Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Droplet-based microfluidics

Abstract

Droplet-based microfluidic systems generate, manipulate and control sub-microlitre droplets enclosed within an immiscible carrier fluid. Owing to a number of remarkable features, such as the ability to precisely control the chemical and biological payload of each droplet and to produce thousands of droplets per second, this technology is transforming how chemists and biologists perform high-throughput or massively parallel experiments. In this Primer, we initially introduce and describe the basic features of droplet-based microfluidic systems and key issues that should be considered when developing new chemical and biological workflows. We provide a critical evaluation of how droplet-based microfluidic systems should be manufactured and the importance of integrating appropriate detection technologies to probe the small analytical volumes that are representatives of the technology set. We then discuss issues related to data collection and management, providing guidelines on how large data sets should be processed and manipulated. Furthermore, we showcase some of the most successful and important applications of droplet-based systems in the biological and chemical sciences and consider issues that currently hinder progress in both technology development and application. Finally, we provide some opinion on future directions for the technology set and where its greatest impact will be felt in the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of three common passive droplet generation modes.
Fig. 2: Droplet manipulations and unit operations.
Fig. 3: Multiple emulsion templating.
Fig. 4: Droplet-based single-cell RNA sequencing.
Fig. 5: Droplet-based microfluidic platform for the directed evolution of enzymes.
Fig. 6: Droplet-based microfluidic synthesis of materials with bespoke properties.
Fig. 7: Physical phenomena affecting the stability of microfluidic emulsions.

Similar content being viewed by others

References

  1. Ding, Y., Howes, P. D. & deMello, A. J. Recent advances in droplet microfluidics. Anal. Chem. 92, 132–149 (2020).

    Article  Google Scholar 

  2. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  ADS  Google Scholar 

  3. Chiu, D. T. et al. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2, 201–223 (2017).

    Article  Google Scholar 

  4. Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  ADS  Google Scholar 

  5. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    Article  Google Scholar 

  6. Kawakatsu, T., Kikuchi, Y. & Nakajima, M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc. 74, 317–321 (1997).

    Article  Google Scholar 

  7. Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).

    Article  ADS  Google Scholar 

  8. Umbanhowar, P. B., Prasad, V. & Weitz, D. A. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16, 347–351 (2000).

    Article  Google Scholar 

  9. Shang, L., Cheng, Y. & Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017).

    Article  Google Scholar 

  10. Matuła, K., Rivello, F. & Huck, W. T. S. Single-cell analysis using droplet microfluidics. Adv. Biosyst. 4, 1900188 (2020).

    Article  Google Scholar 

  11. Lignos, I. et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett. 16, 1869–1877 (2016).

    Article  ADS  Google Scholar 

  12. Obexer, R., Pott, M., Zeymer, C., Griffiths, A. D. & Hilvert, D. Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting. Protein Eng. Des. Sel. 29, 355–366 (2016).

    Article  Google Scholar 

  13. Kleine-Brüggeney, H. et al. Long-term perfusion culture of monoclonal embryonic stem cells in 3D hydrogel beads for continuous optical analysis of differentiation. Small 15, 1804576 (2019).

    Article  Google Scholar 

  14. Abolhasani, M. et al. Oscillatory microprocessor for growth and in situ characterization of semiconductor nanocrystals. Chem. Mater. 27, 6131–6138 (2015).

    Article  Google Scholar 

  15. Xia, Y. & Whitesides, G. M. Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998).

    Article  Google Scholar 

  16. Trantidou, T., Elani, Y., Parsons, E. & Ces, O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst. Nanoeng. 3, 16091 (2017).

    Article  Google Scholar 

  17. Chen, F. et al. Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil. Anal. Chem. 83, 8816–8820 (2011).

    Article  Google Scholar 

  18. Baret, J.-C. Surfactants in droplet-based microfluidics. Lab Chip 12, 422–433 (2012).

    Article  Google Scholar 

  19. Holtze, C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8, 1632–1639 (2008).

    Article  Google Scholar 

  20. Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

    Article  Google Scholar 

  21. Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484 (2006).

    Article  Google Scholar 

  22. Kim, J., deMello, A. J., Chang, S.-I., Hong, J. & O’Hare, D. Thermoset polyester droplet-based microfluidic devices for high frequency generation. Lab Chip 11, 4108–4112 (2011).

    Article  Google Scholar 

  23. Wu, N. et al. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab Chip 9, 3391 (2009).

    Article  Google Scholar 

  24. Su, S. et al. One-step bonding and hydrophobic surface modification method for rapid fabrication of polycarbonate-based droplet microfluidic chips. Sens. Actuators B Chem. 282, 60–68 (2019).

    Article  Google Scholar 

  25. Li, H., Fan, Y., Kodzius, R. & Foulds, I. G. Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system. Microsyst. Technol. 18, 373–379 (2012).

    Article  Google Scholar 

  26. Aghvami, S. A. et al. Rapid prototyping of cyclic olefin copolymer (COC) microfluidic devices. Sens. Actuators B Chem. 247, 940–949 (2017).

    Article  Google Scholar 

  27. Ren, K., Dai, W., Zhou, J., Su, J. & Wu, H. Whole-Teflon microfluidic chips. Proc. Natl Acad. Sci. USA 108, 8162–8166 (2011).

    Article  ADS  Google Scholar 

  28. Meng, Z.-J. et al. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules. Lab Chip 15, 1869–1878 (2015).

    Article  Google Scholar 

  29. Zhu, P. & Wang, L. Passive and active droplet generation with microfluidics: a review. Lab Chip 17, 34–75 (2016).

    Article  Google Scholar 

  30. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using ‘flow focusing’ in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).

    Article  ADS  Google Scholar 

  31. Tice, J. D., Song, H., Lyon, A. D. & Ismagilov, R. F. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19, 9127–9133 (2003).

    Article  Google Scholar 

  32. Dangla, R., Kayi, S. C. & Baroud, C. N. Droplet microfluidics driven by gradients of confinement. Proc. Natl Acad. Sci. USA 110, 853–858 (2013).

    Article  ADS  Google Scholar 

  33. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  ADS  Google Scholar 

  34. Chu, L.-Y., Utada, A. S., Shah, R. K., Kim, J.-W. & Weitz, D. A. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed. 46, 8970–8974 (2007).

    Article  Google Scholar 

  35. Huebner, A. et al. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem. Commun. https://doi.org/10.1039/b618570c (2007).

    Article  Google Scholar 

  36. Kiss, M. M. et al. High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal. Chem. 80, 8975–8981 (2008).

    Article  Google Scholar 

  37. Shi, W., Qin, J., Ye, N. & Lin, B. Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8, 1432–1435 (2008).

    Article  Google Scholar 

  38. Delley, C. L. & Abate, A. R. Microfluidic particle zipper enables controlled loading of droplets with distinct particle types. Lab Chip 20, 2465–2472 (2020).

    Article  Google Scholar 

  39. Song, H. & Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc. 125, 14613–14619 (2003).

    Article  Google Scholar 

  40. Bremond, N., Thiam, A. R. & Bibette, J. Decompressing emulsion droplets favors coalescence. Phys. Rev. Lett. 100, 024501 (2008).

    Article  ADS  Google Scholar 

  41. Niu, X., Gulati, S., Edel, J. B. & deMello, A. J. Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8, 1837–1841 (2008).

    Article  Google Scholar 

  42. Sesen, M., Alan, T. & Neild, A. Microfluidic on-demand droplet merging using surface acoustic waves. Lab Chip 14, 3325–3333 (2014).

    Article  Google Scholar 

  43. Niu, X., Gielen, F., deMello, A. J. & Edel, J. B. Electro-coalescence of digitally controlled droplets. Anal. Chem. 81, 7321–7325 (2009).

    Article  Google Scholar 

  44. Abate, A. R., Hung, T., Mary, P., Agresti, J. J. & Weitz, D. A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl Acad. Sci. USA 107, 19163–19166 (2010).

    Article  ADS  Google Scholar 

  45. Song, H., Tice, J. D. & Ismagilov, R. F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. 42, 768–772 (2003).

    Article  Google Scholar 

  46. Arun Sankar, E. M., Shahab, M. & Rengaswamy, R. Spacing optimization for active droplet sorting in microfluidic networks using genetic algorithm. Ind. Eng. Chem. Res. 60, 1699–1708 (2021).

    Article  Google Scholar 

  47. Hess, D. et al. Exploring mechanism of enzyme catalysis by on-chip transient kinetics coupled with global data analysis and molecular modeling. Chem 7, 1066–1079 (2021).

    Article  Google Scholar 

  48. Baret, J.-C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850–1858 (2009).

    Article  Google Scholar 

  49. Schmid, L., Weitz, D. A. & Franke, T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14, 3710–3718 (2014).

    Article  Google Scholar 

  50. Abate, A. R., Agresti, J. J. & Weitz, D. A. Microfluidic sorting with high-speed single-layer membrane valves. Appl. Phys. Lett. 96, 203509 (2010).

    Article  ADS  Google Scholar 

  51. Niu, X., Gielen, F., Edel, J. B. & deMello, A. J. A microdroplet dilutor for high-throughput screening. Nat. Chem. 3, 437–442 (2011).

    Article  Google Scholar 

  52. Frenz, L., Blouwolff, J., Griffiths, A. D. & Baret, J.-C. Microfluidic production of droplet pairs. Langmuir 24, 12073–12076 (2008).

    Article  Google Scholar 

  53. Zheng, B., Tice, J. D. & Ismagilov, R. F. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal. Chem. 76, 4977–4982 (2004).

    Article  Google Scholar 

  54. Huebner, A. et al. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9, 692–698 (2009).

    Article  Google Scholar 

  55. Frenz, L., Blank, K., Brouzes, E. & Griffiths, A. D. Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9, 1344–1348 (2009).

    Article  Google Scholar 

  56. Bringer, M. R., Gerdts, C. J., Song, H., Tice, J. D. & Ismagilov, R. F. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos. Transact. A Math. Phys. Eng. Sci. 362, 1087–1104 (2004).

    Article  Google Scholar 

  57. Cole, R. H., Lange, N., de, Gartner, Z. J. & Abate, A. R. Compact and modular multicolour fluorescence detector for droplet microfluidics. Lab Chip 15, 2754–2758 (2015).

    Article  Google Scholar 

  58. Hess, D., Rane, A., deMello, A. J. & Stavrakis, S. High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging. Anal. Chem. 87, 4965–4972 (2015).

    Article  Google Scholar 

  59. Benninger, R. K. P. et al. Fluorescence-lifetime imaging of DNA-dye interactions within continuous-flow microfluidic systems. Angew. Chem. Int. Ed. 46, 2228–2231 (2007).

    Article  Google Scholar 

  60. Probst, J., Howes, P., Arosio, P., Stavrakis, S. & deMello, A. Broad-band spectrum, high-sensitivity absorbance spectroscopy in picoliter volumes. Anal. Chem. 93, 7673–7681 (2021).

    Article  Google Scholar 

  61. Probst, J. et al. In situ X-ray absorption spectroscopy and droplet-based microfluidics: an analysis of calcium carbonate precipitation. ACS Meas. Sci. Au 1, 27–34 (2021).

    Article  Google Scholar 

  62. Cristobal, G. et al. On-line laser Raman spectroscopic probing of droplets engineered in microfluidic devices. Lab Chip 6, 1140–1146 (2006).

    Article  Google Scholar 

  63. Strehle, K. R. et al. A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal. Chem. 79, 1542–1547 (2007).

    Article  Google Scholar 

  64. Chan, K. L. A. & Kazarian, S. G. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels. Anal. Chem. 84, 4052–4056 (2012).

    Article  Google Scholar 

  65. Maceiczyk, R. M., Hess, D., Chiu, F. W. Y., Stavrakis, S. & deMello, A. J. Differential detection photothermal spectroscopy: towards ultra-fast and sensitive label-free detection in picoliter & femtoliter droplets. Lab Chip 17, 3654–3663 (2017).

    Article  Google Scholar 

  66. Cecchini, M. P. et al. Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems. Anal. Chem. 83, 3076–3081 (2011).

    Article  Google Scholar 

  67. Gasilova, N., Yu, Q., Qiao, L. & Girault, H. H. On-chip spyhole mass spectrometry for droplet-based microfluidics. Angew. Chem. Int. Ed. 53, 4408–4412 (2014).

    Article  Google Scholar 

  68. Steyer, D. J. & Kennedy, R. T. High-throughput nanoelectrospray ionization-mass spectrometry analysis of microfluidic droplet samples. Anal. Chem. 91, 6645–6651 (2019).

    Article  Google Scholar 

  69. Kempa, E. E. et al. Coupling droplet microfluidics with mass spectrometry for ultrahigh-throughput analysis of complex mixtures up to and above 30 Hz. Anal. Chem. 92, 12605–12612 (2020).

    Article  Google Scholar 

  70. Petit-Pierre, G. et al. In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system. Nat. Commun. 8, 1239 (2017).

    Article  ADS  Google Scholar 

  71. Bell, S. E. et al. Droplet microfluidics with MALDI-MS detection: the effects of oil phases in GABA analysis. ACS Meas. Sci. Au 1, 147–156 (2021).

    Article  Google Scholar 

  72. Clark, I. C. & Abate, A. R. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. Lab Chip 17, 2032–2045 (2017).

    Article  Google Scholar 

  73. Stucki, A., Vallapurackal, J., Ward, T. R. & Dittrich, P. S. Droplet microfluidics and directed evolution of enzymes: an intertwined journey. Angew. Chem. Int. Ed. 60, 24368–24387 (2021).

    Article  Google Scholar 

  74. Kim, J.-W. et al. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. Lab Chip 22, 2259–2291 (2022).

    Article  Google Scholar 

  75. Chen, M., Bolognesi, G. & Vladisavljević, G. T. Crosslinking strategies for the microfluidic production of microgels. Molecules 26, 3752 (2021).

    Article  Google Scholar 

  76. Seiffert, S. Microgel capsules tailored by droplet-based microfluidics. ChemPhysChem 14, 295–304 (2013).

    Article  Google Scholar 

  77. Zhu, Z. & Yang, C. J. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc. Chem. Res. 50, 22–31 (2017).

    Article  Google Scholar 

  78. Wu, J., Yadavali, S., Lee, D. & Issadore, D. A. Scaling up the throughput of microfluidic droplet-based materials synthesis: a review of recent progress and outlook. Appl. Phys. Rev. 8, 031304 (2021).

    Article  ADS  Google Scholar 

  79. Håti, A. G. et al. Versatile, cell and chip friendly method to gel alginate in microfluidic devices. Lab Chip 16, 3718–3727 (2016).

    Article  Google Scholar 

  80. Ahn, K., Agresti, J., Chong, H., Marquez, M. & Weitz, D. A. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl. Phys. Lett. 88, 264105 (2006).

    Article  ADS  Google Scholar 

  81. Califano, D. et al. Enzyme-functionalized cellulose beads as a promising antimicrobial material. Biomacromolecules 22, 754–762 (2021).

    Article  Google Scholar 

  82. Hsu, M. N. et al. Smart hydrogel microfluidics for single-cell multiplexed secretomic analysis with high sensitivity. Small Weinh. Bergstr. Ger. 14, e1802918 (2018).

    Article  Google Scholar 

  83. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  Google Scholar 

  84. Weisgerber, D. W., Hatori, M., Li, X. & Abate, A. R. Polyhedral particles with controlled concavity by indentation templating. Anal. Chem. 94, 7475–7482 (2022).

    Article  Google Scholar 

  85. Abbaspourrad, A., Carroll, N. J., Kim, S.-H. & Weitz, D. A. Surface functionalized hydrophobic porous particles toward water treatment application. Adv. Mater. 25, 3215–3221 (2013).

    Article  Google Scholar 

  86. Song, Y., Sauret, A. & Cheung Shum, H. All-aqueous multiphase microfluidics. Biomicrofluidics 7, 61301 (2013).

    Article  Google Scholar 

  87. Vijayakumar, K., Gulati, S., deMello, A. J. & Edel, J. B. Rapid cell extraction in aqueous two-phase microdroplet systems. Chem. Sci. 1, 447–452 (2010).

    Article  Google Scholar 

  88. Kim, B.-Y., Hong, L.-Y., Chung, Y.-M., Kim, D.-P. & Lee, C.-S. Solvent-resistant PDMS microfluidic devices with hybrid inorganic/organic polymer coatings. Adv. Funct. Mater. 19, 3796–3803 (2009).

    Article  Google Scholar 

  89. Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable liquid fluoropolymers for microfluidic device fabrication [corrected]. J. Am. Chem. Soc. 126, 2322–2323 (2004).

    Article  Google Scholar 

  90. Benson, B. R., Stone, H. A. & Prud’homme, R. K. An ‘off-the-shelf’ capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. Lab Chip 13, 4507–4511 (2013).

    Article  Google Scholar 

  91. Vladisavljević, G. T., Al Nuumani, R. & Nabavi, S. A. Microfluidic production of multiple emulsions. Micromachines 8, 75 (2017).

    Article  Google Scholar 

  92. Vega-Vásquez, P., Mosier, N. S. & Irudayaraj, J. Nanoscale drug delivery systems: from medicine to agriculture. Front. Bioeng. Biotechnol. 8, 79 (2020).

    Article  Google Scholar 

  93. van der Kooij, R. S., Steendam, R., Frijlink, H. W. & Hinrichs, W. L. J. An overview of the production methods for core-shell microspheres for parenteral controlled drug delivery. Eur. J. Pharm. Biopharm. 170, 24–42 (2022).

    Article  Google Scholar 

  94. Zhu, P. & Wang, L. in Microfluidics-Enabled Soft Manufacture (eds Zhu, P. & Wang, L.) 89–104 (Springer International Publishing, 2022).

  95. Sciambi, A. & Abate, A. R. Adding reagent to droplets with controlled rupture of encapsulated double emulsions. Biomicrofluidics 7, 44112 (2013).

    Article  Google Scholar 

  96. Jia, Y. et al. Sequential coalescence enabled two-step microreactions in triple-core double-emulsion droplets triggered by an electric field. Small 13, 1702188 (2017).

    Article  Google Scholar 

  97. Chen, C.-H., Shah, R. K., Abate, A. R. & Weitz, D. A. Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 25, 4320–4323 (2009).

    Article  Google Scholar 

  98. Seo, M., Paquet, C., Nie, Z., Xu, S. & Kumacheva, E. Microfluidic consecutive flow-focusing droplet generators. Soft Matter 3, 986–992 (2007).

    Article  ADS  Google Scholar 

  99. Abate, A. R., Lee, D., Do, T., Holtze, C. & Weitz, D. A. Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8, 516–518 (2008).

    Article  Google Scholar 

  100. Abate, A. R. et al. Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability. Lab Chip 8, 2157–2160 (2008).

    Article  Google Scholar 

  101. Abate, A. R., Thiele, J., Weinhart, M. & Weitz, D. A. Patterning microfluidic device wettability using flow confinement. Lab Chip 10, 1774–1776 (2010).

    Article  Google Scholar 

  102. Kim, S. C., Sukovich, D. J. & Abate, A. R. Patterning microfluidic device wettability with spatially-controlled plasma oxidation. Lab Chip 15, 3163–3169 (2015).

    Article  Google Scholar 

  103. Duncanson, W. J. et al. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12, 2135–2145 (2012).

    Article  Google Scholar 

  104. Tran, T. M., Cater, S. & Abate, A. R. Coaxial flow focusing in poly(dimethylsiloxane) microfluidic devices. Biomicrofluidics 8, 016502 (2014).

    Article  Google Scholar 

  105. Rodriguez-Trujillo, R., Kim-Im, Y.-H. & Hernandez-Machado, A. Controlling shapes in a coaxial flow focusing microfluidic device: experiments and theory. Micromachines 11, E85 (2020).

    Article  Google Scholar 

  106. Cole, R. H., Tran, T. M. & Abate, A. R. Double emulsion generation using a polydimethylsiloxane (PDMS) co-axial flow focus device. J. Vis. Exp. (2015).

  107. Mazutis, L. et al. Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal. Chem. 81, 4813–4821 (2009).

    Article  Google Scholar 

  108. Hadikhani, P., Borhani, N., H Hashemi, S. M. & Psaltis, D. Learning from droplet flows in microfluidic channels using deep neural networks. Sci. Rep. 9, 8114 (2019).

    Article  ADS  Google Scholar 

  109. Paegel, B. M. & Joyce, G. F. Microfluidic compartmentalized directed evolution. Chem. Biol. 17, 717–724 (2010).

    Article  Google Scholar 

  110. Fruncillo, S. et al. Lithographic processes for the scalable fabrication of micro- and nanostructures for biochips and biosensors. ACS Sens. 6, 2002–2024 (2021).

    Article  Google Scholar 

  111. Polizzi, K. M. et al. Pooling for improved screening of combinatorial libraries for directed evolution. Biotechnol. Prog. 22, 961–967 (2006).

    Article  Google Scholar 

  112. Herzenberg, L. A. et al. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin. Chem. 48, 1819–1827 (2002).

    Article  Google Scholar 

  113. Wunder, F., Kalthof, B., Muller, T. & Huser, J. Functional cell-based assays in microliter volumes for ultra-high throughput screening. Comb. Chem. High. Throughput Screen. 11, 495–504 (2008).

    Article  Google Scholar 

  114. Kaminski, T. S., Scheler, O. & Garstecki, P. Droplet microfluidics for microbiology: techniques, applications and challenges. Lab Chip 16, 2168–2187 (2016).

    Article  Google Scholar 

  115. Tawfik, D. S. & Griffiths, A. D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    Article  Google Scholar 

  116. Sciambi, A. & Abate, A. R. Accurate microfluidic sorting of droplets at 30 kHz. Lab Chip 15, 47–51 (2015).

    Article  Google Scholar 

  117. Cobb, R. E., Chao, R. & Zhao, H. Directed evolution: past, present and future. AIChE 59, 1432–1440 (2013).

    Article  Google Scholar 

  118. van Tatenhove-Pel, R. J. et al. Microdroplet screening and selection for improved microbial production of extracellular compounds. Curr. Opin. Biotechnol. 61, 72–81 (2020).

    Article  Google Scholar 

  119. Yu, Z. et al. Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Res. 56, 102293 (2021).

    Article  Google Scholar 

  120. Madrigal, J. L. et al. Characterizing cell interactions at scale with made-to-order droplet ensembles (MODEs). Proc. Natl Acad. Sci. USA 119, e2110867119 (2022).

    Article  Google Scholar 

  121. Colin, P.-Y. et al. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008 (2015).

    Article  ADS  Google Scholar 

  122. Najah, M. et al. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. Chem. Biol. 21, 1722–1732 (2014).

    Article  Google Scholar 

  123. Shembekar, N., Chaipan, C., Utharala, R. & Merten, C. A. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16, 1314–1331 (2016).

    Article  Google Scholar 

  124. Terekhov, S. S. et al. Ultrahigh-throughput functional profiling of microbiota communities. Proc. Natl Acad. Sci. USA 115, 9551–9556 (2018).

    Article  ADS  Google Scholar 

  125. Kulesa, A., Kehe, J., Hurtado, J. E., Tawde, P. & Blainey, P. C. Combinatorial drug discovery in nanoliter droplets. Proc. Natl Acad. Sci. USA 115, 6685–6690 (2018).

    Article  ADS  Google Scholar 

  126. Payne, E. M., Holland-Moritz, D. A., Sun, S. & Kennedy, R. T. High-throughput screening by droplet microfluidics: perspective into key challenges and future prospects. Lab Chip 20, 2247–2262 (2020).

    Article  Google Scholar 

  127. Periyannan Rajeswari, P. K., Joensson, H. N. & Andersson-Svahn, H. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation. Electrophoresis 38, 305–310 (2017).

    Article  Google Scholar 

  128. Gruner, P. et al. Controlling molecular transport in minimal emulsions. Nat. Commun. 7, 10392 (2016).

    Article  ADS  Google Scholar 

  129. Ostafe, R., Prodanovic, R., Lloyd Ung, W., Weitz, D. A. & Fischer, R. A high-throughput cellulase screening system based on droplet microfluidics. Biomicrofluidics 8, 041102 (2014).

    Article  Google Scholar 

  130. Abatemarco, J. et al. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes. Nat. Commun. 8, 332 (2017).

    Article  ADS  Google Scholar 

  131. Yanakieva, D. et al. FACS-based functional protein screening via microfluidic co-encapsulation of yeast secretor and mammalian reporter cells. Sci. Rep. 10, 10182 (2020).

    Article  ADS  Google Scholar 

  132. Holland-Moritz, D. A. et al. Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at nanoliter scale. Angew. Chem. Int. Ed. 59, 4470–4477 (2020).

    Article  Google Scholar 

  133. Xu, L. et al. Mapping enzyme catalysis with metabolic biosensing. Nat. Commun. 12, 6803 (2021).

    Article  ADS  Google Scholar 

  134. Cole, R. H. et al. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells. Proc. Natl Acad. Sci. USA 114, 8728–8733 (2017).

    Article  ADS  Google Scholar 

  135. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  Google Scholar 

  136. DeLaughter, D. M. The use of the fluidigm C1 for RNA expression analyses of single cells. Curr. Protoc. Mol. Biol. 122, 55 (2018).

    Article  Google Scholar 

  137. Zhou, W. et al. Microfluidics applications for high-throughput single cell sequencing. J. Nanobiotechnol. 19, 312 (2021).

    Article  Google Scholar 

  138. Liu, L. et al. Methods and platforms for analysis of nucleic acids from single-cell based on microfluidics. Microfluid. Nanofluidics 25, 87 (2021).

    Article  Google Scholar 

  139. Agresti, J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl Acad. Sci. USA 107, 4004–4009 (2010).

    Article  ADS  Google Scholar 

  140. Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

    Article  Google Scholar 

  141. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article  Google Scholar 

  142. Nguyen, Q. H., Pervolarakis, N., Nee, K. & Kessenbrock, K. Experimental considerations for single-cell RNA sequencing approaches. Front. Cell Dev. Biol. 6, 108 (2018).

    Article  Google Scholar 

  143. Zielinski, J. M., Luke, J. J., Guglietta, S. & Krieg, C. High throughput multi-omics approaches for clinical trial evaluation and drug discovery. Front. Immunol. 12, 590742 (2021).

    Article  Google Scholar 

  144. Jing, W. & Han, H.-S. Droplet microfluidics for high-resolution virology. Anal. Chem. 94, 8085–8100 (2022).

    Article  Google Scholar 

  145. Tabula Sapiens Consortium*. The Tabula sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  146. Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  ADS  Google Scholar 

  147. Li, H. et al. Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

    Article  Google Scholar 

  148. Packer, J. S. et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 365, eaax1971 (2019).

    Article  Google Scholar 

  149. Jiang, M. et al. Characterization of the zebrafish cell landscape at single-cell resolution. Front. Cell Dev. Biol. 9, 743421 (2021).

    Article  Google Scholar 

  150. Tsiatis, A. C. et al. Comparison of sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations. J. Mol. Diagn. 12, 425–432 (2010).

    Article  Google Scholar 

  151. Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    Article  Google Scholar 

  152. Men, Y. et al. Digital polymerase chain reaction in an array of femtoliter polydimethylsiloxane microreactors. Anal. Chem. 84, 4262–4266 (2012).

    Article  Google Scholar 

  153. Alcaide, M. et al. Evaluating the quantity, quality and size distribution of cell-free DNA by multiplex droplet digital PCR. Sci. Rep. 10, 12564 (2020).

    Article  ADS  Google Scholar 

  154. de Kock, R., Deiman, B., Kraaijvanger, R. & Scharnhorst, V. Optimized (pre) analytical conditions and workflow for droplet digital PCR analysis of cell-free DNA from patients with suspected lung carcinoma. J. Mol. Diagn. 21, 895–902 (2019).

    Article  Google Scholar 

  155. Zeng, Y.-F. et al. Development of a droplet digital PCR method for detection of Streptococcus agalactiae. BMC Microbiol. 20, 179 (2020).

    Article  Google Scholar 

  156. Vasudevan, H. N. et al. Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification. Sci. Rep. 11, 780 (2021).

    Article  Google Scholar 

  157. Chang, M. Y. et al. One-step noninvasive prenatal testing (NIPT) for autosomal recessive homozygous point mutations using digital PCR. Sci. Rep. 8, 2877 (2018).

    Article  ADS  Google Scholar 

  158. Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15, 427–437 (2008).

    Article  Google Scholar 

  159. Kintses, B. et al. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem. Biol. 19, 1001–1009 (2012).

    Article  Google Scholar 

  160. Obexer, R. et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9, 50–56 (2017).

    Article  Google Scholar 

  161. Debon, A. et al. Ultrahigh-throughput screening enables efficient single-round oxidase remodelling. Nat. Catal. 2, 740–747 (2019).

    Article  Google Scholar 

  162. Shembekar, N., Hu, H., Eustace, D. & Merten, C. A. Single-cell droplet microfluidic screening for antibodies specifically binding to target cells. Cell Rep. 22, 2206–2215 (2018).

    Article  Google Scholar 

  163. Gérard, A. et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 38, 715–721 (2020).

    Article  Google Scholar 

  164. Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    Article  Google Scholar 

  165. Gielen, F. et al. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc. Natl Acad. Sci. 113, E7383–E7389 (2016).

    Article  Google Scholar 

  166. Boitard, L. et al. Monitoring single-cell bioenergetics via the coarsening of emulsion droplets. Proc. Natl Acad. Sci. USA 109, 7181–7186 (2012).

    Article  ADS  Google Scholar 

  167. Eyer, K. et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 35, 977–982 (2017).

    Article  Google Scholar 

  168. Bounab, Y. et al. Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap. Nat. Protoc. 15, 2920–2955 (2020).

    Article  Google Scholar 

  169. Bucheli, O. T. M., Sigvaldadóttir, I. & Eyer, K. Measuring single-cell protein secretion in immunology: technologies, advances, and applications. Eur. J. Immunol. 51, 1334–1347 (2021).

    Article  Google Scholar 

  170. Heo, M. et al. Deep phenotypic characterization of immunization-induced antibacterial IgG repertoires in mice using a single-antibody bioassay. Commun. Biol. 3, 614 (2020).

    Article  Google Scholar 

  171. Llitjos, J.-F. et al. Assessing the functional heterogeneity of monocytes in human septic shock: a proof-of-concept microfluidic assay of TNFα secretion. Front. Immunol. 12, 686111 (2021).

    Article  Google Scholar 

  172. Subedi, N. et al. An automated real-time microfluidic platform to probe single NK cell heterogeneity and cytotoxicity on-chip. Sci. Rep. 11, 17084 (2021).

    Article  ADS  Google Scholar 

  173. Eyer, K. et al. The quantitative assessment of the secreted IgG repertoire after recall to evaluate the quality of immunizations. J. Immunol. 205, 1176–1184 (2020).

    Article  Google Scholar 

  174. Kräutler, N. J. et al. Quantitative and qualitative analysis of humoral immunity reveals continued and personalized evolution in chronic viral infection. Cell Rep. 30, 997–1012 (2020).

    Article  Google Scholar 

  175. Canales-Herrerias, P. et al. High-affinity autoreactive plasma cells disseminate through multiple organs in patients with immune thrombocytopenic purpura. J. Clin. Invest. 132, e153580 (2022).

    Article  Google Scholar 

  176. Molari, M., Eyer, K., Baudry, J., Cocco, S. & Monasson, R. Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers. eLife 9, e55678 (2020).

    Article  Google Scholar 

  177. Woronoff, G. et al. Metabolic cost of rapid adaptation of single yeast cells. Proc. Natl Acad. Sci. USA 117, 10660–10666 (2020).

    Article  ADS  Google Scholar 

  178. Abbyad, P., Dangla, R., Alexandrou, A. & Baroud, C. N. Rails and anchors: guiding and trapping droplet microreactors in two dimensions. Lab Chip 11, 813–821 (2011).

    Article  Google Scholar 

  179. Amselem, G., Guermonprez, C., Drogue, B., Michelin, S. & Baroud, C. N. Universal microfluidic platform for bioassays in anchored droplets. Lab Chip 16, 4200–4211 (2016).

    Article  Google Scholar 

  180. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017).

    Article  Google Scholar 

  181. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  Google Scholar 

  182. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  ADS  Google Scholar 

  183. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    Article  Google Scholar 

  184. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).

    Article  Google Scholar 

  185. Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    Article  Google Scholar 

  186. Abate, A. R., Chen, C.-H., Agresti, J. J. & Weitz, D. A. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 9, 2628–2631 (2009).

    Article  Google Scholar 

  187. Goldstein, L. D. et al. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun. Biol. 2, 304 (2019).

    Article  Google Scholar 

  188. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    Article  Google Scholar 

  189. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    Article  ADS  Google Scholar 

  190. Tu, A. A. et al. TCR sequencing paired with massively parallel 3′ RNA-seq reveals clonotypic T cell signatures. Nat. Immunol. 20, 1692–1699 (2019).

    Article  Google Scholar 

  191. Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120 (2019).

    Article  ADS  Google Scholar 

  192. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    Article  Google Scholar 

  193. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  Google Scholar 

  194. De Rop, F. V. et al. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads. eLife 11, e73971 (2022).

    Article  Google Scholar 

  195. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    Article  Google Scholar 

  196. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  Google Scholar 

  197. Debs, B. E., Utharala, R., Balyasnikova, I. V., Griffiths, A. D. & Merten, C. A. Functional single-cell hybridoma screening using droplet-based microfluidics. Proc. Natl Acad. Sci. USA 109, 11570–11575 (2012).

    Article  ADS  Google Scholar 

  198. Wang, Y. et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics. Sci. Adv. 7, eabe3839 (2021).

    Article  ADS  Google Scholar 

  199. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    Article  Google Scholar 

  200. Manteca, A. et al. Directed evolution in drops: molecular aspects and applications. ACS Synth. Biol. 10, 2772–2783 (2021).

    Article  Google Scholar 

  201. Zeymer, C. & Hilvert, D. Directed evolution of protein catalysts. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-062917-012034 (2018).

    Article  Google Scholar 

  202. Neun, S., Zurek, P. J., Kaminski, T. S. & Hollfelder, F. in Methods in Enzymology (ed. Tawfik, D. S.) Ch. 13, 317–343 (Academic Press, 2020).

  203. Weng, L. & Spoonamore, J. E. Droplet microfluidics-enabled high-throughput screening for protein engineering. Micromachines 10, 734 (2019).

    Article  Google Scholar 

  204. Beneyton, T. et al. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica. Microb. Cell Factories 16, 18 (2017).

    Article  Google Scholar 

  205. Beneyton, T. et al. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics. Sci. Rep. 6, 27223 (2016).

    Article  ADS  Google Scholar 

  206. Ryckelynck, M. et al. Using droplet-based microfluidics to improve the catalytic properties of RNA under multiple-turnover conditions. RNA 21, 458–469 (2015).

    Article  Google Scholar 

  207. Bouhedda, F. et al. A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells. Nat. Chem. Biol. 16, 69–76 (2020).

    Article  Google Scholar 

  208. Trachman, R. J. et al. Structure and functional reselection of the Mango-III fluorogenic RNA aptamer. Nat. Chem. Biol. 15, 472–479 (2019).

    Article  Google Scholar 

  209. Autour, A., Bouhedda, F., Cubi, R. & Ryckelynck, M. Optimization of fluorogenic RNA-based biosensors using droplet-based microfluidic ultrahigh-throughput screening. Methods 161, 46–53 (2019).

    Article  Google Scholar 

  210. Autour, A. et al. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat. Commun. 9, 656 (2018).

    Article  ADS  Google Scholar 

  211. Autour, A., Westhof, E. & Ryckelynck, M. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications. Nucleic Acids Res. 44, 2491–2500 (2016).

    Article  Google Scholar 

  212. Fischlechner, M. et al. Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat. Chem. 6, 791–796 (2014).

    Article  Google Scholar 

  213. Larsen, A. C. et al. A general strategy for expanding polymerase function by droplet microfluidics. Nat. Commun. 7, 11235 (2016).

    Article  ADS  Google Scholar 

  214. Ma, F. et al. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform. Nat. Commun. 9, 1030 (2018).

    Article  ADS  Google Scholar 

  215. Prodanović, R. et al. A high-throughput screening system based on droplet microfluidics for glucose oxidase gene libraries. Molecules 25, 2418 (2020).

    Article  Google Scholar 

  216. van Loo, B. et al. High-throughput, lysis-free screening for sulfatase activity using Escherichia coli autodisplay in microdroplets. ACS Synth. Biol. 8, 2690–2700 (2019).

    Article  Google Scholar 

  217. Tomasi, R. F.-X., Sart, S., Champetier, T. & Baroud, C. N. Individual control and quantification of 3D spheroids in a high-density microfluidic droplet array. Cell Rep. 31, 107670 (2020).

    Article  Google Scholar 

  218. Theberge, A. B. et al. Microfluidic platform for combinatorial synthesis in picolitre droplets. Lab Chip 12, 1320–1326 (2012).

    Article  Google Scholar 

  219. Bannock, J. H. et al. Continuous synthesis of device-grade semiconducting polymers in droplet-based microreactors. Adv. Funct. Mater. 23, 2123–2129 (2013).

    Article  Google Scholar 

  220. Kreutz, J. E. et al. Evolution of catalysts directed by genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. J. Am. Chem. Soc. 132, 3128–3132 (2010).

    Article  Google Scholar 

  221. Faustini, M. et al. Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc. 135, 14619–14626 (2013).

    Article  Google Scholar 

  222. Bawazer, L. A. et al. Combinatorial microfluidic droplet engineering for biomimetic material synthesis. Sci. Adv. 2, e1600567 (2016).

    Article  ADS  Google Scholar 

  223. Nette, J., Howes, P. D. & deMello, A. J. Microfluidic synthesis of luminescent and plasmonic nanoparticles: fast, efficient, and data-rich. Adv. Mater. Technol. 5, 2000060 (2020).

    Article  Google Scholar 

  224. Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4, 316–321 (2004).

    Article  Google Scholar 

  225. Lignos, I. et al. Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform. ACS Nano 12, 5504–5517 (2018).

    Article  Google Scholar 

  226. Kuehne, A. J. C. & Weitz, D. A. Highly monodisperse conjugated polymer particles synthesized with drop-based microfluidics. Chem. Commun. 47, 12379 (2011).

    Article  Google Scholar 

  227. Abolhasani, M., Oskooei, A., Klinkova, A., Kumacheva, E. & Günther, A. Shaken, and stirred: oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials. Lab Chip 14, 2309–2318 (2014).

    Article  Google Scholar 

  228. Li, S. et al. Precision tuning of rare-earth-doped upconversion nanoparticles via droplet-based microfluidic screening. J. Mater. Chem. C. 9, 925–933 (2021).

    Article  Google Scholar 

  229. Fallah-Araghi, A. et al. Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112, 028301 (2014).

    Article  ADS  Google Scholar 

  230. Torbensen, K., Rossi, F., Ristori, S. & Abou-Hassan, A. Chemical communication and dynamics of droplet emulsions in networks of Belousov–Zhabotinsky micro-oscillators produced by microfluidics. Lab Chip 17, 1179–1189 (2017).

    Article  Google Scholar 

  231. Ameta, S. et al. Darwinian properties and their trade-offs in autocatalytic RNA reaction networks. Nat. Commun. 12, 842 (2021).

    Article  ADS  Google Scholar 

  232. Hu, J., Cochrane, W. G., Jones, A. X., Blackmond, D. G. & Paegel, B. M. Chiral lipid bilayers are enantioselectively permeable. Nat. Chem. 13, 786–791 (2021).

    Article  Google Scholar 

  233. Wiedemeier, S. et al. Parametric studies on droplet generation reproducibility for applications with biological relevant fluids. Eng. Life Sci. 17, 1271–1280 (2017).

    Article  Google Scholar 

  234. Kong, D. S. et al. Open-source, community-driven microfluidics with metafluidics. Nat. Biotechnol. 35, 523–529 (2017).

    Article  Google Scholar 

  235. Becker, H. & Gärtner, C. Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 390, 89–111 (2008).

    Article  Google Scholar 

  236. Guckenberger, D. J., Groot, T. E., de, Wan, A. M. D., Beebe, D. J. & Young, E. W. K. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15, 2364–2378 (2015).

    Article  Google Scholar 

  237. Attia, U. M., Marson, S. & Alcock, J. R. Design and fabrication of a three-dimensional microfluidic device for blood separation using micro-injection moulding. Proc. Instn Mech. Engrs B J. Eng. Manuf. 228, 941–949 (2014).

    Article  Google Scholar 

  238. Sugioka, K. et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14, 3447–3458 (2014).

    Article  Google Scholar 

  239. Waheed, S. et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip 16, 1993–2013 (2016).

    Article  Google Scholar 

  240. Lashkaripour, A., Silva, R. & Densmore, D. Desktop micromilled microfluidics. Microfluid. Nanofluidics 22, 31 (2018).

    Article  Google Scholar 

  241. Plastic fantastic? Lab Chip 2, 31N–36N (2002).

  242. Battat, S., Weitz, D. A. & Whitesides, G. M. An outlook on microfluidics: the promise and the challenge. Lab Chip 22, 530–536 (2022).

    Article  Google Scholar 

  243. Xu, J. H., Li, S. W., Tan, J., Wang, Y. J. & Luo, G. S. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir 22, 7943–7946 (2006).

    Article  Google Scholar 

  244. Joensson, H. N., Uhlén, M. & Svahn, H. A. Droplet size based separation by deterministic lateral displacement — separating droplets by cell-induced shrinking. Lab Chip 11, 1305 (2011).

    Article  Google Scholar 

  245. Volpatti, L. R. & Yetisen, A. K. Commercialization of microfluidic devices. Trends Biotechnol. 32, 347–350 (2014).

    Article  Google Scholar 

  246. Reyes, D. R. et al. Accelerating innovation and commercialization through standardization of microfluidic-based medical devices. Lab Chip 21, 9–21 (2021).

    Article  Google Scholar 

  247. Sanka, R., Lippai, J., Samarasekera, D., Nemsick, S. & Densmore, D. 3DμF-interactive design environment for continuous flow microfluidic devices. Sci. Rep. 9, 9166 (2019).

    Article  ADS  Google Scholar 

  248. Elvira, K. S., Gielen, F., Tsai, S. S. H. & Nightingale, A. M. Materials and methods for droplet microfluidic device fabrication. Lab Chip 22, 859–875 (2022).

    Article  Google Scholar 

  249. Tsur, E. E. Computer-aided design of microfluidic circuits. Annu. Rev. Biomed. Eng. 22, 285–307 (2020).

    Article  Google Scholar 

  250. Walsh, D. I., Kong, D. S., Murthy, S. K. & Carr, P. A. Enabling microfluidics: from clean rooms to makerspaces. Trends Biotechnol. 35, 383–392 (2017).

    Article  Google Scholar 

  251. Huebner, A. et al. Microdroplets: a sea of applications? Lab Chip 8, 1244–1254 (2008).

    Article  Google Scholar 

  252. Amin, N., Thies, W. & Amarasinghe, S. Computer-aided design for microfluidic chips based on multilayer soft lithography. in Proc. 2009 IEEE International Conference on Computer Design 2–9 (IEEE, 2009).

  253. Lashkaripour, A. et al. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 12, 25 (2021).

    Article  ADS  Google Scholar 

  254. Rosenfeld, L., Lin, T., Derda, R. & Tang, S. K. Y. Review and analysis of performance metrics of droplet microfluidics systems. Microfluid. Nanofluidics 16, 921–939 (2014).

    Article  Google Scholar 

  255. Baret, J.-C., Kleinschmidt, F., El Harrak, A. & Griffiths, A. D. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis. Langmuir 25, 6088–6093 (2009).

    Article  Google Scholar 

  256. Riechers, B. et al. Surfactant adsorption kinetics in microfluidics. Proc. Natl Acad. Sci. USA 113, 11465–11470 (2016).

    Article  ADS  Google Scholar 

  257. Weiss, M. et al. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17, 89–96 (2018).

    Article  ADS  Google Scholar 

  258. Nassar, M. et al. Experimental models of the variation of HFE-7100 and HFE-7000 electric properties with temperature. IEEE Trans. Ind. Appl. 56, 4193–4199 (2020).

    Article  Google Scholar 

  259. Ahn, K. et al. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88, 024104 (2006).

    Article  ADS  Google Scholar 

  260. Franke, T., Abate, A. R., Weitz, D. A. & Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9, 2625–2627 (2009).

    Article  Google Scholar 

  261. Brosseau, Q., Vrignon, J. & Baret, J.-C. Microfluidic dynamic interfacial tensiometry (μDIT). Soft Matter 10, 3066–3076 (2014).

    Article  ADS  Google Scholar 

  262. Rosenfeld, L., Fan, L., Chen, Y., Swoboda, R. & Tang, S. K. Y. Break-up of droplets in a concentrated emulsion flowing through a narrow constriction. Soft Matter 10, 421–430 (2013).

    Article  ADS  Google Scholar 

  263. Roach, L. S., Song, H. & Ismagilov, R. F. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal. Chem. 77, 785–796 (2005).

    Article  Google Scholar 

  264. Courtois, F. et al. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays. Anal. Chem. 81, 3008–3016 (2009).

    Article  Google Scholar 

  265. Skhiri, Y. et al. Dynamics of molecular transport by surfactants in emulsions. Soft Matter 8, 10618–10627 (2012).

    Article  ADS  Google Scholar 

  266. Woronoff, G. et al. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Anal. Chem. 83, 2852–2857 (2011).

    Article  Google Scholar 

  267. Janiesch, J.-W. et al. Key factors for stable retention of fluorophores and labeled biomolecules in droplet-based microfluidics. Anal. Chem. 87, 2063–2067 (2015).

    Article  Google Scholar 

  268. Pan, M. et al. Fluorinated Pickering emulsions impede interfacial transport and form rigid interface for the growth of anchorage-dependent cells. ACS Appl. Mater. Interfaces 6, 21446–21453 (2014).

    Article  ADS  Google Scholar 

  269. Chacon Orellana, L. A. & Baret, J.-C. Rapid stabilization of droplets by particles in microfluidics: role of droplet formation. ChemSystemsChem 1, 16–24 (2019).

    Article  Google Scholar 

  270. Chacon, L. A. & Baret, J. C. Microfluidic angle of repose test for Pickering emulsions. J. Phys. Appl. Phys. 50, 39LT04 (2017).

    Article  Google Scholar 

  271. Smith, C. A. et al. Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry. Anal. Chem. 85, 3812–3816 (2013).

    Article  Google Scholar 

  272. Leduc, A., Huffman, R. G., Cantlon, J., Khan, S. & Slavov, N. Exploring functional protein covariation across single cells using nPOP. Genome Biol. 23, 261 (2022).

    Article  Google Scholar 

  273. Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021).

    Article  Google Scholar 

  274. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  ADS  Google Scholar 

  275. Chappell, L., Russell, A. J. C. & Voet, T. Single-cell (multi)omics technologies. Annu. Rev. Genomics Hum. Genet. 19, 15–41 (2018).

    Article  Google Scholar 

  276. Lan, F., Haliburton, J. R., Yuan, A. & Abate, A. R. Droplet barcoding for massively parallel single-molecule deep sequencing. Nat. Commun. 7, 11784 (2016).

    Article  ADS  Google Scholar 

  277. Chowdhury, M. S. et al. Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 10, 4546 (2019).

    Article  ADS  Google Scholar 

  278. Pan, M., Lyu, F. & Tang, S. K. Y. Fluorinated Pickering emulsions with nonadsorbing interfaces for droplet-based enzymatic assays. Anal. Chem. 87, 7938–7943 (2015).

    Article  Google Scholar 

  279. Shang, L. & Zhao, Y. Droplet-templated synthetic cells. Matter 4, 95–115 (2021).

    Article  Google Scholar 

  280. Ugrinic, M., deMello, A. & Tang, T.-Y. D. Microfluidic tools for bottom-up synthetic cellularity. Chem 5, 1727–1742 (2019).

    Article  Google Scholar 

  281. McIntyre, D., Lashkaripour, A. & Densmore, D. Rapid and inexpensive microfluidic electrode integration with conductive ink. Lab Chip 20, 3690–3695 (2020).

    Article  Google Scholar 

  282. McIntyre, D., Lashkaripour, A., Fordyce, P. & Densmore, D. Machine learning for microfluidic design and control. Lab Chip 22, 2925–2937 (2022).

    Article  Google Scholar 

  283. Utada, A. S., Fernandez-Nieves, A., Stone, H. A. & Weitz, D. A. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 99, 094502 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Ding for assistance with the design and drawing of figures.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.M. and A.J.d.); Experimentation (T.M., A.J.d. and J.-C.B.); Results (C.M. and A.R.A.); Applications (K.S., A.D.G., T.B., J.-C.B., T.M. and A.J.d.); Reproducibility and data deposition (D.A. and D.D.); Limitations and optimizations (T.B., J.-C.B., A.J.d., A.R.A., D.D. and A.D.G.); Outlook (A.J.d., A.R.A., J.-C.B., D.D. and A.D.G.); Overview of the Primer (T.M., A.J.d., A.R.A., J.-C.B., D.D. and A.D.G.).

Corresponding author

Correspondence to Andrew J. deMello.

Ethics declarations

Competing interests

A.R.A. is a founder of Mission Bio and Fluent Bio. J.-C.B. is a founder and shareholder of Emulseo. D.D. is a founder and shareholder of Lattice Automation, Inc., Asimov Inc. and BioSens8 Inc. A.D.G. is a founder and shareholder of HiFiBiO Therapeutics, Biomillenia (now Design Pharmaceuticals), Cyprio and Minos Biosciences. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Heon-Ho Jeong, Melinda Simon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Affinity

The strength of the binding interaction between two molecules. Affinity can be described by the dissociation constant (KD) or by the standard free energy change (ΔG°): ΔG° = −RT ln KD where R is the gas constant and T is the absolute temperature.

Bioprospection

A systematic and organized search for useful products derived from bioresources including plants, microorganisms and animals that can be developed further for commercialization or overall benefit to society.

Capillary number

A dimensionless number used to quantify the ratio of viscous forces to capillary forces between two immiscible liquids.

Colloidosomes

A solid microcapsule formed by the self-assembly of colloidal particles at the interface of emulsion droplets.

Interfacial tension

The force of attraction between molecules at the interface of two fluids.

In vitro transcription

Allows template-directed synthesis of bespoke RNA molecules in microgram to milligram quantities outside the cellular environment.

In vitro transcription translation

Coupled in vitro transcription and in vitro translation allowing protein synthesis outside the cellular environment, thus enabling rapid expression of small amounts of functional proteins.

Lentiviral libraries

Libraries of genes cloned into vectors derived from lentiviruses, which infect by inserting DNA into the host cell genome and which can infect non-dividing cells.

Multi-omics

An analysis approach that combines data from multiple omic sources, such as genomics, proteomics, transcriptomics, epigenomics and metabolomics, to study living systems in a concerted manner.

Opsonization

Opsonization is an immune process that uses opsonins (extracellular proteins) to mark foreign pathogens for elimination by phagocytes.

Phage display

A method to select large libraries of genes encoding proteins, in which genes are inserted into a phage coat protein gene, resulting in phage particles with the protein displayed on the surface and the gene that encodes it inside the phage particle, generating a connection between genotype and phenotype.

Poisson loading

An encapsulation strategy in which droplet occupancy follows a Poisson distribution.

Polymersomes

An artificial vesicle in which the vesicle membrane is composed of amphiphilic block or triblock copolymers, with high stability and tunable size.

Reynolds number

A dimensionless parameter quantifying the ratio of inertial forces to viscous forces in a system, useful in predicting whether a flow will be laminar or turbulent.

Taylor cone

The shape of a fluid jet generated during electrospraying (such as during the sample ionization for mass spectrometry).

Taylor dispersion

An effect in which shear acts to smear out the concentration distribution in the direction of the flow, enhancing the rate at which it spreads in that direction.

Wettability

Describes the ability of a liquid to spread over a surface. It is normally quantified through measurement of the contact angle between the liquid and the surface.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moragues, T., Arguijo, D., Beneyton, T. et al. Droplet-based microfluidics. Nat Rev Methods Primers 3, 32 (2023). https://doi.org/10.1038/s43586-023-00212-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00212-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing