Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Peptidomics

Abstract

Peptides are biopolymers, typically consisting of 2–50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peptides, from analysis to application.
Fig. 2: In silico peptide mining.
Fig. 3: Overview of common peptidomics workflows.
Fig. 4: Quantitation methods for peptidomics.
Fig. 5: From nature to medicine.

Similar content being viewed by others

References

  1. Gruber, C. W., Muttenthaler, M. & Freissmuth, M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr. Pharm. Des. 16, 3071–3088 (2010).

    Article  Google Scholar 

  2. Dang, T. & Süssmuth, R. D. Bioactive peptide natural products as lead structures for medicinal use. Acc. Chem. Res. 50, 1566–1576 (2017).

    Article  Google Scholar 

  3. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2015).

    Article  Google Scholar 

  4. Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021). This comprehensive review discusses the importance of peptides as drug leads and innovative therapeutics.

    Article  Google Scholar 

  5. Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).

    Article  Google Scholar 

  6. Munch, J., Standker, L., Forssmann, W. G. & Kirchhoff, F. Discovery of modulators of HIV-1 infection from the human peptidome. Nat. Rev. Microbiol. 12, 715–722 (2014).

    Article  Google Scholar 

  7. Baggerman, G. et al. Peptidomics. J. Chromatogr. B 803, 3–16 (2004).

    Article  Google Scholar 

  8. Schrader, M., Schulz-Knappe, P. & Fricker, L. D. Historical perspective of peptidomics. EuPA Open. Proteom. 3, 171–182 (2014).

    Article  Google Scholar 

  9. Schulz-Knappe, P. et al. Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High. T Scr. 4, 207–217 (2001).

    Google Scholar 

  10. Metrano, A. J. et al. Asymmetric catalysis mediated by synthetic peptides, version 2.0: expansion of scope and mechanisms. Chem. Rev. 120, 11479–11615 (2020). This review article discusses peptide-assisted asymmetric synthesis reactions and recent advances in the field.

    Article  Google Scholar 

  11. Collier, J. H. & Segura, T. Evolving the use of peptides as components of biomaterials. Biomaterials 32, 4198–4204 (2011).

    Article  Google Scholar 

  12. Agnieray, H., Glasson, J. L., Chen, Q., Kaur, M. & Domigan, L. J. Recent developments in sustainably sourced protein-based biomaterials. Biochem. Soc. Trans. 49, 953–964 (2021).

    Article  Google Scholar 

  13. Malandrino, N. & Smith, R. J. in Principles of Endocrinology and Hormone Action (eds Belfiore, A. & LeRoith, D.) 29–42 (Springer International, 2018).

  14. Yi, J., Warunek, D. & Craft, D. Degradation and stabilization of peptide hormones in human blood specimens. PLoS ONE 10, e0134427 (2015).

    Article  Google Scholar 

  15. Svensson, M. et al. Heat stabilization of the tissue proteome: a new technology for improved proteomics. J. Proteome Res. 8, 974–981 (2009).

    Article  Google Scholar 

  16. Yang, N., Anapindi, K. D. B., Romanova, E. V., Rubakhin, S. S. & Sweedler, J. V. Improved identification and quantitation of mature endogenous peptides in the rodent hypothalamus using a rapid conductive sample heating system. Analyst 142, 4476–4485 (2017).

    Article  ADS  Google Scholar 

  17. Feist, P. & Hummon, A. B. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int. J. Mol. Sci. 16, 3537–3563 (2015).

    Article  Google Scholar 

  18. Harrison, S. T. Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol. Adv. 9, 217–240 (1991).

    Article  Google Scholar 

  19. Koehbach, J. et al. Cyclotide discovery in Gentianales revisited — identification and characterization of cyclic cystine-knot peptides and their phylogenetic distribution in Rubiaceae plants. Biopolymers 100, 438–452 (2013).

    Article  Google Scholar 

  20. Chen, E. I., Cociorva, D., Norris, J. L. & Yates, J. R. 3rd Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J. Proteome Res. 6, 2529–2538 (2007).

    Article  Google Scholar 

  21. Panuwet, P. et al. Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: advancing biomonitoring. Crit. Rev. Anal. Chem. 46, 93–105 (2016).

    Article  Google Scholar 

  22. Finoulst, I., Pinkse, M., Van Dongen, W. & Verhaert, P. Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J. Biomed. Biotechnol. 2011, 245291 (2011).

    Article  Google Scholar 

  23. Tubaon, R. M., Haddad, P. R. & Quirino, J. P. Sample clean-up strategies for ESI mass spectrometry applications in bottom-up proteomics: trends from 2012 to 2016. Proteomics 17, 1700011 (2017).

    Article  Google Scholar 

  24. Sosalagere, C., Adesegun Kehinde, B. & Sharma, P. Isolation and functionalities of bioactive peptides from fruits and vegetables: a reviews. Food Chem. 366, 130494 (2022).

    Article  Google Scholar 

  25. Mthembu, S. N., Sharma, A., Albericio, F. & de la Torre, B. G. Breaking a couple: disulfide reducing agents. Chembiochem 21, 1947–1954 (2020).

    Article  Google Scholar 

  26. Hellinger, R. et al. Importance of the cyclic cystine knot structural motif for immunosuppressive effects of cyclotides. ACS Chem. Biol. 16, 2373–2386 (2021).

    Article  Google Scholar 

  27. Tsai, P. L., Chen, S. F. & Huang, S. Y. Mass spectrometry-based strategies for protein disulfide bond identification. Rev. Anal. Chem. 32, 257–268 (2013).

    Article  Google Scholar 

  28. Han, D. K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2001).

    Article  Google Scholar 

  29. Yao, X., Freas, A., Ramirez, J., Demirev, P. A. & Fenselau, C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842 (2001).

    Article  Google Scholar 

  30. Hsu, J.-L., Huang, S.-Y., Chow, N.-H. & Chen, S.-H. Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003).

    Article  Google Scholar 

  31. Greer, T., Lietz, C. B., Xiang, F. & Li, L. Novel isotopic N,N-dimethyl leucine (iDiLeu) reagents enable absolute quantification of peptides and proteins using a standard curve approach. J. Am. Soc. Mass Spectrom. 26, 107–119 (2014).

    Article  Google Scholar 

  32. DeSouza, L. V. et al. Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. J. Proteome Res. 7, 3525–3534 (2008).

    Article  Google Scholar 

  33. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  Google Scholar 

  34. Wiese, S., Reidegeld, K. A., Meyer, H. E. & Warscheid, B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7, 340–350 (2007).

    Article  Google Scholar 

  35. Zhang, J., Wang, Y. & Li, S. Deuterium isobaric amine-reactive tags for quantitative proteomics. Anal. Chem. 82, 7588–7595 (2010).

    Article  Google Scholar 

  36. Atkins, N. Jr. et al. Functional peptidomics: stimulus- and time-of-day-specific peptide release in the mammalian circadian clock. ACS Chem. Neurosci. 9, 2001–2008 (2018).

    Article  Google Scholar 

  37. Gedela, S. & Medicherla, N. R. Chromatographic techniques for the separation of peptides: application to proteomics. Chromatographia 65, 511–518 (2007).

    Article  Google Scholar 

  38. Udeshi, N. D., Compton, P. D., Shabanowitz, J., Hunt, D. F. & Rose, K. L. Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry. Nat. Protoc. 3, 1709–1717 (2008).

    Article  Google Scholar 

  39. Mahoney, W. C. & Hermodson, M. A. Separation of large denatured peptides by reverse phase high performance liquid chromatography. Trifluoroacetic acid as a peptide solvent. J. Biol. Chem. 255, 11199–11203 (1980).

    Article  Google Scholar 

  40. Yoshida, T. Peptide separation by hydrophilic-interaction chromatography: a review. J. Biochem. Biophys. Meth. 60, 265–280 (2004).

    Article  Google Scholar 

  41. Hillenkamp, F. & Karas, M. Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Meth. Enzymol. 193, 280–295 (1990).

    Article  Google Scholar 

  42. Dreisewerd, K. The desorption process in MALDI. Chem. Rev. 103, 395–426 (2003).

    Article  Google Scholar 

  43. Dong, X. et al. A LC-MS/MS method to monitor the concentration of HYD-PEP06, a RGD-modified Endostar mimetic peptide in rat blood. J. Chromatogr. B 1092, 296–305 (2018).

    Article  Google Scholar 

  44. Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008).

    Article  Google Scholar 

  45. Ludwig, C. et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 (2018).

    Article  Google Scholar 

  46. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003).

    Article  ADS  Google Scholar 

  47. Follmann, R., Goldsmith, C. J. & Stein, W. Spatial distribution of intermingling pools of projection neurons with distinct targets: a 3D analysis of the commissural ganglia in Cancer borealis. J. Comp. Neurol. 525, 1827–1843 (2017).

    Article  Google Scholar 

  48. Mechref, Y. Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr. Protoc. Protein Sci. 68, 12.11.1–12.11.11 (2012).

    Google Scholar 

  49. Riley, N. M., Malaker, S. A., Driessen, M. D. & Bertozzi, C. R. Optimal dissociation methods differ for N-and O-glycopeptides. J. Proteome Res. 19, 3286–3301 (2020).

    Article  Google Scholar 

  50. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    Article  Google Scholar 

  51. Tsou, C.-C. et al. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12, 258–264 (2015).

    Article  Google Scholar 

  52. Sinitcyn, P. et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00968-7 (2021).

    Article  Google Scholar 

  53. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997).

    Article  Google Scholar 

  54. Tyler, B. J., Rayal, G. & Castner, D. G. Multivariate analysis strategies for processing ToF-SIMS images of biomaterials. Biomaterials 28, 2412–2423 (2007).

    Article  Google Scholar 

  55. Eberlin, L. S. et al. Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections. Anal. Chem. 83, 8366–8371 (2011).

    Article  Google Scholar 

  56. Bouschen, W. & Spengler, B. Artifacts of MALDI sample preparation investigated by high-resolution scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) imaging mass spectrometry. Int. J. Mass. Spectrom. 266, 129–137 (2007).

    Article  Google Scholar 

  57. Iakab, S.-A. et al. SALDI-MS and SERS multimodal imaging: one nanostructured substrate to rule them both. Anal. Chem. 94, 2785–2793 (2022).

    Article  Google Scholar 

  58. Ali, A., Baby, B., Soman, S. S. & Vijayan, R. Molecular insights into the interaction of hemorphin and its targets. Sci. Rep. 9, 14747 (2019).

    Article  ADS  Google Scholar 

  59. Rocha, B., Ruiz-Romero, C. & Blanco, F. J. Mass spectrometry imaging: a novel technology in rheumatology. Nat. Rev. Rheumatol. 13, 52–63 (2017).

    Article  Google Scholar 

  60. Ramos-Vara, J. Technical aspects of immunohistochemistry. Vet. Pathol. 42, 405–426 (2005).

    Article  Google Scholar 

  61. Skelley, D., Brown, L. & Besch, P. Radioimmunoassay. Clin. Chem. 19, 146–186 (1973).

    Article  Google Scholar 

  62. Lichtman, J. W. & Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005).

    Article  Google Scholar 

  63. Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240 (2018). This comprehensive review discusses various aspects of MSI, spanning from sample preparation and mass spectrometry instrumentation to data analysis and diverse applications.

    Article  Google Scholar 

  64. Lemaire, R. et al. Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J. Proteome Res. 6, 1295–1305 (2007).

    Article  Google Scholar 

  65. Kokkat, T. J. et al. Archived formalin-fixed paraffin-embedded (FFPE) blocks: a valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv. Biobank 11, 101–106 (2013).

    Article  Google Scholar 

  66. Ren, Y. et al. Reagents for isobaric labeling peptides in quantitative proteomics. Anal. Chem. 90, 12366–12371 (2018).

    Article  Google Scholar 

  67. Truong, J. X. et al. Removal of optimal cutting temperature (OCT) compound from embedded tissue for MALDI imaging of lipids. Anal. Bioanal. Chem. 413, 2695–2708 (2021).

    Article  Google Scholar 

  68. Tian, Y., Bova, G. S. & Zhang, H. Quantitative glycoproteomic analysis of optimal cutting temperature-embedded frozen tissues identifying glycoproteins associated with aggressive prostate cancer. Anal. Chem. 83, 7013–7019 (2011).

    Article  Google Scholar 

  69. Bogdanow, B., Zauber, H. & Selbach, M. Systematic errors in peptide and protein identification and quantification by modified peptides. Mol. Cell Proteom. 15, 2791–2801 (2016).

    Article  Google Scholar 

  70. Schwartz, S. A., Reyzer, M. L. & Caprioli, R. M. Direct tissue analysis using matrix‐assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass. Spectrom. 38, 699–708 (2003).

    Article  ADS  Google Scholar 

  71. Lemaire, R. et al. MALDI-MS direct tissue analysis of proteins: improving signal sensitivity using organic treatments. Anal. Chem. 78, 7145–7153 (2006).

    Article  Google Scholar 

  72. Buchberger, A. R., Sauer, C. S., Vu, N. Q., DeLaney, K. & Li, L. Temporal study of the perturbation of crustacean neuropeptides due to severe hypoxia using 4-plex reductive dimethylation. J. Proteome Res. 19, 1548–1555 (2020).

    Article  Google Scholar 

  73. Kaletaş, B. K. et al. Sample preparation issues for tissue imaging by imaging MS. Proteomics 9, 2622–2633 (2009).

    Article  Google Scholar 

  74. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  Google Scholar 

  75. Leopold, J., Popkova, Y., Engel, K. M. & Schiller, J. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules 8, 173 (2018).

    Article  Google Scholar 

  76. DeLaney, K. et al. Mass spectrometry quantification, localization, and discovery of feeding-related neuropeptides in cancer borealis. ACS Chem. Neurosci. 12, 782–798 (2021).

    Article  Google Scholar 

  77. Amos, B. et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50, D898–D911 (2022).

    Article  Google Scholar 

  78. Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–D26 (2022).

    Article  Google Scholar 

  79. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article  Google Scholar 

  80. Kaas, Q., Yu, R., Jin, A. H., Dutertre, S. & Craik, D. J. ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 40, D325–D330 (2012).

    Article  Google Scholar 

  81. Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).

    Google Scholar 

  82. Leinonen, R. et al. The European Nucleotide Archive. Nucleic Acids Res. 39, D28–D31 (2011).

    Article  Google Scholar 

  83. Besemer, J. & Borodovsky, M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 33, W451–W454 (2005).

    Article  Google Scholar 

  84. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article  Google Scholar 

  85. Hazarika, R. R. et al. ARA-PEPs: a repository of putative sORF-encoded peptides in Arabidopsis thaliana. BMC Bioinformatics 18, 37 (2017).

    Article  Google Scholar 

  86. Mooney, C., Haslam, N. J., Holton, T. A., Pollastri, G. & Shields, D. C. PeptideLocator: prediction of bioactive peptides in protein sequences. Bioinformatics 29, 1120–1126 (2013).

    Article  Google Scholar 

  87. Zhou, P. et al. Detecting small plant peptides using SPADA (Small Peptide Alignment Discovery Application). BMC Bioinformatics 14, 335 (2013).

    Article  Google Scholar 

  88. Zhu, M. & Gribskov, M. MiPepid: microPeptide identification tool using machine learning. BMC Bioinformatics 20, 559 (2019).

    Article  Google Scholar 

  89. Zhang, Y., Jia, C., Fullwood, M. J. & Kwoh, C. K. DeepCPP: a deep neural network based on nucleotide bias information and minimum distribution similarity feature selection for RNA coding potential prediction. Brief. Bioinform. 22, 2073–2084 (2021).

    Article  Google Scholar 

  90. Lin, D. et al. Mining amphibian and insect transcriptomes for antimicrobial peptide sequences with rAMPage. Antibiotics 11, 952 (2022).

    Article  Google Scholar 

  91. Lyons, E. & Freeling, M. How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J. 53, 661–673 (2008).

    Article  Google Scholar 

  92. Dieckmann, M. A. et al. EDGAR3.0: comparative genomics and phylogenomics on a scalable infrastructure. Nucleic Acids Res. 49, W185–W192 (2021).

    Article  Google Scholar 

  93. Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

    Article  Google Scholar 

  94. Weber, T. & Kim, H. U. The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth. Syst. Biotechnol. 1, 69–79 (2016).

    Article  Google Scholar 

  95. Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019). This work presents the most significant genome mining platform for natural products, covering a wide range of compounds, and is a recommended read for anyone interested in natural product research.

    Article  Google Scholar 

  96. Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).

    Article  Google Scholar 

  97. Sélem-Mojica, N., Aguilar, C., Gutiérrez-García, K., Martínez-Guerrero, C. E. & Barona-Gómez, F. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. Microb. Genom. https://doi.org/10.1099/mgen.0.000260 (2019).

    Article  Google Scholar 

  98. Chevrette, M. G., Aicheler, F., Kohlbacher, O., Currie, C. R. & Medema, M. H. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria. Bioinformatics 33, 3202–3210 (2017). This work discusses how SANDPUMA has aided NRP discovery and continues to provide valuable predictions for researchers involved in NRP research.

    Article  Google Scholar 

  99. van Heel, A. J. et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).

    Article  Google Scholar 

  100. Ramesh, S. et al. Bioinformatics-guided expansion and discovery of graspetides. ACS Chem. Biol. 16, 2787–2797 (2021).

    Article  Google Scholar 

  101. Merwin, N. J. et al. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc. Natl Acad. Sci. USA 117, 371–380 (2020).

    Article  ADS  Google Scholar 

  102. Schlaffner, C. N., Pirklbauer, G. J., Bender, A. & Choudhary, J. S. Fast, quantitative and variant enabled mapping of peptides to genomes. Cell Syst. 5, 152–156.e4 (2017).

    Article  Google Scholar 

  103. Ricart, E. et al. rBAN: retro-biosynthetic analysis of nonribosomal peptides. J. Cheminform. 11, 13 (2019).

    Article  Google Scholar 

  104. Kunyavskaya, O. et al. Nerpa: a tool for discovering biosynthetic gene clusters of bacterial nonribosomal peptides. Metabolites https://doi.org/10.3390/metabo11100693 (2021).

    Article  Google Scholar 

  105. Konanov, D. N., Krivonos, D. V., Ilina, E. N. & Babenko, V. V. BioCAT: search for biosynthetic gene clusters producing nonribosomal peptides with known structure. Comput. Struct. Biotechnol. J. 20, 1218–1226 (2022).

    Article  Google Scholar 

  106. Grundemann, C., Koehbach, J., Huber, R. & Gruber, C. W. Do plant cyclotides have potential as immunosuppressant peptides? J. Nat. Prod. 75, 167–174 (2012).

    Article  Google Scholar 

  107. van Santen, J. A. et al. The Natural Products Atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 1824–1833 (2019). This work discusses how the Natural Products Atlas provides valuable information, visualization and validation of discovered compounds.

    Article  Google Scholar 

  108. Mohimani, H. et al. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 9, 4035 (2018).

    Article  ADS  Google Scholar 

  109. Diament, B. J. & Noble, W. S. Faster SEQUEST searching for peptide identification from tandem mass spectra. J. Proteome Res. 10, 3871–3879 (2011).

    Article  Google Scholar 

  110. Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010).

    Article  Google Scholar 

  111. Claesen, J., Valkenborg, D. & Burzykowski, T. De novo prediction of the elemental composition of peptides and proteins based on a single mass. J. Mass. Spectrom. 55, e4367 (2020).

    Article  ADS  Google Scholar 

  112. Lai, Z. et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 15, 53–56 (2018).

    Article  ADS  Google Scholar 

  113. Palmer, A. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14, 57–60 (2017).

    Article  ADS  Google Scholar 

  114. Novak, J., Skriba, A. & Havlicek, V. CycloBranch 2: molecular formula annotations applied to imzML data sets in bimodal fusion and LC-MS data files. Anal. Chem. 92, 6844–6849 (2020).

    Article  Google Scholar 

  115. Ricart, E., Pupin, M., Muller, M. & Lisacek, F. Automatic annotation and dereplication of tandem mass spectra of peptidic natural products. Anal. Chem. 92, 15862–15871 (2020).

    Article  Google Scholar 

  116. Gurevich, A. et al. Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. Nat. Microbiol. 3, 319–327 (2018).

    Article  Google Scholar 

  117. Seidler, J., Zinn, N., Boehm, M. E. & Lehmann, W. D. De novo sequencing of peptides by MS/MS. Proteomics 10, 634–649 (2010).

    Article  Google Scholar 

  118. Yang, H., Chi, H., Zeng, W.-F., Zhou, W.-J. & He, S.-M. pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework. Bioinformatics 35, i183–i190 (2019).

    Article  Google Scholar 

  119. Tran, N. H. et al. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat. Methods 16, 63–66 (2019).

    Article  Google Scholar 

  120. Tran, N. H., Zhang, X., Xin, L., Shan, B. & Li, M. De novo peptide sequencing by deep learning. Proc. Natl Acad. Sci. USA 114, 8247–8252 (2017).

    Article  ADS  Google Scholar 

  121. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for mass spectrometry-based proteomics. Meth. Mol. Biol. 604, 55–71 (2010).

    Article  Google Scholar 

  122. Reiter, L. et al. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell Proteom. 8, 2405–2417 (2009).

    Article  Google Scholar 

  123. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  Google Scholar 

  124. Perkins, D. N., Pappin, D. J. C., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  Google Scholar 

  125. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  Google Scholar 

  126. Röst, H. L. et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32, 219–223 (2014).

    Article  Google Scholar 

  127. Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteom. 14, 1400–1410 (2015).

    Article  Google Scholar 

  128. Neilson, K. A. et al. Less label, more free: approaches in label‐free quantitative mass spectrometry. Proteomics 11, 535–553 (2011).

    Article  Google Scholar 

  129. Chang, C. et al. LFAQ: toward unbiased label-free absolute protein quantification by predicting peptide quantitative factors. Anal. Chem. 91, 1335–1343 (2018).

    Article  Google Scholar 

  130. Ishihama, Y. et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteom. 4, 1265–1272 (2005).

    Article  Google Scholar 

  131. Sivanich, M. K., Gu, T. J., Tabang, D. N. & Li, L. Recent advances in isobaric labeling and applications in quantitative proteomics. Proteomics 22, e2100256 (2022). This critical review article discusses isobaric labelling strategies for quantitative proteomics and peptidomics applications as well as current limitations and future outlooks.

    Article  Google Scholar 

  132. Fonville, J. M. et al. Robust data processing and normalization strategy for MALDI mass spectrometric imaging. Anal. Chem. 84, 1310–1319 (2012).

    Article  Google Scholar 

  133. Deininger, S.-O. et al. Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal. Bioanal. Chem. 401, 167–181 (2011).

    Article  Google Scholar 

  134. Källback, P., Shariatgorji, M., Nilsson, A. & Andrén, P. E. Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J. Proteom. 75, 4941–4951 (2012).

    Article  Google Scholar 

  135. Shariatgorji, M. et al. Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron 84, 697–707 (2014).

    Article  Google Scholar 

  136. Lanekoff, I., Thomas, M. & Laskin, J. Shotgun approach for quantitative imaging of phospholipids using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 86, 1872–1880 (2014).

    Article  Google Scholar 

  137. Hansen, H. T. & Janfelt, C. Aspects of quantitation in mass spectrometry imaging investigated on cryo-sections of spiked tissue homogenates. Anal. Chem. 88, 11513–11520 (2016).

    Article  Google Scholar 

  138. Robichaud, G., Garrard, K. P., Barry, J. A. & Muddiman, D. C. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass. Spectrom. 24, 718–721 (2013).

    Article  ADS  Google Scholar 

  139. Alexander, J., Oliphant, A., Wilcockson, D. C. & Webster, S. G. Functional identification and characterization of the diuretic hormone 31 (DH31) signaling system in the green shore crab, Carcinus maenas. Front. Neurosci. 12, 454 (2018).

    Article  Google Scholar 

  140. Källback, P., Nilsson, A., Shariatgorji, M. & Andrén, P. E. msIQuant — quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88, 4346–4353 (2016).

    Article  Google Scholar 

  141. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Product. Rep. 30, 108–160 (2013). This comprehensive review introduces the reader to RiPPs, from classification to biosynthesis and bioactivity.

    Article  Google Scholar 

  142. Wiebach, V. et al. The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nat. Chem. Biol. 14, 652–654 (2018). This research article discusses a novel type of anti-staphylococcal RiPP, utilizing a short peptide conjugated with a lipid moiety.

    Article  Google Scholar 

  143. Sussmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis-principles and prospects. Angew. Chem. Int. Ed. 56, 3770–3821 (2017). This comprehensive review about NRPs explains biosynthesis, structures and bioactivity or NRPs.

    Article  Google Scholar 

  144. Tang, S. et al. Discovery and characterization of a PKS-NRPS hybrid in Aspergillus terreus by genome mining. J. Nat. Prod. 83, 473–480 (2020).

    Article  Google Scholar 

  145. Zhang, Z., Wang, J., Wang, J., Wang, J. & Li, Y. Estimate of the sequenced proportion of the global prokaryotic genome. Microbiome https://doi.org/10.1186/s40168-020-00903-z (2020).

    Article  Google Scholar 

  146. V, V. et al. Venom peptides — a comprehensive translational perspective in pain management. Curr. Res. Toxicol. 2, 329–340 (2021).

    Article  Google Scholar 

  147. King, G. F. & Hardy, M. C. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 58, 475–496 (2013).

    Article  Google Scholar 

  148. Munawar, A., Ali, S. A., Akrem, A. & Betzel, C. Snake venom peptides: tools of biodiscovery. Toxins https://doi.org/10.3390/toxins10110474 (2018).

    Article  Google Scholar 

  149. King, G. F. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert. Opin. Biol. Ther. 11, 1469–1484 (2011).

    Article  Google Scholar 

  150. Dutertre, S. et al. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat. Commun. 5, 3521 (2014). This research article investigates the differences between the defensive and predatory venoms of cone snails.

    Article  ADS  Google Scholar 

  151. Prashanth, J. R., Dutertre, S. & Lewis, R. J. in Evolution of Venomous Animals and Their Toxins Ch. 18 (ed. Malhotra, A.) 105–123 (Springer, 2017).

  152. Coelho, P., Kaliontzopoulou, A., Rasko, M., Meijden, A. & Portugal, S. A ‘striking’ relationship: scorpion defensive behaviour and its relation to morphology and performance. Funct. Ecol. 31, 1390–1404 (2017). This work presents a fascinating investigation into the different methods of the defensive behaviours of scorpions, measuring both the speed and frequency of stings in response to stimuli.

    Article  Google Scholar 

  153. Nisani, Z. & Hayes, W. K. Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment and venom metering. Anim. Behav. 81, 627–633 (2011).

    Article  Google Scholar 

  154. Diesner, M., Predel, R. & Neupert, S. Neuropeptide mapping of dimmed cells of adult Drosophila brain. J. Am. Soc. Mass. Spectrom. 29, 890–902 (2018).

    Article  ADS  Google Scholar 

  155. Habenstein, J. et al. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. J. Neurochem. 158, 391–412 (2021).

    Article  Google Scholar 

  156. Zeng, H. et al. Genomics- and peptidomics-based discovery of conserved and novel neuropeptides in the American cockroach. J. Proteome Res. 20, 1217–1228 (2021).

    Article  Google Scholar 

  157. El Filali, Z., Van Minnen, J., Liu, W. K., Smit, A. B. & Li, K. W. Peptidomics analysis of neuropeptides involved in copulatory behavior of the mollusk Lymnaea stagnalis. J. Proteome Res. 5, 1611–1617 (2006).

    Article  Google Scholar 

  158. Parmar, B. S. et al. Identification of non-canonical translation products in C. elegans using tandem mass spectrometry. Front. Genet. 12, 728900 (2021).

    Article  Google Scholar 

  159. Van Bael, S. et al. A Caenorhabditis elegans mass spectrometric resource for neuropeptidomics. J. Am. Soc. Mass. Spectrom. 29, 879–889 (2018).

    Article  Google Scholar 

  160. Wood, E. A. et al. Neuropeptide localization in Lymnaea stagnalis: from the central nervous system to subcellular compartments. Front. Mol. Neurosci. 14, 670303 (2021).

    Article  Google Scholar 

  161. DeLaney, K., Buchberger, A. & Li, L. Identification, quantitation, and imaging of the crustacean peptidome. Methods Mol. Biol. 1719, 247–269 (2018).

    Article  Google Scholar 

  162. DeLaney, K. & Li, L. Capillary electrophoresis coupled to MALDI mass spectrometry imaging with large volume sample stacking injection for improved coverage of C. borealis neuropeptidome. Analyst 145, 61–69 (2019).

    Article  ADS  Google Scholar 

  163. Liu, Y., Li, G. & Li, L. Targeted top-down mass spectrometry for the characterization and tissue-specific functional discovery of crustacean hyperglycemic hormones (CHH) and CHH precursor-related peptides in response to low pH stress. J. Am. Soc. Mass. Spectrom. 32, 1352–1360 (2021).

    Article  Google Scholar 

  164. Xu, L. L. et al. Major shrimp allergen peptidomics signatures and potential biomarkers of heat processing. Food Chem. 382, 132567 (2022).

    Article  Google Scholar 

  165. Phetsanthad, A. et al. Recent advances in mass spectrometry analysis of neuropeptides. Mass. Spectrom. Rev. 42, 706–750 (2021).

    Article  ADS  Google Scholar 

  166. Fujisawa, T. & Hayakawa, E. Peptide signaling in Hydra. Int. J. Dev. Biol. 56, 543–550 (2012).

    Article  Google Scholar 

  167. Monroe, E. B. et al. Exploring the sea urchin neuropeptide landscape by mass spectrometry. J. Am. Soc. Mass. Spectrom. 29, 923–934 (2018).

    Article  ADS  Google Scholar 

  168. Takahashi, T. Neuropeptides and epitheliopeptides: structural and functional diversity in an ancestral metazoan Hydra. Protein Pept. Lett. 20, 671–680 (2013).

    Article  Google Scholar 

  169. Southey, B. R., Romanova, E. V., Rodriguez-Zas, S. L. & Sweedler, J. V. Bioinformatics for prohormone and neuropeptide discovery. Methods Mol. Biol. 1719, 71–96 (2018). This methodological article describes a pipeline for annotation of neuropeptide prohormones from genomic assemblies using freely available public toolsets and databases.

    Article  Google Scholar 

  170. Hu, C. K. et al. Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia burtoni. BMC Genomics 17, 660 (2016).

    Article  Google Scholar 

  171. Chan-Andersen, P. C., Romanova, E. V., Rubakhin, S. S. & Sweedler, J. V. Profiling 26,000 Aplysia californica neurons by single cell mass spectrometry reveals neuronal populations with distinct neuropeptide profiles. J. Biol. Chem. 298, 102254 (2022). This work presents an elegant mass spectrometry-based approach for robust categorization of large cell populations based on a single-cell neuropeptide profile.

    Article  Google Scholar 

  172. Jiménez, C. R. et al. Peptidomics of a single identified neuron reveals diversity of multiple neuropeptides with convergent actions on cellular excitability. J. Neurosci. 26, 518–529 (2006).

    Article  Google Scholar 

  173. Green, D. J. et al. cAMP, Ca2+, pHi, and NO regulate H-like cation channels that underlie feeding and locomotion in the predatory sea slug Pleurobranchaea californica. ACS Chem. Neurosci. 9, 1986–1993 (2018).

    Article  Google Scholar 

  174. Han, Y., Ma, B. & Zhang, K. SPIDER: software for protein identification from sequence tags with de novo sequencing error. J. Bioinform. Comput. Biol. 3, 697–716 (2005).

    Article  Google Scholar 

  175. Romanova, E. V., Aerts, J. T., Croushore, C. A. & Sweedler, J. V. Small-volume analysis of cell-cell signaling molecules in the brain. Neuropsychopharmacology 39, 50–64 (2014).

    Article  Google Scholar 

  176. Bai, L. et al. Characterization of GdFFD, a d-amino acid-containing neuropeptide that functions as an extrinsic modulator of the Aplysia feeding circuit. J. Biol. Chem. 288, 32837–32851 (2013).

    Article  Google Scholar 

  177. Checco, J. W. et al. Aplysia allatotropin-related peptide and its newly identified d-amino acid-containing epimer both activate a receptor and a neuronal target. J. Biol. Chem. 293, 16862–16873 (2018).

    Article  Google Scholar 

  178. Romanova, E. V. et al. Urotensin II in invertebrates: from structure to function in Aplysia californica. PLoS ONE 7, e48764 (2012).

    Article  ADS  Google Scholar 

  179. Zhang, G. et al. Newly identified Aplysia SPTR-gene family-derived peptides: localization and function. ACS Chem. Neurosci. 9, 2041–2053 (2018).

    Article  Google Scholar 

  180. Mast, D. H., Checco, J. W. & Sweedler, J. V. Differential post-translational amino acid isomerization found among neuropeptides in Aplysia californica. ACS Chem. Biol. 15, 272–281 (2020).

    Article  Google Scholar 

  181. Mast, D. H., Checco, J. W. & Sweedler, J. V. Advancing d-amino acid-containing peptide discovery in the metazoan. Biochim. Biophys. Acta Proteins Proteom. 1869, 140553 (2021). This review discusses the prevalence of enzyme-derived DAACPs among animals, physiological consequences of peptide isomerization and analytical methods for structural characterization/discovery of DAACPs.

    Article  Google Scholar 

  182. Lambeth, T. R. & Julian, R. R. Differentiation of peptide isomers and epimers by radical-directed dissociation. Methods Enzymol. 626, 67–87 (2019).

    Article  Google Scholar 

  183. Mast, D. H., Liao, H. W., Romanova, E. V. & Sweedler, J. V. Analysis of peptide stereochemistry in single cells by capillary electrophoresis-trapped ion mobility spectrometry mass spectrometry. Anal. Chem. 93, 6205–6213 (2021).

    Article  Google Scholar 

  184. Checco, J. W. et al. Molecular and physiological characterization of a receptor for d-amino acid-containing neuropeptides. ACS Chem. Biol. 13, 1343–1352 (2018).

    Article  Google Scholar 

  185. Livnat, I. et al. A d-amino acid-containing neuropeptide discovery funnel. Anal. Chem. 88, 11868–11876 (2016).

    Article  Google Scholar 

  186. Yussif, B. M. & Checco, J. W. Evaluation of endogenous peptide stereochemistry using liquid chromatography-mass spectrometry-based spiking experiments. Methods Enzymol. 663, 205–234 (2022).

    Article  Google Scholar 

  187. Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269–283.e19 (2020).

    Article  Google Scholar 

  188. Secher, A. et al. Analytic framework for peptidomics applied to large-scale neuropeptide identification. Nat. Commun. 7, 11436 (2016). This article introduces a comprehensive analytical workflow for large-scale mammalian peptidomics studies, detailing procedures ranging from sample preparation to data analysis.

    Article  ADS  Google Scholar 

  189. Foster, S. R. et al. Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. Cell 179, 895–908.e21 (2019).

    Article  Google Scholar 

  190. Hauser, A. S., Gloriam, D. E., Brauner-Osborne, H. & Foster, S. R. Novel approaches leading towards peptide GPCR de-orphanisation. Br. J. Pharmacol. 177, 961–968 (2020).

    Article  Google Scholar 

  191. Scarpa, A. Pre-scientific medicines: their extent and value. Soc. Sci. Med. A Med. Psychol. Med. Sociol. 15, 317–326 (1981).

    Article  Google Scholar 

  192. Pina, A. S., Hussain, A. & Roque, A. C. A. in Ligand–Macromolecular Interactions in Drug Discovery: Methods and Protocols (ed. Roque, A. C. A.) 3–12 (Humana, 2010).

  193. Heinrich, M. Ethnobotany and its role in drug development. Phytother. Res. 14, 479–488 (2000).

    Article  Google Scholar 

  194. Campbell, I. B., Macdonald, S. J. F. & Procopiou, P. A. Medicinal chemistry in drug discovery in Big Pharma: past, present and future. Drug Discov. Today 23, 219–234 (2018).

    Article  Google Scholar 

  195. Camargo, A. C. M., Ianzer, D., Guerreiro, J. R. & Serrano, S. M. T. Bradykinin-potentiating peptides: beyond captopril. Toxicon 59, 516–523 (2012).

    Article  Google Scholar 

  196. Cesa-Luna, C. et al. Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria. PLoS ONE 14, e0222438 (2019).

    Article  Google Scholar 

  197. Jouiaei, M. et al. Ancient venom systems: a review on Cnidaria toxins. Toxins 7, 2251–2271 (2015).

    Article  Google Scholar 

  198. Jin, A. H. et al. Conotoxins: chemistry and biology. Chem. Rev. 119, 11510–11549 (2019). This review article on conotoxins explains the chemistry and biology behind their function by using 3D structural models, thus providing a deeper understanding of the topic.

    Article  Google Scholar 

  199. McGivern, J. G. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr. Dis. Treat. 3, 69–85 (2007).

    Article  Google Scholar 

  200. Safavi-Hemami, H. et al. Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proc. Natl Acad. Sci. USA 112, 1743–1748 (2015). This article is interesting for researchers involved in peptide hormone research, discussing the weaponization of peptide hormones by animals.

    Article  ADS  Google Scholar 

  201. Furman, B. L. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon 59, 464–471 (2012).

    Article  Google Scholar 

  202. Muller, T. D., Bluher, M., Tschop, M. H. & DiMarchi, R. D. Anti-obesity drug discovery: advances and challenges. Nat. Rev. Drug. Discov. 21, 201–223 (2022).

    Article  Google Scholar 

  203. Rubinstein, E. & Keynan, Y. Vancomycin revisited — 60 years later. Front. Public Health https://doi.org/10.3389/fpubh.2014.00217 (2014).

    Article  Google Scholar 

  204. Heidary, M. et al. Daptomycin. J. Antimicrob. Chemother. 73, 1–11 (2018).

    Article  Google Scholar 

  205. Felnagle, E. A. et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 5, 191–211 (2008).

    Article  Google Scholar 

  206. Flores, C., Fouquet, G., Moura, I. C., Maciel, T. T. & Hermine, O. Lessons to learn from low-dose cyclosporin-a: a new approach for unexpected clinical applications. Front. Immunol. https://doi.org/10.3389/fimmu.2019.00588 (2019).

    Article  Google Scholar 

  207. Additives, E. et al. Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA J. 15, e05063 (2017).

    Google Scholar 

  208. Nakatsuji, T. & Gallo, R. L. Antimicrobial peptides: old molecules with new ideas. J. Invest. Dermatol. 132, 887–895 (2012).

    Article  Google Scholar 

  209. Lei, J. et al. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 11, 3919 (2012).

    ADS  Google Scholar 

  210. Zborovsky, L. et al. Improvement of the antimicrobial potency, pharmacokinetic and pharmacodynamic properties of albicidin by incorporation of nitrogen atoms. Chem. Sci. 12, 14606–14617 (2021). This work is an example of how medicinal chemistry can be used to improve the bioactive qualities of peptides.

    Article  Google Scholar 

  211. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    Article  ADS  Google Scholar 

  212. Vilas Boas, L. C. P., Campos, M. L., Berlanda, R. L. A., de Carvalho Neves, N. & Franco, O. L. Antiviral peptides as promising therapeutic drugs. Cell Mol. Life Sci. 76, 3525–3542 (2019).

    Article  Google Scholar 

  213. Bosso, M., Ständker, L., Kirchhoff, F. & Münch, J. Exploiting the human peptidome for novel antimicrobial and anticancer agents. Bioorg. Med. Chem. 26, 2719–2726 (2018).

    Article  Google Scholar 

  214. Kuroki, A., Tay, J., Lee, G. H. & Yang, Y. Y. Broad-spectrum antiviral peptides and polymers. Adv. Healthc. Mater. 10, e2101113 (2021).

    Article  Google Scholar 

  215. Klein, J., Bascands, J.-L., Mischak, H. & Schanstra, J. P. The role of urinary peptidomics in kidney disease research. Kidney Int. 89, 539–545 (2016).

    Article  Google Scholar 

  216. Good, D. M. et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol. Cell. Proteom. 9, 2424–2437 (2010).

    Article  Google Scholar 

  217. Argiles, A. et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS ONE 8, e62837 (2013).

    Article  ADS  Google Scholar 

  218. Roscioni, S. et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 56, 259–267 (2013).

    Article  Google Scholar 

  219. Nakamura, A. et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554, 249–254 (2018).

    Article  ADS  Google Scholar 

  220. Kaya, I., Zetterberg, H., Blennow, K. & Hanrieder, J. R. Shedding light on the molecular pathology of amyloid plaques in transgenic Alzheimer’s disease mice using multimodal MALDI imaging mass spectrometry. ACS Chem. Neurosci. 9, 1802–1817 (2018).

    Article  Google Scholar 

  221. Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

    Article  Google Scholar 

  222. Chen, Z. et al. In-depth site-specific analysis of N-glycoproteome in human cerebrospinal fluid and glycosylation landscape changes in Alzheimer’s disease. Mol. Cell Proteom. 20, 100081 (2021).

    Article  Google Scholar 

  223. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    Article  Google Scholar 

  224. Li, Q. et al. Site-specific glycosylation quantitation of 50 serum glycoproteins enhanced by predictive glycopeptidomics for improved disease biomarker discovery. Anal. Chem. 91, 5433–5445 (2019).

    Article  Google Scholar 

  225. Alim, F. Z. D. et al. Seasonal adaptations of the hypothalamo-neurohypophyseal system of the dromedary camel. PLoS ONE 14, e0216679 (2019).

    Article  Google Scholar 

  226. Yu, Q. et al. Targeted mass spectrometry approach enabled discovery of O-glycosylated insulin and related signaling peptides in mouse and human pancreatic islets. Anal. Chem. 89, 9184–9191 (2017).

    Article  Google Scholar 

  227. Anapindi, K. D. B., Romanova, E. V., Checco, J. W. & Sweedler, J. V. Mass spectrometry approaches empowering neuropeptide discovery and therapeutics. Pharmacol. Rev. 74, 662–679 (2022). This review article discusses the historical, current and future states of neuropeptidomics with mass spectrometry and their implications for therapeutic strategies in neurological disorders.

    Article  Google Scholar 

  228. Tillmaand, E. G. et al. Peptidomics and secretomics of the mammalian peripheral sensory-motor system. J. Am. Soc. Mass. Spectrom. 26, 2051–2061 (2015).

    Article  ADS  Google Scholar 

  229. Ramachandran, S. et al. A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. eLife https://doi.org/10.7554/eLife.71747 (2021).

    Article  Google Scholar 

  230. Van Damme, S. et al. Neuromodulatory pathways in learning and memory: lessons from invertebrates. J. Neuroendocrinol. 33, e12911 (2021).

    Google Scholar 

  231. Greenwood, M. P. et al. The effects of aging on biosynthetic processes in the rat hypothalamic osmoregulatory neuroendocrine system. Neurobiol. Aging 65, 178–191 (2018).

    Article  Google Scholar 

  232. Pan, F. et al. Peptidome analysis reveals the involvement of endogenous peptides in mouse pancreatic dysfunction with aging. J. Cell Physiol. 234, 14090–14099 (2019).

    Article  Google Scholar 

  233. Hook, V., Lietz, C. B., Podvin, S., Cajka, T. & Fiehn, O. Diversity of neuropeptide cell–cell signaling molecules generated by proteolytic processing revealed by neuropeptidomics mass spectrometry. J. Am. Soc. Mass. Spectrom. 29, 807–816 (2018).

    Article  ADS  Google Scholar 

  234. Anapindi, K. D. B. et al. PACAP and other neuropeptide targets link chronic migraine and opioid-induced hyperalgesia in mouse models. Mol. Cell Proteom. 18, 2447–2458 (2019).

    Article  Google Scholar 

  235. Jiang, Z. et al. Differential neuropeptidomes of dense core secretory vesicles (DCSV) produced at intravesicular and extracellular pH conditions by proteolytic processing. ACS Chem. Neurosci. 12, 2385–2398 (2021).

    Article  Google Scholar 

  236. Podvin, S. et al. Dysregulation of neuropeptide and tau peptide signatures in human Alzheimer’s disease brain. ACS Chem. Neurosci. 13, 1992–2005 (2022).

    Article  Google Scholar 

  237. Al-Hasani, R. et al. In vivo detection of optically-evoked opioid peptide release. eLife https://doi.org/10.7554/eLife.36520 (2018).

    Article  Google Scholar 

  238. Vitorino, R., Guedes, S., Costa, J. P. D. & Kasicka, V. Microfluidics for peptidomics, proteomics, and cell analysis. Nanomaterials https://doi.org/10.3390/nano11051118 (2021).

    Article  Google Scholar 

  239. Ong, T. H., Tillmaand, E. G., Makurath, M., Rubakhin, S. S. & Sweedler, J. V. Mass spectrometry-based characterization of endogenous peptides and metabolites in small volume samples. Biochim. Biophys. Acta 1854, 732–740 (2015).

    Article  Google Scholar 

  240. Burger, T. Gentle introduction to the statistical foundations of false discovery rate in quantitative proteomics. J. Proteome Res. 17, 12–22 (2018). This work is a worthwhile introduction to the statistics behind FDRs, highly recommended for all researchers working in proteomics or peptidomics.

    Article  Google Scholar 

  241. Käll, L., Storey, J. D., MacCoss, M. J. & Noble, W. S. Posterior error probabilities and false discovery rates: two sides of the same coin. J. Proteome Res. 7, 40–44 (2008).

    Article  Google Scholar 

  242. Korthauer, K. et al. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20, 118 (2019).

    Article  MathSciNet  Google Scholar 

  243. Kanz, C. et al. The EMBL nucleotide sequence database. Nucleic Acids Res. 33, D29–D33 (2005).

    Article  Google Scholar 

  244. Fukuda, A., Kodama, Y., Mashima, J., Fujisawa, T. & Ogasawara, O. DDBJ update: streamlining submission and access of human data. Nucleic Acids Res. 49, D71–D75 (2021).

    Article  Google Scholar 

  245. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). This work on the FAIR Guiding Principles is an essential read for all researchers as data management will become more important as data continue to be generated worldwide.

    Article  Google Scholar 

  246. Pichler, K., Warner, K., Magrane, M. & UniProt, C. SPIN: submitting sequences determined at protein level to UniProt. Curr. Protoc. Bioinformatics 62, e52 (2018).

    Article  Google Scholar 

  247. Ternent, T. et al. How to submit MS proteomics data to ProteomeXchange via the PRIDE database. Proteomics 14, 2233–2241 (2014).

    Article  Google Scholar 

  248. Segerstrom, L., Gustavsson, J. & Nylander, I. Minimizing postsampling degradation of peptides by a thermal benchtop tissue stabilization method. Biopreserv. Biobank. 14, 172–179 (2016).

    Article  Google Scholar 

  249. Fridjonsdottir, E., Nilsson, A., Wadensten, H. & Andren, P. E. Brain tissue sample stabilization and extraction strategies for neuropeptidomics. Methods Mol. Biol. 1719, 41–49 (2018).

    Article  Google Scholar 

  250. Stingl, C., Soderquist, M., Karlsson, O., Boren, M. & Luider, T. M. Uncovering effects of ex vivo protease activity during proteomics and peptidomics sample extraction in rat brain tissue by oxygen-18 labeling. J. Proteome Res. 13, 2807–2817 (2014).

    Article  Google Scholar 

  251. Katz, M., Hover, B. M. & Brady, S. F. Culture-independent discovery of natural products from soil metagenomes. J. Ind. Microbiol. Biotechnol. 43, 129–141 (2016).

    Article  Google Scholar 

  252. Reher, R. et al. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat. Commun. 13, 4619 (2022).

    Article  ADS  Google Scholar 

  253. Mills, R. H. et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat. Microbiol. 7, 262–276 (2022).

    Article  Google Scholar 

  254. Hellinger, R. et al. Peptidomics of circular cysteine-rich plant peptides: analysis of the diversity of cyclotides from viola tricolor by transcriptome and proteome mining. J. Proteome Res. 14, 4851–4862 (2015).

    Article  Google Scholar 

  255. Haynes, W. A., Tomczak, A. & Khatri, P. Gene annotation bias impedes biomedical research. Sci. Rep. 8, 1362 (2018).

    Article  ADS  Google Scholar 

  256. Flissi, A. et al. Norine: update of the nonribosomal peptide resource. Nucleic Acids Res. 48, D465–D469 (2020).

    Google Scholar 

  257. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  ADS  Google Scholar 

  258. Saldivar-Gonzalez, F. I., Aldas-Bulos, V. D., Medina-Franco, J. L. & Plisson, F. Natural product drug discovery in the artificial intelligence era. Chem. Sci. 13, 1526–1546 (2022).

    Article  Google Scholar 

  259. Mohimani, H. et al. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 13, 30–37 (2017).

    Article  Google Scholar 

  260. Jeanne Dit Fouque, K. et al. Fast and effective ion mobility-mass spectrometry separation of d-amino-acid-containing peptides. Anal. Chem. 89, 11787–11794 (2017).

    Article  Google Scholar 

  261. Hammami, R., Zouhir, A., Le Lay, C., Ben Hamida, J. & Fliss, I. BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol. 10, 22 (2010).

    Article  Google Scholar 

  262. Wang, C. K., Kaas, Q., Chiche, L. & Craik, D. J. CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res. 36, D206–D210 (2008).

    Article  Google Scholar 

  263. Deutsch, E. W. The PeptideAtlas Project. Methods Mol. Biol. 604, 285–296 (2010).

    Article  Google Scholar 

  264. Pineda, S. S. et al. ArachnoServer 3.0: an online resource for automated discovery, analysis and annotation of spider toxins. Bioinformatics 34, 1074–1076 (2018).

    Article  Google Scholar 

  265. wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2019).

    Article  Google Scholar 

  266. Larranaga, P. et al. Machine learning in bioinformatics. Brief. Bioinform. 7, 86–112 (2006). This interesting review discusses the machine learning methods that got bioinformatics to where it is today.

    Article  Google Scholar 

  267. Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 18, 851–869 (2017). This article describes the use, applications and architecture of deep learning networks, providing the readers with insight into the direction that bioinformatics is heading in the next decade.

    Google Scholar 

  268. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  ADS  Google Scholar 

  269. Breitling, R. What is systems biology? Front. Physiol. 1, 9 (2010).

    Article  Google Scholar 

  270. Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

    Article  Google Scholar 

  271. Mitra, S., Dhar, R. & Sen, R. Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnol. Adv. 60, 108023 (2022).

    Article  Google Scholar 

  272. Helmy, M., Smith, D. & Selvarajoo, K. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab. Eng. Commun. 11, e00149 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of C.W.G. has been supported by the Austrian Science Fund (FWF) through projects P32109 and ZK 81B. The work of A.S. and R.D.S. was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under Germany’s Excellence Strategy — EXC 2008-390540038 (UniSysCat) and RTG 2473 ‘Bioactive Peptides’. The work of L.L. is supported by the National Science Foundation (NSF) (CHE-2108223) and National Institutes of Health (NIH) through grants (R01DK071801, R01 AG078794 and RF1AG052324). The work of J.V.S. is supported by the National Institute on Drug Abuse under Award No. P30DA018310 and the National Institute of Neurological Disorders and Stroke (NINDS) through R01NS031609.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Lingjun Li, Jonathan V. Sweedler, Roderich D. Süssmuth or Christian W. Gruber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Vivian Hook, Dong-Woo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

antiSMASH: https://antismash.secondarymetabolites.org

DeepBGC: https://github.com/Merck/deepbgc

DeepRiPP: http://deepripp.magarveylab.ca

DEREPLICATOR+: https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp

Dictionary of Natural Products: https://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml

High Definition Imaging: https://www.waters.com/waters/en_US/High-Definition-Imaging-(HDI)-Software/nav.htm?cid=134833914&locale=en_US

ImageQuest: https://www.thermofisher.com/order/catalog/product/10137985

MS-FINDER: http://prime.psc.riken.jp/compms/msfinder/main.html

MSiReader: https://msireader.com/

msiQuant: https://ms-imaging.org/paquan/

NCBI: https://www.ncbi.nlm.nih.gov

SANDPUMA: https://bitbucket.org/chevrm/sandpuma/src/master/

SCiLS Lab: https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/scils-lab.html

UniProt: https://www.uniprot.org

Supplementary information

Glossary

Fourier transform ion cyclotron resonance mass spectrometers

(FTICR-MS). High-resolution mass analysers that trap ions in a cyclotron radius by applying a fixed magnetic field and an oscillating electronic field. As the ions rotate, an interferogram signal is recorded by electrodes and the useful mass spectrum is extracted with a Fourier transformation.

Hyphenated front-end separation platforms

Platforms that separate the analytes online before they enter the mass spectrometers. Techniques include, but are not limited to, liquid chromatography, gas chromatography, ion mobility spectrometry (IMS), solid-phase extraction (SPE) and capillary electrophoresis.

Ion mobility spectrometry

(IMS). An analytical technique that sorts and separates gas-phase ions based on their mobility in a carrier buffer gas under the influence of an electrical field, which is related to the conformation and 3D shapes of the molecules.

Multiple reaction monitoring

A type of analysis for tandem mass spectrometers providing capabilities for quantitation of analytes. Pre-defined precursor ions (m/z) are selected by the first mass analyser and submitted to a fragmentation, and the selected product ion m/z signals are detected by the second mass analyser.

Peptide dereplication

Refers to the identification of known peptides in a sample by comparing mass spectrometric data with a library. The identification can be obtained by comparison of m/z mass signals, including the isotopologue intensities and pattern of isotopologues, giving information on the chemical composition as well as on tandem mass spectrometry (MS/MS) fragmentation spectra match with library data.

Peptide spectrum match

(PSM). A scoring function in which the mass spectrum of a peptide is compared with a theoretical peptide sequence to determine the probability of the measured peptide matching the theoretical peptide.

Post-source decay

A type of fragmentation technique that applies when metastable ions spontaneously decompose in the drift region between the ion source and reflectron.

Short open reading frames

(sORFs). Open reading frames that occur throughout the genome and usually comprise <100 codons. They are a possible source for peptides with biological relevance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellinger, R., Sigurdsson, A., Wu, W. et al. Peptidomics. Nat Rev Methods Primers 3, 25 (2023). https://doi.org/10.1038/s43586-023-00205-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00205-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research