Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Triboelectric nanogenerators

Abstract

By combining the effects of contact electrification and electrostatic induction, triboelectric nanogenerators (TENGs) can effectively convert mechanical energy into electric power or signals. Over the past decade, TENG development has progressed rapidly, from fundamental scientific understanding to advanced technologies and applications. This Primer gives a brief overview of TENGs, including the mechanisms of contact electrification and electrodynamics, applications, future opportunities and limitations. As an interdisciplinary field, advances are expected in both theoretical and experimental aspects of TENGs. For example, technologies based on Maxwell’s equations for a mechano-driven, slow-moving system can be coupled with a theoretical understanding of physical laws and concepts. From this, general simulation models can be established and corresponding experiments designed to optimize TENGs for a range of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical basis of TENGs.
Fig. 2: Equivalent circuit models of TENGs.
Fig. 3: Applications of TENGs as micro/nano-energy harvesters.
Fig. 4: Applications of TENGs as self-powered sensors/systems.
Fig. 5: Applications of TENGs in blue energy harvesting.
Fig. 6: Applications of TENGs as high-voltage power sources and probes.

Similar content being viewed by others

References

  1. Fan, F. et al. Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). To our knowledge, this paper is the first about the triboelectric generator, which can convert mechanical energy into electricity in the energy harvesting field.

    Article  Google Scholar 

  2. Wang, Z. L. From contact-electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84, 096502 (2021). This paper presents a comprehensive summary of the fundamental science and working mechanism as well as important experiments of TENGs.

    Article  ADS  MathSciNet  Google Scholar 

  3. Wang, Z. L. Triboelectric nanogenerator (TENG) — sparking an energy and sensor revolution. Adv. Energy Mater. 10, 2000137 (2020).

    Article  Google Scholar 

  4. Wang, Z. L. et al. Triboelectric Nanogenerators (Springer, 2016).

  5. Shao, J., Willatzen, M. & Wang, Z. L. Theoretical modelling of triboelectric nanogenerators (TENGs). J. Appl. Phys. 128, 111101 (2020).

    Article  ADS  Google Scholar 

  6. Cheng, G., Lin, Z., Du, Z. & Wang, Z. L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 8, 1932–1939 (2014).

    Article  Google Scholar 

  7. Guo, H. et al. A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6, 1501593 (2016).

    Article  Google Scholar 

  8. Yang, J. et al. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8, 2649–2657 (2014).

    Article  Google Scholar 

  9. Yang, P. et al. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9, 901–907 (2015). This paper is a selected representative work about TENGs, which can be used as self-powered sensors for characterizing mechanical triggers under external mechanical triggering.

    Article  Google Scholar 

  10. Xu, L. et al. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 12, 1849–1858 (2018).

    Article  Google Scholar 

  11. Liu, L. et al. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano 15, 9412–9421 (2021).

    Article  Google Scholar 

  12. Cheng, J. et al. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun 9, 3733 (2018). This work introduces a typical characteristic of TENGs, their high output voltage.

    Article  ADS  Google Scholar 

  13. Bai, Y. et al. Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal. Adv. Funct. Mater. 28, 1706680 (2018).

    Article  Google Scholar 

  14. Lin, S. & Wang, Z. L. Scanning triboelectric nanogenerator as a nanoscale probe for measuring local surface charge density on a dielectric film. Appl. Phys. Lett. 118, 193901 (2021).

    Article  ADS  Google Scholar 

  15. Zhang, J., Lin, S., Zheng, M. & Wang, Z. L. Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces. ACS Nano 15, 14830–14837 (2021). This work verifies that a single-electrode TENG can be a probe for measuring the charge transfer at a liquid–solid interface.

    Article  Google Scholar 

  16. Dharmasena, R. D. I. G. et al. Triboelectric nanogenerators: providing a fundamental framework. Energy Environ. Sci. 10, 1801 (2017).

    Article  Google Scholar 

  17. Dharmasena, R. D. et al. Nature of power generation and output optimization criteria for triboelectric nanogenerators. Adv. Energy Mater. 8, 1802190 (2018).

    Article  Google Scholar 

  18. Shao, J., Willatzen, M., Shi, Y. & Wang, Z. L. 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators. Nano Energy 60, 630–640 (2019). To our knowledge, this paper establishes the first 3D mathematical model based on Maxwell’s equations of TENGs.

    Article  Google Scholar 

  19. Shao, J., Liu, D., Willatzen, M. & Wang, Z. L. Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. Appl. Phys. Rev. 7, 011405 (2020).

    Article  ADS  Google Scholar 

  20. Wang, Z. L. et al. On the origin of contact-electrification. Mater. Today 30, 34–51 (2019).

    Article  Google Scholar 

  21. Shao, J. et al. Designing rules and optimization of triboelectric nanogenerator arrays. Adv. Energy Mater. 11, 2100065 (2021). This paper presents universal design rules and holistic optimization strategies for the network structure of TENGs, which is used as micro and nano-power sources.

    Article  Google Scholar 

  22. Shao, J. et al. Structural figure-of-merits of triboelectric nanogenerators at powering loads. Nano Energy 51, 688 (2018).

    Article  Google Scholar 

  23. Shao, J., Jiang, T. & Wang, Z. L. Theoretical foundations of triboelectric nanogenerators (TENGs). Sci. China. Technol. Sci. 63, 1087–1109 (2020).

    Article  ADS  Google Scholar 

  24. Guo, X. et al. Three-dimensional mathematical modelling and dynamic analysis of freestanding triboelectric nanogenerators. J. Phys. D Appl. Phys. 55, 345501 (2022).

    Article  Google Scholar 

  25. Guo, X. et al. Theoretical model and optimal output of a cylindrical triboelectric nanogenerator. Nano Energy 92, 106762 (2022).

    Article  Google Scholar 

  26. Guo, X. et al. Quantifying output power and dynamic charge distribution in sliding mode freestanding triboelectric nanogenerator. Adv. Phys. Res. https://doi.org/10.1002/apxr.202200039 (2022).

    Article  Google Scholar 

  27. Wang, Z. L. Maxwell’s equations for a mechano-driven, shape-deformable, charged media system, slowly moving at an arbitrary velocity field v(r, t). J. Phys. Commun. 6, 085013 (2022).

    Article  Google Scholar 

  28. Wang, Z. L. The expanded Maxwell’s equations for a mechano-driven media system that moves with acceleration. Intern. J. Mod. Phys. B https://doi.org/10.1142/S021797922350159X (2022).

    Article  Google Scholar 

  29. Wang, Z. L. & Shao, J. Maxwell’s equations for a mechano-driven varying-speed motion media system under slow motion and nonrelativistic approximations [Chinese]. Sci. Sin. Tech. 52, 1198–1211 (2022).

    Article  Google Scholar 

  30. Wang, Z. L. & Shao, J. Maxwell’s equations for a mechano-driven varying-speed-motion media system for engineering electrodynamics and their solutions [Chinese]. Sci. Sin. Tech. 52, 1416–1433 (2022).

    Article  Google Scholar 

  31. Wang, Z. L. & Shao, J. From Faraday’s law to the expanded Maxwell’s equations for a mechano-driven media system that moves with acceleration [Chinese]. Sci. Sin. Tech. https://doi.org/10.1360/SST-2022-0322 (2022).

    Article  Google Scholar 

  32. Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). To our knowledge, this work presents the first principle theory of TENGs from Maxwell’s equations.

    Article  Google Scholar 

  33. Wang, Z. L. On the expanded Maxwell’s equations for moving charged media system — general theory, mathematical solutions and applications in TENG. Mater. Today 52, 348–363 (2021).

    Article  Google Scholar 

  34. Wang, H. et al. A paradigm-shift fully-self-powered long-distance wireless sensing solution enabled by discharge induced displacement current. Sci. Adv. 7, eabi6751 (2021).

    Article  ADS  Google Scholar 

  35. Cao, X. et al. An easy and efficient power generator with ultrahigh voltage for lighting, charging and self-powered systems. Nano Energy 100, 107409 (2022).

    Article  Google Scholar 

  36. Zhao, H. et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat. Commun. 13, 3325 (2022).

    Article  ADS  Google Scholar 

  37. Shao, J. et al. Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell’s displacement current. Nano Energy 59, 380–389 (2019).

    Article  Google Scholar 

  38. Niu, S. et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013). To our knowledge, this work proposes the first equivalent circuit model of TENGs.

    Article  Google Scholar 

  39. Niu, S. et al. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct.Mater. 24, 3332–3340 (2014).

    Article  Google Scholar 

  40. Niu, S. et al. Theory of sliding-mode triboelectric nanogenerators. Adv.Mater. 25, 6184–6193 (2013).

    Article  Google Scholar 

  41. Niu, S. et al. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 12, 760–774 (2015).

    Article  Google Scholar 

  42. Jiang, T. et al. Figures-of-merit for rolling-friction-based triboelectric nanogenerators. Adv. Mater. Technol. 1, 1600017 (2016).

    Article  Google Scholar 

  43. Chen, B. et al. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 21, 88–97 (2018).

    Article  Google Scholar 

  44. Niu, S. & Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 14, 161 (2015).

    Article  Google Scholar 

  45. Peng, J., Kang, S. D. & Snyder, G. J. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv. 3, eaap8576 (2017).

    Article  ADS  Google Scholar 

  46. Zi, Y. L. et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015).

    Article  ADS  Google Scholar 

  47. Li, X. et al. Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 3, 133–142 (2022).

    Article  Google Scholar 

  48. Rana, S. M. S. et al. Ultrahigh-output triboelectric and electromagnetic hybrid generator for self-powered smart electronics and biomedical applications. Adv. Energy Mater. 12, 2202238 (2022).

    Article  Google Scholar 

  49. Chen, P. et al. Achieving high power density and durability of sliding mode triboelectric nanogenerator by double charge supplement strategy. Adv. Energy Mater. 12, 2201813 (2022).

    Article  Google Scholar 

  50. Zhang, X. et al. Broadband vibration energy powered autonomous wireless frequency monitoring system based on triboelectric nanogenerators. Nano Energy 98, 107209 (2022).

    Article  Google Scholar 

  51. Guo, Y. et al. Multifunctional mechanical sensing electronic device based on triboelectric anisotropic crumpled nanofibrous mats. ACS Appl. Mater. Interfaces 13, 55481–55488 (2021).

    Article  Google Scholar 

  52. Zhang, D. et al. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 61, 132–140 (2019).

    Article  ADS  Google Scholar 

  53. Guo, H. et al. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 9, 5577–5584 (2015).

    Article  Google Scholar 

  54. Lin, Z. et al. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64, 103908 (2019).

    Article  Google Scholar 

  55. Yang, J. et al. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater. 4, 1301322 (2014).

    Article  MathSciNet  Google Scholar 

  56. Liang, X. et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13, 277–285 (2020).

    Article  Google Scholar 

  57. Han, J. et al. Energy autonomous paper modules and functional circuits. Energy Environ. Sci. 15, 5069 (2022).

    Article  Google Scholar 

  58. Zi, Y. et al. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016).

    Article  ADS  Google Scholar 

  59. Ren, Z. et al. Water‐wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 11, 2101116 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  60. Cheng, R. et al. Enhanced output of on-body direct-current power textiles by efficient energy management for sustainable working of mobile electronics. Adv. Energy Mater. 12, 2201532 (2022).

    Article  Google Scholar 

  61. Liang, X., Liu, S., Ren, Z., Jiang, T. & Wang, Z. L. Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv. Funct. Mater. 32, 2205313 (2022).

    Article  Google Scholar 

  62. Xi, F. et al. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 61, 1–9 (2019).

    Article  Google Scholar 

  63. Zhang, X. et al. Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Adv. Funct. Mater. 31, 2106527 (2021).

    Article  Google Scholar 

  64. Li, C. et al. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 12, 2950 (2021).

    Article  ADS  Google Scholar 

  65. Yang, J. et al. 3D-printed bearing structural triboelectric nanogenerator for intelligent vehicle monitoring. Cell Rep. Phys. Sci. 2, 100666 (2021).

    Article  Google Scholar 

  66. Wang, Z. et al. A self-powered angle sensor at nanoradian-resolution for robotic arms and personalized medicare. Adv. Mater. 13, 2001466 (2020).

    Article  Google Scholar 

  67. Peng, X. et al. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 20, 2103559 (2021).

    Article  Google Scholar 

  68. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors — principles, problems and perspectives. Faraday Discuss 176, 447–485 (2014).

    Article  ADS  Google Scholar 

  69. Wang, Z. L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezophototronics — a recall on the original thoughts for coining these fields. Nano Energy 54, 477–483 (2018).

    Article  Google Scholar 

  70. Wang, Z. L. Catch wave power in floating nets. Nature 542, 159–160 (2017).

    Article  ADS  Google Scholar 

  71. Yang, X. et al. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 60, 404–412 (2019).

    Article  Google Scholar 

  72. Wang, H., Xu, L., Bai, Y. & Wang, Z. L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 11, 4203 (2020).

    Article  ADS  Google Scholar 

  73. Jiang, T. et al. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10, 2000064 (2020).

    Article  ADS  Google Scholar 

  74. Wang, Z. L., Jiang, T. & Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). This paper introduces one of the important uses of TENGs to harvest energy from the ocean or wave energy.

    Article  Google Scholar 

  75. Lei, R. et al. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci 13, 2178–2190 (2020).

    Article  Google Scholar 

  76. Xu, L. et al. Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12, 10262–10271 (2018).

    Article  Google Scholar 

  77. Li, D. et al. Interface inter-atomic electron-transition induced photon emission in contact-electrification. Sci. Adv. 7, eabj0349 (2021).

    Article  ADS  Google Scholar 

  78. Nan, Y. et al. Physical mechanisms of contact-electrification induced photon emission spectroscopy from interfaces. Nano Res. https://doi.org/10.1007/s12274-023-5674-2 (2023).

  79. Wang, Z. et al. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 13, 130 (2022).

    Article  ADS  Google Scholar 

  80. Zou, H. et al. Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019).

    Article  ADS  Google Scholar 

  81. Zou, H. et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 11, 2093 (2020).

    Article  ADS  Google Scholar 

  82. Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250 (2015).

    Article  Google Scholar 

  83. Lin, S., Chen, X. & Wang, Z. L. Contact electrification at the liquid–solid interface. Chem. Rev. 122, 5209–5232 (2022).

    Article  Google Scholar 

  84. Liu, J. et al. Direct-current triboelectricity generation by a sliding schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol 13, 112–116 (2018).

    Article  ADS  Google Scholar 

  85. Hao, Z. et al. Co-harvesting light and mechanical energy based on dynamic metal/perovskite Schottky junction. Matter 1, 639–649 (2019).

    Article  Google Scholar 

  86. Lin, S., Chen, X. & Wang, Z. L. The tribovoltaic effect and electron transfer at a liquid–semiconductor interface. Nano Energy 76, 105070 (2020).

    Article  Google Scholar 

  87. Xu, R. et al. Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor. Nano Energy 66, 104185 (2019).

    Article  Google Scholar 

  88. Zhang, Z. et al. Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10, 1903713 (2020).

    Article  Google Scholar 

  89. Zhang, Z. et al. Tribo-thermoelectric and tribovoltaic coupling effect at metal–semiconductor interface. Mater. Today Phys. 16, 100295 (2021).

    Article  Google Scholar 

  90. Zheng, M. et al. Photovoltaic effect and tribovoltaic effect at liquid–semiconductor interface. Nano Energy 83, 105810 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

T.H.C. and J.J.S. contributed equally to this work. The authors are grateful for the support from the National Key R&D Project from the Minister of Science and Technology (Nos. 2021YFA1201601 and 2021YFA1201604), the National Natural Science Foundation of China (Grant Nos. 62001031) and the Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.J.S. and Z.L.W.); Experimentation (T.H.C. and J.J.S.); Results (J.J.S. and Z.L.W.); Applications (T.H.C. and Z.L.W.); Reproducibility and data deposition (J.J.S.); Limitations and optimizations (T.H.C.); Outlook (J.J.S. and Z.L.W.); Overview of the Primer (Z.L.W.).

Corresponding author

Correspondence to Zhong Lin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Jeffrey Snyder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Blue energy

The energy captured by triboelectric nanogenerators for harvesting low-frequency water wave energy from the ocean.

Contact electrification

A scientific effect, primarily through the electron transfer mechanism, where two or more different materials become electrically charged after being separated from physical contact.

Electrostatic induction

A modification to the distribution of electric charge on one material caused by the influence of nearby materials that have electric charge.

Energy harvesting devices

Devices that typically produce a small amount of energy through a process that harvests energy from external sources.

Lorentz covariance

An equivalence of observation, as special relativity implies that the laws of physics are the same for all observers moving with respect to one another within an inertial frame.

Lumped-parameter equivalent circuit

A theoretical circuit that retains all the electrical characteristics of a given circuit, generally built based on a lumped parameter (or lumped element) model.

Mechano-induced polarization

Polarization due to pre-existing electrostatic charges and medium movement driven by external mechanical action.

Triboelectrification

A united process of tribology and interfacial charge transfer, one of the fundamental effects in electricity generation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, T., Shao, J. & Wang, Z.L. Triboelectric nanogenerators. Nat Rev Methods Primers 3, 39 (2023). https://doi.org/10.1038/s43586-023-00220-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00220-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing