Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Water electrolysis

Abstract

Electrochemistry has the potential to sustainably transform molecules with electrons supplied by renewable electricity. It is one of many solutions towards a more circular, sustainable and equitable society. To achieve this, collaboration between industry and research laboratories is a must. Atomistic understanding from fundamental experiments and modelling can be used to engineer optimized systems whereas limitations set by the scaled-up technology can direct the systems studied in the research laboratory. In this Primer, best practices to run clean laboratory-scale electrochemical systems and tips for the analysis of electrochemical data to improve accuracy and reproducibility are introduced. How characterization and modelling are indispensable in providing routes to garner further insights into atomistic and mechanistic details is discussed. Finally, important considerations regarding material and cell design for scaling up water electrolysis are highlighted and the role of hydrogen in our society’s energy transition is discussed. The future of electrochemistry is bright and major breakthroughs will come with rigour and improvements in the collection, analysis, benchmarking and reporting of electrochemical water splitting data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of a typical water electrolyser.
Fig. 2: Electrochemical cells.
Fig. 3: Factors impacting the electrode–electrolyte interface of a working catalyst.
Fig. 4: Overview of important complementary characterization techniques in electrocatalysis.
Fig. 5: Example of data work-up for the study of hydrogen evolution on a polycrystalline platinum electrode.
Fig. 6: Density functional theory modelling for water electrolysis.
Fig. 7: Overview of the hydrogen economy.

Similar content being viewed by others

References

  1. Pehl, M. et al. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nat. Energy 2, 939–945 (2017).

    Article  ADS  Google Scholar 

  2. Berrang-Ford, L. et al. Tracking global climate change adaptation among governments. Nat. Clim. Chang. 9, 440–449 (2019).

    Article  ADS  Google Scholar 

  3. Bogdanov, D. et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 227, 120467 (2021).

  4. Lèbre, É. et al. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 1–8 (2020).

    Article  ADS  Google Scholar 

  5. Akcil, A., Sun, Z. & Panda, S. COVID-19 disruptions to tech-metals supply are a wake-up call. Nature 587, 365–367 (2020).

    Article  ADS  Google Scholar 

  6. Herrington, R. Mining our green future. Nat. Rev. Mater. 6, 456–458 (2021).

    Article  ADS  Google Scholar 

  7. Bamana, G., Miller, J. D., Young, S. L. & Dunn, J. B. Addressing the social life cycle inventory analysis data gap: Insights from a case study of cobalt mining in the Democratic Republic of the Congo. One Earth 4, 1704–1714 (2021).

    Article  ADS  Google Scholar 

  8. Majumdar, A., Deutch, J. M., Prasher, R. S. & Griffin, T. P. A framework for a hydrogen economy. Joule 5, 1905–1908 (2021).

    Article  Google Scholar 

  9. Pingkuo, L. & Xue, H. Comparative analysis on similarities and differences of hydrogen energy development in the world’s top 4 largest economies: a novel framework. Int. J. Hydrog. Energy 47, 9485–9503 (2022).

    Article  Google Scholar 

  10. Crabtree, G. W., Dresselhaus, M. S. & Buchanan, M. V. The hydrogen economy. Phys. Today 57, 39–45 (2004).

    Article  ADS  Google Scholar 

  11. Bockris, J. O. A hydrogen economy. Science 176, 1323 (1972).

    Article  ADS  Google Scholar 

  12. Ihara, S. Feasibility of hydrogen production by direct water splitting at high temperature. Int. J. Hydrog. Energy 3, 287–296 (1978).

    Article  Google Scholar 

  13. Boettcher, S. W. et al. Potentially confusing: potentials in electrochemistry. ACS Energy Lett. 6, 261–266 (2021).

    Article  Google Scholar 

  14. Hansen, J. N. et al. Is there anything better than Pt for HER? ACS Energy Lett. 6, 1175–1180 (2021).

    Article  Google Scholar 

  15. Kothari, R., Buddhi, D. & Sawhney, R. L. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Rev. 12, 553–563 (2008).

    Article  Google Scholar 

  16. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). This work utilizes the protocol from Koper at al. to compare the activity, stability, electrochemically active surface area and Faradic efficiency of ten electrocatalysts for the OER.

    Article  Google Scholar 

  17. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

  18. Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).

    Article  Google Scholar 

  19. Norskov, J., Bligaard, T., Abild-Pedersen, F. & Studt, F. Fundamental Concepts in Heterogeneous Catalysis (Wiley, 2010).

    Article  Google Scholar 

  20. Tanaka, Y. Ion Exchange Membranes: Fundamentals and Applications (Elsevier Science, 2015).

  21. Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Memb. Sci. 555, 429–454 (2018).

    Article  Google Scholar 

  22. Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    Article  ADS  Google Scholar 

  23. Tiwari, A., Maagaard, T., Chorkendorff, I. & Horch, S. Effect of dissolved glassware on the structure-sensitive part of the Cu(111) voltammogram in KOH. ACS Energy Lett. 4, 1645–1649 (2019).

    Article  Google Scholar 

  24. Mayrhofer, K. J. J., Wiberg, G. K. H. & Arenz, M. Impact of glass corrosion on the electrocatalysis on Pt electrodes in alkaline electrolyte. J. Electrochem. Soc. 155, P1–P5 (2008).

    Article  Google Scholar 

  25. Mayrhofer, K. J. J., Crampton, A. S., Wiberg, G. K. H. & Arenz, M. Analysis of the impact of individual glass constituents on electrocatalysis on Pt electrodes in alkaline solution. J. Electrochem. Soc. 155, P78–P81 (2008). This work demonstrates the impact of dissolved glassware on the reproducibility of studies using platinum single crystal surfaces in alkaline media.

    Article  Google Scholar 

  26. Fatiadi, A. J. The classical permanganate ion: still a novel oxidant in organic chemistry. Synthesis 1987, 85–127 (1987).

    Article  Google Scholar 

  27. Shaabani, A., Tavasoli-Rad, F. & Lee, D. G. Potassium permanganate oxidation of organic compounds. Synth. Commun. 35, 571–580 (2005).

    Article  Google Scholar 

  28. Arulmozhi, N., Esau, D., van Drunen, J. & Jerkiewicz, G. Design and development of instrumentations for the preparation of platinum single crystals for electrochemistry and electrocatalysis research part 3: final treatment, electrochemical measurements, and recommended laboratory practices. Electrocatalysis 9, 113–123 (2018).

    Article  Google Scholar 

  29. IKA. General guidelines for cleaning electrodes. IKA https://www.ika.com/ika/pdf/flyer-catalog/202103_Electrasyn%202.0_cleaning%20electrodes_EN.pdf (2021).

  30. Kiema, G. K., Aktay, M. & Mcdermott, M. T. Preparation of reproducible glassy carbon electrodes by removal of polishing impurities. J. Electroanal. Chem. 540, 7–15 (2003).

    Article  Google Scholar 

  31. Monteiro, M. C. O. & Koper, M. T. M. Alumina contamination through polishing and its effect on hydrogen evolution on gold electrodes. Electrochim. Acta 325, 134915 (2019). This work demonstrates how contamination introduced during polishing of electrodes affects the activity for the HER.

    Article  Google Scholar 

  32. Raaijman, S. J., Arulmozhi, N., Silva, A. H. M. & Koper, M. T. M. Clean and reproducible voltammetry of copper single crystals with prominent facet-specific features using induction annealing. J. Electrochem. Soc. 168, 096510 (2021).

    Article  ADS  Google Scholar 

  33. Kibler, L. A. Preparation and characterization of noble metal single crystal electrode surfaces (International Society of Electrochemistry, 2003). This paper presents a comprehensive guide on the preparation and characterization of noble metal single crystal surfaces for fundamental electrocatalysis studies.

  34. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, 6321 (2017).

    Article  Google Scholar 

  35. Shinozaki, K., Zack, J. W., Pylypenko, S., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique II. Influence of ink formulation, catalyst layer uniformity and thickness. J. Electrochem. Soc. 162, F1384–F1396 (2015).

    Article  Google Scholar 

  36. Morales, D. M., Villalobos, J., Kazakova, M. A., Xiao, J. & Risch, M. Nafion-Induced reduction of manganese and its impact on the electrocatalytic properties of a highly active MnFeNi oxide for bifunctional oxygen conversion. ChemElectroChem 8, 2979–2983 (2021).

    Article  Google Scholar 

  37. Jervis, R. et al. The importance of using alkaline ionomer binders for screening electrocatalysts in alkaline electrolyte. J. Electrochem. Soc. 164, F1551–F1555 (2017). This paper presents guidelines for appropriate ionomer binder choice for screening catalysts in alkaline media.

    Article  Google Scholar 

  38. Birdja, Y. Y. et al. Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(III) protoporphyrin. ACS Catal. 8, 4420–4428 (2018).

    Article  Google Scholar 

  39. Garsany, Y., Ge, J., St-Pierre, J., Rocheleau, R. & Swider-Lyons, K. E. Analytical procedure for accurate comparison of rotating disk electrode results for the oxygen reduction activity of Pt/C. J. Electrochem. Soc. 161, F628–F640 (2014).

    Article  Google Scholar 

  40. Jerkiewicz, G. Applicability of platinum as a counter-electrode material in electrocatalysis research. ACS Catal. 12, 2661–2670 (2022).

    Article  Google Scholar 

  41. Chen, R. et al. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2, 1070–1075 (2017).

    Article  Google Scholar 

  42. Lee, J. & Bang, J. H. Reliable counter electrodes for the hydrogen evolution reaction in acidic media. ACS Energy Lett. 5, 2706–2710 (2020).

    Article  Google Scholar 

  43. Bird, M. A., Goodwin, S. E. & Walsh, D. A. Best practice for evaluating electrocatalysts for hydrogen economy. ACS Appl. Mater. Interfaces 12, 20500–20506 (2020). This work recommends carbon counter electrodes separated from the working electrode compartment by a frit to avoid cross-contamination in studies of the HER.

    Article  Google Scholar 

  44. Ji, S. G., Kim, H., Park, C., Kim, W. & Choi, C. H. Underestimation of platinum electrocatalysis induced by carbon monoxide evolved from graphite counter electrodes. ACS Catal. 10, 10773–10783 (2020).

    Article  Google Scholar 

  45. Jerkiewicz, G. Standard and reversible hydrogen electrodes: theory, design, operation, and applications. ACS Catal. 10, 8409–8417 (2020).

    Article  Google Scholar 

  46. Nu, S., Li, S., Du, Y., Han, X. & Xu, P. How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 5, 1083–1087 (2020).

    Article  Google Scholar 

  47. Leung, K. Y. & Mccrory, C. C. L. Effect and prevention of trace Ag+ contamination from Ag/AgCl reference electrodes on CO2 reduction product distributions at polycrystalline copper electrodes. ACS Appl. Energy Mater. 2, 8283–8293 (2019).

    Article  Google Scholar 

  48. Roger, I. & Symes, M. D. Silver leakage from Ag/AgCl reference electrodes as a potential cause of interference in the electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9, 472–478 (2017).

    Article  Google Scholar 

  49. Mousavi, M. P. S., Saba, S. A., Anderson, E. L., Hillmyer, M. A. & Bühlmann, P. Avoiding errors in electrochemical measurements: effect of frit material on the performance of reference electrodes with porous frit junctions. Anal. Chem. 88, 8706–8713 (2016).

    Article  Google Scholar 

  50. Zeledón, J. A. Z., Jackson, A., Stevens, M. B., Kamat, G. A. & Jaramillo, T. F. Methods — a practical approach to the reversible hydrogen electrode scale. J. Electrochem. Soc. 169, 066505 (2022).

    Article  ADS  Google Scholar 

  51. Rosca, V., Duca, M., de Groot, M. T. & Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009).

    Article  Google Scholar 

  52. Subbaraman, R. et al. Origin of anomalous activities for electrocatalysts in alkaline electrolytes. J. Phys. Chem. C. 116, 22231–22237 (2012).

    Article  Google Scholar 

  53. Kodama, K., Jinnouchi, R., Takahashi, N., Murata, H. & Morimoto, Y. Activities and stabilities of Au-modified stepped-Pt single-crystal electrodes as model cathode catalysts in polymer electrolyte fuel cells. J. Am. Chem. Soc. 138, 4194–4200 (2016).

    Article  Google Scholar 

  54. Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    Article  Google Scholar 

  55. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).

    Article  ADS  Google Scholar 

  56. Ojha, K., Doblhoff-Dier, K. & Koper, M. T. M. Double-layer structure of the Pt(111)–aqueous electrolyte interface. Proc. Natl Acad. Sci. USA 119, e2116016119 (2022).

    Article  Google Scholar 

  57. Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–225 (2017).

    Article  ADS  Google Scholar 

  58. Wuttig, A. & Surendranath, Y. Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 5, 4479–4484 (2015).

    Article  Google Scholar 

  59. Spanos, I. et al. Facile protocol for alkaline electrolyte purification and its influence on a Ni–Co oxide catalyst for the oxygen evolution reaction. ACS Catal. 9, 8165–8170 (2019).

    Article  Google Scholar 

  60. Liu, L. et al. Purification of residual Ni and Co hydroxides from Fe-free alkaline electrolyte for electrocatalysis studies. ChemElectroChem https://doi.org/10.1002/celc.202200279 (2022).

    Article  Google Scholar 

  61. Rebollar, L., Intikhab, S., Snyder, J. D. & Tang, M. H. Kinetic isotope effects quantify pH-sensitive water dynamics at the Pt electrode interface. J. Phys. Chem. L 11, 2308–2313 (2020).

    Article  Google Scholar 

  62. Anderson, C. E. & Ebenhaek, D. G. in Analysis of Essential Nuclear Reactor Materials (ed. Rodden, C. J.) 629–661 (US Atomic Energy Commission, 1964).

  63. Schmidt, T. J. et al. Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354–2358 (1998).

    Article  ADS  Google Scholar 

  64. Levich, V. G. in Physicochemical Hydrodynamics 60–72 (Prentice-Hall Englewood, 1962).

  65. Villullas, H. M. & Lopez Teijelo, M. Meniscus shape and lateral wetting at the hanging meniscus rotating disc (HMRD) electrode. J. Appl. Electrochem. 26, 353–359 (1996).

    Article  Google Scholar 

  66. Janssen, L. J. J., Sillen, C. W. M. P., Barendrecht, E. & van Stralen, S. J. D. Bubble behaviour during oxygen and hydrogen evolution at transparent electodes in KOH solution. Electrochim. Acta 29, 633–642 (1984).

    Article  Google Scholar 

  67. Matsuura, K., Yamanishi, Y., Guan, C. & Yanase, S. Control of hydrogen bubble plume during electrolysis of water. J. Phys. Commun. 3, 035012 (2019).

    Article  Google Scholar 

  68. Hodges, A. et al. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nat. Commun. 13, 1304 (2022).

    Article  ADS  Google Scholar 

  69. Zhao, X., Ren, H. & Luo, L. Gas bubbles in electrochemical gas evolution reactions. Langmuir 35, 5392–5408 (2019).

    Article  Google Scholar 

  70. Angulo, A., Linde, P., van der, Gardeniers, H., Modestino, M. & Rivas, D. F. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4, 555–579 (2020). This work demonstrates how bubbles impact the energy efficiency of electrocatalytic processes.

    Article  Google Scholar 

  71. Zdunek, A. D. & Selman, J. R. A novel rotating disk electrode cell design: the inverted rotating disk. J. Electrochem. Soc. 139, 2549–2551 (1992).

    Article  ADS  Google Scholar 

  72. Meethal, R. P., Saibi, R. & Srinivasan, R. Hydrogen evolution reaction on polycrystalline Au inverted rotating disc electrode in HClO4 and NaOH solutions. Int. J. Hydrog. Energy 47, 14304–14318 (2022).

    Article  Google Scholar 

  73. Vos, J. G. & Koper, M. T. M. M. Examination and prevention of ring collection failure during gas-evolving reactions on a rotating ring-disk electrode. J. Electroanal. Chem. 850, 113363 (2019).

    Article  Google Scholar 

  74. Shih, A. J., Arulmozhi, N. & Koper, M. T. M. Electrocatalysis under cover: enhanced hydrogen evolution via defective graphene-covered Pt(111). ACS Catal. 11, 10892–10901 (2021).

    Article  Google Scholar 

  75. Hsu, J. P. Recommended pre-operation cleanup procedures for hydrogen fueling station. Int. J. Hydrog. Energy 37, 1770–1780 (2011).

    Article  Google Scholar 

  76. Wan, C. T. et al. A potential-dependent Thiele modulus to quantify the effectiveness of porous electrocatalysts. Preprint at https://doi.org/10.26434/chemrxiv-2021-cwqm0-v2 (2021). This work demonstrates the coupling of diffusion reaction-governing equations with macroscopic catalytic rates to quantify the extent of internal mass transfer limitations.

  77. Hickman, D. A., Degenstein, J. C. & Ribeiro, F. H. Fundamental principles of laboratory fixed bed reactor design. Curr. Opin. Chem. Eng. 13, 1–9 (2016).

    Article  Google Scholar 

  78. Harris, J. W. et al. Consequences of product inhibition in the quantification of kinetic parameters. J. Catal. 389, 468–475 (2020).

    Article  Google Scholar 

  79. Kamat, G. A. et al. Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Commun. Chem. 5, 1–10 (2022).

    Article  Google Scholar 

  80. Zhang, Y., Zhang, H., Ji, H., Chen, C. & Zhao, J. Pivotal role and regulation of proton transfer in water oxidation on hematite photoanodes. J. Am. Chem. Soc. 138, 2705–2711 (2016).

    Article  Google Scholar 

  81. Yang, H. et al. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat. Catal. 5, 414–429 (2022).

    Article  Google Scholar 

  82. Chen, Z. et al. Concerted O atom-proton transfer in the O–O bond forming step in water oxidation. Proc. Natl Acad. Sci. USA 107, 7225–7229 (2010).

    Article  ADS  Google Scholar 

  83. Xia, C. et al. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 3, 125–134 (2020).

    Article  Google Scholar 

  84. Rabe, M. et al. Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods — metal dissolution, oxide formation and oxygen evolution. Phys. Chem. Chem. Phys. 21, 10457–10469 (2019).

    Article  Google Scholar 

  85. Huang, J. et al. In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS2 at nanoscale. Nanoscale 12, 9246–9254 (2020).

    Article  Google Scholar 

  86. Shpigel, N., Levi, M. D., Sigalov, S., Daikhin, L. & Aurbach, D. In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring. Acc. Chem. Res. 51, 69–79 (2018).

    Article  Google Scholar 

  87. Hodnik, N., Dehm, G. & Mayrhofer, K. J. J. Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49, 2015–2022 (2016). This work applies in situ liquid cell electron microscopy for electrocatalysis research.

    Article  Google Scholar 

  88. Velasco-Velez, J.-J. et al. Revealing the active phase of copper during the electroreduction of CO2 in aqueous electrolyte by correlating in situ X-ray spectroscopy and in situ electron microscopy. ACS Energy Lett. 5, 2106–2111 (2020).

    Article  Google Scholar 

  89. Zhang, L., Shi, W. & Zhang, B. A review of electrocatalyst characterization by transmission electron microscopy. J. Energy Chem. 26, 1117–1135 (2017).

    Article  Google Scholar 

  90. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021). This work applies in situ and operando XAS to probe the interactions of working electrocatalysts with the environment and its structural, chemical and electronic transformations.

    Article  Google Scholar 

  91. Velasco-Velez, J.-J. et al. A comparative study of electrochemical cells for in situ X-ray spectroscopies in the soft and tender X-ray range. J. Phys. D. Appl. Phys. 54, 124003 (2021).

    Article  ADS  Google Scholar 

  92. Liu, Y. et al. Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59, 11345–11348 (2020).

    Article  Google Scholar 

  93. Sasaki, K., Marinkovic, N., Isaacs, H. S. & Adzic, R. R. Synchrotron-based in situ characterization of carbon-supported platinum and platinum monolayer electrocatalysts. ACS Catal. 6, 69–76 (2016).

    Article  Google Scholar 

  94. Sugawara, Y., Yadav, A. P., Nishikata, A. & Tsuru, T. Electrochemical quartz crystal microbalance study on dissolution of platinum in acid solutions. Electrochemistry 75, 359–365 (2007).

    Article  Google Scholar 

  95. Levi, M. D., Salitra, G., Levy, N., Aurbach, D. & Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 8, 872–875 (2009).

    Article  ADS  Google Scholar 

  96. Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021). This research paper provides modelling guidelines to assess the structure of the electrochemical interface including water, cations and electric field. Theoretical results are benchmarked through in situ Raman spectroscopy characterization.

    Article  ADS  Google Scholar 

  97. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  ADS  Google Scholar 

  98. Liang, Y. et al. Electrochemical scanning probe microscopies in electrocatalysis. Small Methods 3, 1800387 (2019).

    Article  Google Scholar 

  99. Simon, G. H., Kley, C. S. & Roldan Cuenya, B. Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60, 2561–2568 (2021).

    Article  Google Scholar 

  100. Li, J. F., Zhang, Y. J., Ding, S. Y., Panneerselvam, R. & Tian, Z. Q. Core-shell nanoparticle-enhanced raman spectroscopy. Chem. Rev. 117, 5002–5069 (2017).

    Article  Google Scholar 

  101. Kas, R., Ayemoba, O., Firet, N. J., Middelkoop, J. & Smith, W. A. In-situ infrared spectroscopy applied to the study of the electrocatalytic reduction of CO2: theory, practice and challenges. ChemPhysChem 20, 2904–2925 (2019).

    Article  Google Scholar 

  102. Zhu, S., Li, T., Cai, W.-B. & Shao, M. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 4, 682–689 (2019).

    Article  Google Scholar 

  103. Zhang, Z.-Q., Banerjee, S., Thoi, V. S. & Shoji Hall, A. Reorganization of interfacial water by an amphiphilic cationic surfactant promotes CO2 reduction. J. Phys. Chem. Lett. 11, 5457–5463 (2020).

    Article  Google Scholar 

  104. Friebel, D. et al. Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. J. Am. Chem. Soc. 134, 9664–9671 (2012).

    Article  Google Scholar 

  105. Wu, C. H. et al. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831–834 (2014).

    Article  ADS  Google Scholar 

  106. Mom, R. et al. The oxidation of platinum under wet conditions observed by electrochemical X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 141, 6537–6544 (2019).

    Article  Google Scholar 

  107. Velasco-Velez, J. J. et al. Photoelectron spectroscopy at the graphene–liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew. Chem. Int. Ed. 54, 14554–14558 (2015).

    Article  Google Scholar 

  108. Favaro, M. et al. An operando investigation of (Ni–Fe–Co–Ce)Ox system as highly efficient electrocatalyst for oxygen evolution reaction. ACS Catal. 7, 1248–1258 (2017).

    Article  Google Scholar 

  109. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  ADS  Google Scholar 

  110. Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 1–8 (2016).

    Article  Google Scholar 

  111. Rao, R. R. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3, 516–525 (2020).

    Article  Google Scholar 

  112. Reikowski, F. et al. Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution. ACS Catal. 9, 3811–3821 (2019).

    Article  Google Scholar 

  113. Gründer, Y. & Lucas, C. A. Surface X-ray diffraction studies of single crystal electrocatalysts. Nano Energy 29, 378–393 (2016).

    Article  Google Scholar 

  114. Bogar, M. et al. Interplay among dealloying, ostwald ripening, and coalescence in PtXNi100–X bimetallic alloys under fuel-cell-related conditions. ACS Catal. 11, 11360–11370 (2021).

    Article  Google Scholar 

  115. Jacobse, L., Rost, M. J. & Koper, M. T. M. Atomic-scale identification of the electrochemical roughening of platinum. ACS Cent. Sci. 5, 1920–1928 (2019).

    Article  Google Scholar 

  116. Wang, X. et al. In situ scanning tunneling microscopy of cobalt-phthalocyanine-catalyzed CO2 reduction reaction. Angew. Chem. 59, 16098–16103 (2020).

    Article  Google Scholar 

  117. Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    Article  ADS  Google Scholar 

  118. Davies, B. J. V., Arenz, M., Rossmeisl, J. & Escudero-Escribano, M. Electrochemical synthesis of high-value chemicals: detection of key reaction intermediates and products combining gas chromatography−mass spectrometry and in situ infrared spectroscopy. J. Phys. Chem. C. 123, 12762–12772 (2019).

    Article  Google Scholar 

  119. Kwon, Y. & Koper, M. T. M. Combining voltammetry with HPLC: application to electro-oxidation of glycerol. Anal. Chem. 82, 5420–5424 (2010).

    Article  Google Scholar 

  120. Zeng, R. et al. Methanol oxidation using ternary ordered intermetallic electrocatalysts: a DEMS study. ACS Catal. 10, 770–776 (2020).

    Article  Google Scholar 

  121. Stoerzinger, K. A. et al. Orientation-dependent oxygen evolution on RuO2 without lattice exchange. ACS Energy Lett. 2, 876–881 (2017).

    Article  Google Scholar 

  122. Todoroki, N., Tsurumaki, H., Tei, H., Mochizuki, T. & Wadayama, T. Online electrochemical mass spectrometry combined with the rotating disk electrode method for direct observations of potential-dependent molecular behaviors in the electrode surface vicinity. J. Electrochem. Soc. 167, 106503 (2020).

    Article  ADS  Google Scholar 

  123. Geiger, S. et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 1, 508–515 (2018).

    Article  Google Scholar 

  124. Lopes, P. P. et al. Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal. 6, 2536–2544 (2016).

    Article  Google Scholar 

  125. Kasian, O. et al. Degradation of iridium oxides via oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms. Energy Environ. Sci. 12, 3548–3555 (2019).

    Article  Google Scholar 

  126. Klemm, S. O., Topalov, A. A., Laska, C. A. & Mayrhofer, K. J. J. Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochem. Commun. 13, 1533–1535 (2011).

    Article  Google Scholar 

  127. Kunimatsu, K., Senzaki, T., Samejeske, G., Tsushima, M. & Osawa, M. Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim. Acta 52, 5715–5724 (2007).

    Article  Google Scholar 

  128. Scott, S. B. et al. The low overpotential regime of acidic water oxidation part I: the importance of O2 detection. Energy Environ. Sci. https://doi.org/10.1039/d1ee03914h (2022).

    Article  Google Scholar 

  129. Yokoyama, Y. et al. In situ local pH measurements with hydrated iridium oxide ring electrodes in neutral pH aqueous solutions. Chem. Lett. 49, 195–198 (2020).

    Article  Google Scholar 

  130. Monteiro, M. C. O., Liu, X., Hagedoorn, B. J. L., Snabilié, D. D. & Koper, M. T. M. Interfacial pH measurements using a rotating ring-disc electrode with a voltammetric pH sensor. ChemElectroChem 9, e202101223 (2022).

    Google Scholar 

  131. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  Google Scholar 

  132. Čolić, V. et al. Experimental aspects in benchmarking of the electrocatalytic activity. ChemElectroChem 2, 143–149 (2015).

    Article  Google Scholar 

  133. Zheng, J., Yan, Y. & Xu, B. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics. J. Electrochem. Soc. 162, F1470–F1481 (2015).

    Article  Google Scholar 

  134. Wei, C. et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019). This work expands our coverage on the collection and analysis of reaction rates, kinetics and normalization of catalyst activity.

    Article  Google Scholar 

  135. Voiry, D. et al. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 12, 9635–9638 (2018).

    Article  Google Scholar 

  136. Prats, H. & Chan, K. The determination of the HOR/HER reaction mechanism from experimental kinetic data. Phys. Chem. Chem. Phys. https://doi.org/10.1039/d1cp04134g (2021).

    Article  Google Scholar 

  137. Wei, C., Sun, S., Mandler, D. & Wang, X. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev. https://doi.org/10.1039/c8cs00848e (2019).

    Article  Google Scholar 

  138. Garreau, D. & Saveant, J. M. Linear sweep voltammetry — compensation of cell resistance and stability. Electroanal. Chem. Interfacial Electrochem. 35, 309–331 (1972).

    Article  Google Scholar 

  139. Koutecky, J. & Levich, V. G. The application of the rotating disc electrode to studies of kinetic and catalytic processes. Zh. Fiz. Khim. 32, 1565–1575 (1958).

    Google Scholar 

  140. Fogler, H. S. Essentials of Chemical Reaction Engineering (Pearson Education, 2010).

  141. Monteiro, M. C. O., Jacobse, L., Touzalin, T. & Koper, M. T. M. Mediator-free SECM for probing the diffusion layer pH with functionalized gold ultramicroelectrodes. Anal. Chem. 92, 2237–2243 (2020).

    Article  Google Scholar 

  142. Monteiro, M. C. O. & Koper, M. T. M. Measuring local pH in electrochemistry. Curr. Opin. Electrochem. 25, 100649 (2021).

    Article  Google Scholar 

  143. Goyal, A. & Koper, M. T. M. Understanding the role of mass transport in tuning the hydrogen evolution kinetics on gold in alkaline media. J. Chem. Phys. 155, 134705 (2021).

    Article  ADS  Google Scholar 

  144. Hasan, M. H. & McCrum, I. T. Understanding the role of near-surface solvent in electrochemical adsorption and electrocatalysis with theory and experiment. Curr. Opin. Electrochem. 33, 100937 (2022).

    Article  Google Scholar 

  145. Taylor, H. S. The mechanism of activation at catalytic surfaces. Proc. R. Soc. A Math. Phys. Eng. Sci. 113, 77–86 (1926).

    ADS  Google Scholar 

  146. Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 95, 661–666 (1995).

    Article  Google Scholar 

  147. Kozuch, S. & Martin, J. M. L. “Turning Over” definitions in catalytic cycles. ACS Catal. 2, 2787–2794 (2012).

    Article  Google Scholar 

  148. Anantharaj, S., Karthik, P. E. & Noda, S. The significance of properly reporting turnover frequency in electrocatalysis research. Angew. Chem. Int. Ed. 60, 23051–23067 (2021).

    Article  Google Scholar 

  149. Barber, J., Morin, S. & Conway, B. E. Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between OPD and UPD H. J. Electroanal. Chem. 446, 125–138 (1998).

    Article  Google Scholar 

  150. Weber, R. S. Lies, damned lies, and turnover rates. J. Catal. 404, 925–928 (2021).

    Article  Google Scholar 

  151. Trasatti, S. & Petrii, O. A. Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327, 353–376 (1993).

    Article  Google Scholar 

  152. Li, D., Batchelor-McAuley, C. & Compton, R. G. Some thoughts about reporting the electrocatalytic performance of nanomaterials. Appl. Mater. Today 18, 100404 (2020).

    Article  Google Scholar 

  153. Hou, S. et al. A review on experimental identification of active sites in model bifunctional electrocatalytic systems for oxygen reduction and evolution reactions. ChemElectroChem 8, 3433–3456 (2021).

    Article  Google Scholar 

  154. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–103 (2007).

    Article  ADS  Google Scholar 

  155. Anantharaj, S. & Kundu, S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 4, 1260–1264 (2019).

    Article  Google Scholar 

  156. Stoerzinger, K. A., Qiao, L., Biegalski, M. D. & Shao-Horn, Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014).

    Article  Google Scholar 

  157. Kluge, R. M., Haid, R. W. & Bandarenka, A. S. Assessment of active areas for the oxygen evolution reaction on an amorphous iridium oxide surface. J. Catal. 396, 14–22 (2021).

    Article  Google Scholar 

  158. Aufa, M. H. et al. Fast and accurate determination of the electroactive surface area of MnOx. Electrochim. Acta 389, 138692 (2021).

    Article  Google Scholar 

  159. Watzele, S. & Bandarenka, A. S. Quick determination of electroactive surface area of some oxide electrode materials. Electroanalysis 28, 2394–2399 (2016).

    Article  Google Scholar 

  160. Watzele, S. et al. Determination of electroactive surface area of Ni-, Co-, Fe-, and Ir-based oxide electrocatalysts. ACS Catal. 9, 9222–9230 (2019).

    Article  Google Scholar 

  161. Quast, T. et al. Single particle nanoelectrochemistry reveals the catalytic oxygen evolution reaction activity of Co3O4 nanocubes. Angew. Chem. Int. Ed. 60, 23444–23450 (2021).

    Article  Google Scholar 

  162. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015). This work utilizes microkinetic modelling to demonstrate how different rate-limiting steps and surface coverages impact Tafel slopes and reaction orders.

    Article  ADS  Google Scholar 

  163. Jung, O., Jackson, M. N., Bisbey, R. P., Kogan, N. E. & Surendranath, Y. Innocent buffers reveal the intrinsic pH- and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals. Joule 6, 476–493 (2022).

    Article  Google Scholar 

  164. Mitchell, J. B., Shen, M., Twight, L. & Boettcher, S. W. Hydrogen-evolution-reaction kinetics pH dependence: is it covered? Chem. Catal https://doi.org/10.1016/j.checat.2022.02.001 (2022).

    Article  Google Scholar 

  165. Vos, J. G., Venugopal, A., Smith, W. A. & Koper, M. T. M. Competition and selectivity during parallel evolution of bromine, chlorine and oxygen on IrOx electrodes. J. Catal. 389, 99–110 (2020).

    Article  Google Scholar 

  166. Satterfield, C. N. Mass Transfer in Heterogeneous Catalysis (MIT Press, 1970).

  167. Monteiro, M. C. O., Goyal, A., Moerland, P. & Koper, M. T. M. Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media. ACS Catal. 11, 14328–14335 (2021).

    Article  Google Scholar 

  168. Chen, Q., Solla-gullón, J., Sun, S. & Feliu, J. M. The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: the role of anion adsorption in fundamental electrocatalysis. Electrochim. Acta 55, 7982–7994 (2010).

    Article  Google Scholar 

  169. Grgur, B. N., Marković, N. M. & Ross, P. N. Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions. Can. J. Chem. 75, 1465–1471 (1997).

    Article  Google Scholar 

  170. Gojković, S. L., Zečević, S. K. & Dražić, D. M. Oxygen reduction on iron. Part VII. Temperature dependence of oxygen reduction on passivated iron in alkaline solutions. J. Electroanal. Chem. 399, 127–133 (1995).

    Article  Google Scholar 

  171. Tang, Z. Q., Liao, L. W., Zheng, Y. L., Kang, J. & Chen, Y. X. Temperature effect on hydrogen evolution reaction at Au electrode. Chin. J. Chem. Phys. 25, 469–474 (2012).

    Article  Google Scholar 

  172. Kang, J., Lin, C. H., Yao, Y. & Chen, Y. X. Kinetic implication from temperature effect on hydrogen evolution reaction at Ag electrode. Chin. J. Chem. Phys. 27, 63–68 (2014).

    Article  Google Scholar 

  173. Watzele, S. A., Katzenmeier, L., Sabawa, J. P., Garlyyev, B. & Bandarenka, A. S. Electrochimica acta temperature dependences of the double layer capacitance of some solid/liquid and solid/solid electrified interfaces. An experimental study. Electrochim. Acta 391, 138969 (2021).

    Article  Google Scholar 

  174. Garcia-Araez, N., Climent, V. & Feliu, J. M. Temperature effects on platinum single-crystal electrodes. Russ. J. Electrochem. 48, 271–280 (2012).

    Article  Google Scholar 

  175. Marković, N. M. et al. Effect of temperature on surface processes at the Pt(111)–liquid interface: hydrogen adsorption, oxide formation, and CO oxidation. J. Phys. Chem. B 103, 8568–8577 (1999).

    Article  Google Scholar 

  176. Gomez, R., Orts, J. M., Alvarez-Ruiz, B. & Feliu, J. M. Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes. J. Phys. Chem. 108, 228–238 (2004).

    Article  Google Scholar 

  177. He, Z. D., Chen, Y. X., Santos, E. & Schmickler, W. The pre-exponential factor in electrochemistry. Angew. Chem.- Int. Ed. 57, 7948–7956 (2018).

    Article  Google Scholar 

  178. Vos, R. E. & Koper, M. T. M. The effect of temperature on the cation-promoted electrochemical CO2 reduction on gold. ChemElectroChem 9, e202200239 (2022).

    Article  Google Scholar 

  179. Conway, B. E. & Wilkinson, D. P. Non-isothermal cell potentialas and evaluation of entropies of ions and of activation for single electrode processes in non-aqueous media. Electrochim. Acta 38, 997–1013 (1993).

    Article  Google Scholar 

  180. Conway, B. E. & Wilkinsont, D. P. Comparison of entropic and enthalpic components of the barrier symmetry factor, β, for proton discharge at liquid and solid Hg in relation to the variation of Tafel slopes and β with temperature. J. Chem. Soc. Faraday Trans. 85, 2355–2367 (1989).

    Article  Google Scholar 

  181. Wildgoose, G. G., Giovanelli, D., Lawrence, N. S. & Compton, R. G. High-temperature electrochemistry: a review. Electroanalysis 16, 421–433 (2004).

    Article  Google Scholar 

  182. Uwitonze, N., Chen, W., Zhou, D., He, Z. & Chen, Y.-X. The determination of thermal junction potential difference. Sci. China Chem. 61, 1020–1024 (2018).

    Article  Google Scholar 

  183. Öijerholm, J., Forsberg, S., Hermansson, H.-P. & Ullberg, M. Relation between the SHE and the internal Ag/AgCl reference electrode at high temperatures. J. Electrochem. Soc. 156, P56–P61 (2009).

    Article  Google Scholar 

  184. National Institute of Standards and Technology. IUPAC-NIST solubility database, version 1.1. NIST standard reference database 106. SRDTA https://doi.org/10.18434/T4QC79 (2012).

  185. Williams, K., Limaye, A., Weiss, T., Chung, M. & Manthiram, K. Accounting for species’ thermodynamic activities changes mechanistic interpretations of electrochemical kinetic data. Preprint at https://doi.org/10.26434/chemrxiv-2022-vk5z9 (2022). This work demonstrates how accounting for the thermodynamic activities of species can impact reaction order measurements, potentially leading to faulty mechanistic interpretations.

  186. Haschke, S. et al. Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nat. Commun. https://doi.org/10.1038/s41467-018-07031-1 (2018).

    Article  Google Scholar 

  187. Pasquini, C. et al. H/D isotope effects reveal factors controlling catalytic activity in Co-based oxides for water oxidation. J. Am. Chem. Soc. 141, 2938–2948 (2019).

    Article  Google Scholar 

  188. Tse, E. C. M., Hoang, T. T. H., Varnell, J. A. & Gewirth, A. A. Observation of an inverse kinetic isotope effect in oxygen evolution electrochemistry. ACS Catal. 6, 5706–5714 (2016).

    Article  Google Scholar 

  189. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  Google Scholar 

  190. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020). This research paper introduces *OH adsorption strength as an additional descriptor for HER activity in addition to *H binding, and also provides guidelines for assessing the kinetics of the HER in alkaline media and in the presence of cations.

    Article  ADS  Google Scholar 

  191. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    Article  Google Scholar 

  192. Katayama, Y. et al. An in situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: selectivity dependence on surface C-bound and O-bound reaction intermediates. J. Phys. Chem. C. 123, 5951–5963 (2019).

    Article  Google Scholar 

  193. Feibelman, P. J. Surface-diffusion mechanism versus electric field: Pt/Pt(001). Phys. Rev. B Condens. Matter Mater. Phys. 64, 125403 (2001).

    Article  ADS  Google Scholar 

  194. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  195. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 1–7 (2009).

    Article  Google Scholar 

  196. Henkelman, G. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  197. Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for bader charge allocation. J. Comput. Chem. 28, 899–908 (2007).

    Article  Google Scholar 

  198. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  Google Scholar 

  199. Monteiro, M. C. O., Dattila, F., Lopez, N. & Koper, M. T. M. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2022).

    Article  Google Scholar 

  200. Gupta, N., Gattrell, M. & Macdougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Elecrochem. 36, 161–172 (2006).

  201. Weng, L.-C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).

    Article  Google Scholar 

  202. Cheng, D. et al. The nature of active sites for carbon dioxide electroreduction over oxide-supported copper catalysts. Nat. Commun. 12, 395 (2021).

    Article  ADS  Google Scholar 

  203. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  204. Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    Article  Google Scholar 

  205. Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J. & Norskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  Google Scholar 

  206. Brönsted, J. N. Acid and basic catalysis. Chem. Rev. 5, 231–338 (1928).

    Article  Google Scholar 

  207. Evans, M. G. & Polanyi, M. Inertia and driving force of chemical reaction. Trans. Faraday Soc. 34, 11–24 (1938).

    Article  Google Scholar 

  208. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    Article  Google Scholar 

  209. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  Google Scholar 

  210. Goyal, A. & Koper, M. T. M. The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media. Angew. Chem. Int. Ed. 60, 13452–13462 (2021).

    Article  Google Scholar 

  211. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  Google Scholar 

  212. Gunasooriya, G. T. K. K., Nørskov, J. K. Analysis of acid-stable and active oxides for the oxygen evolution reaction. ACS Energy Lett. 5, 3778–3787 (2020).

    Article  Google Scholar 

  213. Zhou, L. et al. Rutile alloys in the Mn−Sb−O system stabilize Mn3+ to enable oxygen evolution in strong acid. ACS Catal. 8, 10938–10948 (2018).

    Article  Google Scholar 

  214. Gunasooriya, G. T. K. K. et al. First-row transition metal antimonates for the oxygen reduction reaction. ACS Nano 16, 6334–6348 (2022).

    Article  Google Scholar 

  215. Kastlunger, G., Lindgren, P. & Peterson, A. A. Controlled-potential simulation of elementary electrochemical reactions: proton discharge on metal surfaces. J. Phys. Chem. C. 122, 12771–12781 (2018).

    Article  Google Scholar 

  216. Warburton, R. E., Soudackov, A. V. & Hammes-Schiffr, S. Theoretical modeling of electrochemical proton-coupled electron transfer. Chem. Rev. https://doi.org/10.1021/acs.chemrev.1c00929 (2022).

    Article  Google Scholar 

  217. Abidi, N., Lim, K. R. G., Seh, Z. W. & Steinmann, S. N. Atomistic modeling of electrocatalysis: are we there yet? WIREs Comput. Mol. Sci. 11, e1499 (2021). This outstanding review paper offers a detailed discussion on the different methodologies developed to model the electrochemical interface, including the computational hydrogen electrode, constant potential and constant electric field approaches (as summarized in the paper in Fig. 3).

    Article  Google Scholar 

  218. Sundararaman, R., Vigil-fowler, D. & Schwarz, K. Improving the accuracy of atomistic simulations of the electrochemical interface. Chem. Rev. 122, 10651–10674 (2022).

    Article  Google Scholar 

  219. Groß, A. & Sakong, S. Ab initio simulations of water/metal interfaces. Chem. Rev. 122, 10746–10776 (2022).

    Article  Google Scholar 

  220. Pohlmann, S. Metrics and methods for moving from research to innovation in energy storage. Nat. Commun. 13, 1538 (2022).

    Article  ADS  Google Scholar 

  221. Zheng, Y., Jiao, Y., Vasileff, A. & Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018).

    Article  Google Scholar 

  222. Millet, P. & Grigoriev, S. in Renewable Hydrogen Technologies (eds Gandia, L. M., Arzamendi, G. & Dieguez, P. M.) 19–41 (Elsevier, 2013). This text presents an overview of mature and laboratory-scale water electrolysis technologies, and provides some common values of important process parameters, which helps put the process requirements in perspective.

  223. Burton, N. A., Padilla, R. V., Rose, A. & Habibullah, H. Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 135, 110255 (2021).

    Article  Google Scholar 

  224. Wang, M., Wang, Z., Gong, X. & Guo, Z. The intensification technologies to water electrolysis for hydrogen production — a review. Renew. Sustain. Energy Rev. 29, 573–588 (2014).

    Article  Google Scholar 

  225. Barati, G., Aliofkhazraei, M. & Shanmugam, S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting. Renew. Sustain. Energy Rev. 114, 109300 (2019).

    Article  Google Scholar 

  226. Rodríguez, J. & Amores, E. CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production. Processes 8, 1634 (2020). This work introduces important engineering parameters that need to be taken into account when designing electrochemical cells.

    Article  Google Scholar 

  227. Knöppel, J. et al. On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells. Nat. Commun. 12, 1–9 (2021).

    Article  Google Scholar 

  228. Watzele, S., Liang, Y. & Bandarenka, A. S. Intrinsic activity of some oxygen and hydrogen evolution reaction electrocatalysts under industrially relevant conditions. ACS Appl. Energy Mater. 1, 4196–4202 (2018).

    Article  Google Scholar 

  229. Lazaridis, T., Stühmeier, B. M., Gasteiger, H. A. & El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 5, 363–373 (2022).

    Article  Google Scholar 

  230. Scott, K. Handbook of Industrial Membranes 271–305 (Elsevier, 1995).

  231. Wang, S. et al. Modifying ionic membranes with carbon dots enables direct production of high-purity hydrogen through water electrolysis. ACS Appl. Mater. Interfaces 13, 39304–39310 (2021).

    Article  Google Scholar 

  232. Ligen, Y., Vrubel, H. & Girault, H. Energy efficient hydrogen drying and purification for fuel cell vehicles. Int. J. Hydrog. Energy 45, 10639–10647 (2020).

    Article  Google Scholar 

  233. Akbashev, A. R. Electrocatalysis goes nuts. ACS Catal. 12, 4296–4301 (2022).

    Article  Google Scholar 

  234. Shinozaki, K., Zack, J. W., Richards, R. M., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 162, F1144–F1158 (2015).

    Article  Google Scholar 

  235. Christopher, P., Jin, S., Sivula, K. & Kamat, P. V. Why seeing is not always believing: common pitfalls in photocatalysis and electrocatalysis. ACS Energy Lett. 6, 707–709 (2021).

    Article  Google Scholar 

  236. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013). This work recommends a protocol to reliably compare the activity, stability, electrochemically active surface area and Faradic efficiency of electrocatalysts for the OER.

    Article  Google Scholar 

  237. Chen, J. G., Jones, C. W., Linic, S. & Stamenkovic, V. R. Best practices in pursuit of topics in heterogeneous electrocatalysis. ACS Catal. 7, 6392–6393 (2017).

    Article  Google Scholar 

  238. Bligaard, T. et al. Toward benchmarking in catalysis science: best practices, challenges, and opportunities. ACS Catal. 6, 2590–2602 (2016).

    Article  Google Scholar 

  239. Clark, E. L. et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

    Article  Google Scholar 

  240. Kocha, S. S. et al. Best practices and testing protocols for benchmarking ORR activities of fuel cell electrocatalysts using rotating disk electrode. Electrocatalysis 8, 366–374 (2017).

    Article  Google Scholar 

  241. Anantharaj, S., Noda, S., Driess, M. & Menezes, P. W. The pitfalls of using potentiodynamic polarization curves for tafel analysis in electrocatalytic water splitting. ACS Energy Lett. 6, 1607–1611 (2021).

    Article  Google Scholar 

  242. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 11, B1529–B1536 (2010).

    Article  Google Scholar 

  243. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. L 3, 399–404 (2012).

    Article  Google Scholar 

  244. Ku, H. H. Notes on the use of propagation of error formulas. J. Res. Natl Bur. Stand. 70C, 263–273 (1966).

    Google Scholar 

  245. Payton, M. E., Greenstone, M. H. & Schenker, N. Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? J. Insect Sci. 3, 34 (2003).

    Article  Google Scholar 

  246. Tummers, B. DataThief III. DataThief http://datathief.org (2006).

  247. Rohatgi, A. WebPlotDigitizer version 4.3 https://automeris.io/WebPlotDigitizer/ (2020).

  248. Flower, A., McKenna, J. W. & Upreti, G. Validity and reliability of GraphClick and DataThief III for data extraction. Behav. Modif. 40, 396–413 (2015).

    Article  Google Scholar 

  249. Govindarajan, N., Kastlunger, G., Heenen, H. H. & Chan, K. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go? Chem. Sci. 13, 14–26 (2022).

    Article  Google Scholar 

  250. Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure database for surface reactions. Sci. Data 6, 1–10 (2019).

    Article  Google Scholar 

  251. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  Google Scholar 

  252. Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bligaard, T. & Nørskov, J. K. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew. Chem. Int. Ed. 51, 272–274 (2012).

    Article  Google Scholar 

  253. Artrith, N. et al. Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508 (2021).

    Article  Google Scholar 

  254. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    Article  Google Scholar 

  255. Zou, X. et al. Machine learning analysis and prediction models of alkaline anion exchange membranes for fuel cells. Energy Environ. Sci. 14, 3965–3975 (2021).

    Article  Google Scholar 

  256. Linpé, W. et al. Revisiting optical reflectance from Au(111) electrode surfaces with combined high-energy surface X-ray diffraction. J. Electrochem. Soc. 168, 096511 (2021).

    Article  ADS  Google Scholar 

  257. Resasco, J. et al. Enhancing the connection between computation and experiments in electrocatalysis. Nat. Catal. 5, 374–381 (2022).

    Article  Google Scholar 

  258. Witte, P. T. et al. BASF NanoSelect™ technology: innovative supported Pd- and Pt-based catalysts for selective hydrogenation reactions. Top. Catal. 55, 505–511 (2012).

    Article  Google Scholar 

  259. Tong, W. et al. Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020).

    Article  ADS  Google Scholar 

  260. McAllister, B. & Hu, P. A density functional theory study of sulfur poisoning. J. Chem. Phys. 122, 084709 (2005).

    Article  ADS  Google Scholar 

  261. Akhade, S. A. et al. Poisoning effect of adsorbed CO during CO2 electroreduction on late transition metals. Phys. Chem. Chem. Phys. 16, 20429–20435 (2014).

    Article  Google Scholar 

  262. Yang, G. et al. Interfacial engineering of MoO2–FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 32, 2000455 (2020).

    Article  Google Scholar 

  263. Xie, Y., Zhou, Z., Yang, N. & Zhao, G. An overall reaction integrated with highly selective oxidation of 5-hydroxymethylfurfural and efficient hydrogen evolution. Adv. Funct. Mater. 31, 2102886 (2021).

    Article  Google Scholar 

  264. Wang, Z. et al. Copper–nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 9, 1900390 (2019).

    Article  Google Scholar 

  265. Chen, Z., Wei, W., Song, L. & Ni, B. Hybrid water electrolysis: a new sustainable avenue for energy-saving hydrogen production. Sustain. Horiz. 1, 100002 (2022). This work introduces fundamentals of hybrid water electrolysis and also provides examples of relevant anodic reactions and catalysts.

    Article  Google Scholar 

  266. Martínez, N. P., Isaacs, M. & Nanda, K. K. Paired electrolysis for simultaneous generation of synthetic fuels and chemicals. New J. Chem. 44, 5617–5637 (2020).

    Article  Google Scholar 

  267. Weinberg, N. L. & Weinberg, H. R. electrochemical oxidation of organic compounds. Chem. Rev. 68, 449–523 (1968).

    Article  Google Scholar 

  268. Xing, L. et al. Platinum electro-dissolution in acidic media upon potential cycling. Electrocatalysis 5, 96–112 (2014).

    Article  Google Scholar 

  269. Furuya, Y. et al. Influence of electrolyte composition and pH on platinum electrochemical and/or chemical dissolution in aqueous acidic media. ACS Catal. 5, 2605–2614 (2015).

    Article  Google Scholar 

  270. Edgington, J., Schweitzer, N., Alayoglu, S. & Seitz, L. C. Constant change: exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid. J. Am. Chem. Soc. 143, 9961–9971 (2021).

    Article  Google Scholar 

  271. Roy, C. et al. Trends in activity and dissolution on RuO2 versus well-defined extended surfaces. ACS Energy Lett. 3, 2045–2051 (2018).

    Article  Google Scholar 

  272. Cherevko, S. Electrochemical dissolution of noble metals native oxides. J. Electroanal. Chem. 787, 11–13 (2017).

    Article  Google Scholar 

  273. Zhang, R. et al. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem. 131, 4619–4623 (2019).

    Article  ADS  Google Scholar 

  274. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1012–1014 (2016).

    Article  ADS  Google Scholar 

  275. Aßmann, P., Gago, A. S., Gazdzicki, P., Friedrich, K. A. & Wark, M. Toward developing accelerated stress tests for proton exchange membrane electrolyzers. Curr. Opin. Electrochem. 21, 225–233 (2020). This work discusses the importance of accelerated stress tests in the development of electrolysis technology.

    Article  Google Scholar 

  276. Iriawan, H. et al. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 1, 1–26 (2021).

    Article  Google Scholar 

  277. Clark, D. et al. Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors. Science 376, 390–393 (2022).

    Article  ADS  Google Scholar 

  278. Lim, D.-K. et al. Solid acid electrochemical cell for the production of hydrogen from ammonia. Joule 4, 2338–2347 (2020).

    Article  Google Scholar 

  279. Shih, A. J. & Haile, S. M. Electrifying membranes to deliver hydrogen. Science 376, 348–349 (2022).

    Article  ADS  Google Scholar 

  280. Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

F.D. and N.L. thank the Spanish Ministry of Science and Innovation (RTI2018-101394-B-I00, Severo Ochoa CEX2019-000925-S). R.M. acknowledges the Dutch Organization for Scientific Research (NWO) for funding under grant number ECCM.TT.ECCM.001. A.H.M.d.S. and R.E.V. acknowledge the Materials Innovation Institute (M2i) and thank Tata Steel Nederland Technology BV and the Dutch Research Council (NWO) (project number ENPPS.IPP.019.002) for financial support. S.P. acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A14039678). This project was also supported by the Solar-to-Products programme and the Advanced Research Center for Chemical Building Blocks (ARC CBBC) consortium, both co-financed by the NWO and by Shell Global Solutions B.V., and by the European Commission under contract 722614 (Innovative training network ELCoREL). The authors thank the invaluable peer reviewers who provided constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. A.J.S., M.C.O.M., F.D., D.P., M.P., A.H.M.d.S., R.E.V., K.O., S.P., O.v.d.H., G.M., A.G., M.V., G.T.K.K.G., R.M., N.L. and M.T.M.K. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Arthur J. Shih, G. T. Kasun Kalhara Gunasooriya, Ian McCrum, Rik Mom, Núria López or Marc T. M. Koper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Hydrogen evolution reaction

(HER). The reaction at the cathode where hydrogen is produced.

Oxygen evolution reaction

(OER). The reaction at the anode where oxygen is produced.

Alkaline electrolysis

Water splitting under high-pH alkaline conditions. Although water splitting rates are lower under alkaline conditions, cell components exhibit higher resistance against corrosion and catalysts can be prepared from more earth-abundant materials.

Proton exchange membrane

(PEM). A membrane selective towards protons (H+), but not selective towards electrons (insulator) and gases (hydrogen, oxygen).

Anion exchange membrane

A membrane selective towards anions, but not selective towards electrons (insulator), gases (hydrogen, oxygen) and large cations.

Dimensionally stable anodes

Conductive and stable electrodes made of mixed metal oxides (typically of titanium, ruthenium and iridium).

Reversible hydrogen electrode

(RHE). A reference electrode defined as the equilibrium potential of platinum when exposed to 1 atm hydrogen and the pH of the working electrolyte.

Thiele modulus

The ratio of the reaction rate to the diffusion rate.

Effectiveness factor

The ratio of the experimentally measured reaction rate to the kinetic reaction rate in the absence of diffusion limitations.

Tafel slopes

The required increase in potential to increase the reaction rate by ten times.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, A.J., Monteiro, M.C.O., Dattila, F. et al. Water electrolysis. Nat Rev Methods Primers 2, 84 (2022). https://doi.org/10.1038/s43586-022-00164-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00164-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing