Pilot Program for Basic Research, Shanghai Jiao Tong University. The authors thank Modor Intelligence, McKinsey & Company and the PVC Association for providing global polyvinyl chloride (PVC) market and recovery data. Furthermore, the authors thank the reviewers for their time and efforts in improving this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.X., Z.H., K.Y., P.Q., T.Z. and F.H.); Experimentation (S.X., Z.H., W.Z., T.Z. and F.H.); Results (S.X., T.Z. and F.H.); Applications (S.X., T.Z. and F.H.); Reproducibility and data deposition (S.X., T.L., T.Z. and F.H.); Limitations and optimizations (S.X., Z.H., K.Y., P.Q., W.Z., T.L., T.Z. and F.H.); Outlook (S.X., K.Y., P.Q., T.Z. and F.H.).

Corresponding authors

Correspondence to Tao Zhou or Fuqiang Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Megan Fieser, Nancy Bush, Zach Wood and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Bio-accumulative toxicity

Toxins that persist and accumulate in the fatty tissues of animals and humans over time.

Circular plastic recycling

Maintaining the economic value of plastics in a closed-loop system rather than using them just once and then disposing of them.

Dehydrochlorination

An elimination process in which HCl is removed to form olefins.

Hydrodechlorination

A substitution process in which chlorine is replaced by hydrogen with the help of electron donors such as a noble metal, metal oxides and silylium.

Pyro-gasification

Pyro-gasification of plastic waste at 500–700 °C is based on the same natural waste fermentation as anaerobic digestion, with a small amount of oxygen introduced to enable the thermochemical process while preventing combustion.

Solvent processing

Processing that generally involves using solvents to physically dissolve reactants or catalysts, or to serve as a reactive compound to produce novel mixtures or new chemicals.

Supercritical H2O pyrolysis

A process in which plastic waste is heated in a pressurized environment of supercritical water, resulting in the breakdown of the plastic into smaller molecules.

Syndiotactic sequences

Sequences of monomers that are arranged in a specific order and have a regular arrangement of substituents, resulting in a highly crystalline polymer structure.

Thermosetting polymers

Polymers that form a permanent bond and become rigid when heated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Han, Z., Yuan, K. et al. Upcycling chlorinated waste plastics. Nat Rev Methods Primers 3, 44 (2023). https://doi.org/10.1038/s43586-023-00227-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00227-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing