Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Electrochemical stripping analysis

Abstract

Electrochemical stripping analysis (ESA) is a trace electroanalytical technique for the determination of metal cations, inorganic ions, organic compounds and biomolecules. It is based on a pre-concentration step of the target analyte(s), or a compound of the target, on a suitable working electrode. This is followed by a stripping step of the accumulated analyte using an electroanalytical technique. Advantages of ESA include high sensitivity and low limits of detection, multi-analyte capability, low cost of instrumentation and consumables, low power requirements, potential for on-site analysis, speciation capability and scope for indirect biosensing. This Primer covers fundamental aspects of ESA and discusses methods of pre-concentration and stripping, instrumentation, types of working electrodes and sensors, guidelines for method optimization, typical applications, data interpretation and interferences, and method limitations and workarounds. Finally, the current trends and future prospects of ESA are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical evolution of ESA.
Fig. 2: The principle of ESA.
Fig. 3: Experimental set-ups and main variables in ESA.
Fig. 4: Signal processing and quantification in ESA.
Fig. 5: List of elements that can be determined by ESA.
Fig. 6: Application examples of ESA.
Fig. 7: Examples of limitations in ESA.

Similar content being viewed by others

References

  1. Achterberg, P., Barriada, J. L. & Braungardt C. B. in Encyclopedia of Analytical Science 2nd edn (eds Worsfold, P., Townshend, A. & Poole, C.) 203–211 (Elsevier, 2005).

  2. Wang, J. in Comprehensive Analytical Chemistry Vol. 49 (eds Alegret, S. & Merkoçi, A.) 131–141 (Elsevier, 2007).

  3. Munoz, R. A. A., Almeida, E. S. & Angnes, L. in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 1–11 (Elsevier, 2013).

  4. Adeloju, S. B. in Food Toxicants Analysis (ed. Picó, Y.) 667–696 (Elsevier, 2007).

  5. Alghamdi, A. H. Applications of stripping voltammetric techniques in food analysis. Arab. J. Chem. 3, 1–7 (2010).

    Google Scholar 

  6. Cheraghi, S., Taher, A. M., Bijad, M. & Sadeghifar, H. A review: stripping voltammetric methods as a high sensitive strategy for trace analysis of ions, pharmaceutical and food samples. Curr. Anal. Chem. 13, 5–12 (2017).

    Google Scholar 

  7. Pingarrón, J. M. et al. Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019). Pure Appl. Chem. 92, 641–694 (2020).

    Google Scholar 

  8. Vydra, F., Štulík, K. & Juláková, E. Electrochemical Stripping Analysis (E. Horwood, 1976).

  9. Abollino, O., Giacomino, A. & Malandrino, M. in Encyclopedia of Analytical Science 3rd edn Vol. 10 (eds Worsfold, P., Poole, C., Townshend, A. & Miró, M.) 238–257 (Academic, 2019).

  10. Brainina, K. Z. Stripping Voltammetry in Chemical Analysis (Wiley, 1974).

  11. Brainina, K. & Neyman, E. Electroanalytical Stripping Methods (Wiley, 1994).

  12. Wang, J. Stripping Analysis: Principles, Instrumentation and Applications (VCH, 1985).

  13. Economou, A. & Kokkinos, C. in Electrochemical Strategies in Detection Science (ed. Arrigan, D. W. M.) 1–18 (The Royal Society of Chemistry, 2016).

  14. Lovrić, M. in Electroanalytical Methods: Guide to Experiments and Applications (ed. Scholz, F.) 201–218 (Springer, 2010).

  15. Zbinden, C. New method of micro-estimation of the Cu ion. Bull. Soc. Chim. Biol. 13, 35–40 (1931).

    Google Scholar 

  16. Barker, G. C. & Jenkins, I. L. Square-wave polarography. Analyst 77, 685–696 (1952).

    ADS  Google Scholar 

  17. Scholz, F. The anfractuous pathways which led to the development of electrochemical stripping techniques. J. Solid. State Electrochem. 15, 1509–1521 (2011).

    Google Scholar 

  18. Daniele, S. in Encyclopedia of Analytical Science 2nd edn (eds Worsfold, P., Townshend, A. & Poole, C.) 197–203 (Elsevier, 2005).

  19. Borrill, A., Reily, N. & Macpherson, J. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst 144, 6834–6849 (2019).

    ADS  Google Scholar 

  20. Kalvoda, R. & Kopanica, M. Adsorptive stripping voltammetry in trace analysis. Pure Appl. Chem. 61, 97–112 (1989).

    Google Scholar 

  21. Zuhri, A. Z. A. & Voelter, W. Applications of adsorptive stripping voltammetry for the trace analysis of metals, pharmaceuticals and biomolecules. Fresenius J. Anal. Chem. 360, 1–9 (1998).

    Google Scholar 

  22. Hickling, A. A simple potentiostat for general laboratory use. Electrochim. Acta 5, 161–168 (1961).

    Google Scholar 

  23. Colburn, A. W., Levey, K. J., O’Hare, D. & Macpherson, J. V. Lifting the lid on the potentiostat: a beginner’s guide to understanding electrochemical circuitry and practical operation. Phys. Chem. Chem. Phys. 23, 8100–8117 (2021).

    Google Scholar 

  24. Smith, J. & Hinson-Smith, V. Product review: the potentiostat: electrochemistry’s utility player. Anal. Chem. 74, 539 A–541 A (2002).

    Google Scholar 

  25. García-Miranda Ferrari, A., Carrington, P., Rowley-Neale, S. J. & Banks, C. E. Recent advances in portable heavy metal electrochemical sensing platforms. Environ. Sci. Water Res. Technol. 6, 2676–2690 (2020).

    Google Scholar 

  26. Harrington, M. S., Anderson, L. B., Robbins, J. A. & Karweik, D. H. Multiple electrode potentiostat. Rev. Sci. Instrum. 60, 3323–3328 (1989).

    ADS  Google Scholar 

  27. Abdullah, S., Serpelloni, M. & Sardini, E. Design of multichannel potentiostat for remote and longtime monitoring of glucose concentration during yeast fermentation. Rev. Sci. Instrum. 91, 054104 (2020).

    ADS  Google Scholar 

  28. Rowe, A. A. et al. CheapStat: an open-source, “do-it-yourself” potentiostat for analytical and educational applications. PLoS ONE 6, e23783 (2011).

    ADS  Google Scholar 

  29. Economou, A., Bolis, S. D., Efstathiou, C. E. & Volikakis, G. J. A “virtual” electroanalytical instrument for square wave voltammetry. Anal. Chim. Acta 467, 179–188 (2002).

    Google Scholar 

  30. Bezuidenhout, P., Smith, S. & Joubert, T.-H. A low-cost inkjet-printed paper-based potentiostat. Appl. Sci. https://doi.org/10.3390/app8060968 (2018).

    Article  Google Scholar 

  31. Herzog, G. & Arrigan, D. W. M. Determination of trace metals by underpotential deposition–stripping voltammetry at solid electrodes. Trends Analyt. Chem. 24, 208–217 (2005).

    Google Scholar 

  32. Sys, M., Farag, A. & Svancara, I. Extractive stripping voltammetry at carbon paste electrodes for determination of biologically active organic compounds. Monatsh. Fur Chem. 150, 373–386 (2019).

    Google Scholar 

  33. Florence, T. Anodic stripping voltammetry with a glassy carbon electrode mercury-plated in situ. J. Electroanal. Chem. Interfacial Electrochem. 27, 273–281 (1970).

    Google Scholar 

  34. Economou, A. & Fielden, P. R. Mercury film electrodes: developments, trends and potentialities for electroanalysis. Analyst 128, 205–213 (2003).

    Google Scholar 

  35. Economou, A. & Fielden, P. R. Applications, potentialities and limitations of adsorptive stripping analysis on mercury film electrodes. Trends Analyt. Chem. 16, 286–292 (1997).

    Google Scholar 

  36. Mikkelsen, O., Strasunskiene, K., Skogvold, M. S. & Schroder, H. K. Solid alloy electrodes in stripping voltammetry. Curr. Anal. Chem. 4, 202–205 (2008).

    Google Scholar 

  37. Yosypchuk, B. & Barek, J. Analytical applications of solid and paste amalgam electrodes. Crit. Rev. Anal. Chem. 39, 189–203 (2009).

    Google Scholar 

  38. Navrátil, T. et al. in Sensing in Electroanalysis Vol. 6 (eds Metelka, R., Kalcher, K., Švancara, I. & Vytras, K.) 23–53 (University Press Centre, 2011).

  39. Alves, G., Rocha, L. & Soares, H. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: a review. Talanta 175, 53–68 (2017).

    Google Scholar 

  40. Arino, C., Serrano, N., Diaz-Cruz, J. & Esteban, M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal. Chim. Acta 990, 11–53 (2017).

    Google Scholar 

  41. Ward Jones, E. S. & Compton, G. R. Stripping analysis using boron-doped diamond electrodes. Curr. Anal. Chem. 4, 170–176 (2008).

    Google Scholar 

  42. Stozhko, N. Y., Malakhova, N. A., Fyodorov, M. V. & Brainina, K. Z. Modified carbon-containing electrodes in stripping voltammetry of metals. J. Solid. State Electrochem. 12, 1185–1204 (2008).

    Google Scholar 

  43. Vytras, K., Svancara, I. & Metelka, R. Carbon paste electrodes in electroanalytical chemistry. J. Serbian Chem. Soc. 74, 1021–1033 (2009).

    Google Scholar 

  44. Zaib, M., Athar, M. M., Saeed, A. & Farooq, U. Electrochemical determination of inorganic mercury and arsenic — a review. Biosens. Bioelectron. 74, 895–908 (2015).

    Google Scholar 

  45. Alves, G. M. S., Magalhães, J. M. C. S., Salaün, P., van den Berg, C. M. G. & Soares, H. M. V. M. Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Anal. Chim. Acta 703, 1–7 (2011).

    Google Scholar 

  46. García-Miranda Ferrari, A., Rowley-Neale, S. J. & Banks, C. E. Screen-printed electrodes: transitioning the laboratory in-to-the field. Talanta Open 3, 100032 (2021).

    Google Scholar 

  47. Economou, A. Screen-printed electrodes modified with “Green” metals for electrochemical stripping analysis of toxic elements. Sensors https://doi.org/10.3390/s18041032 (2018).

    Article  Google Scholar 

  48. Niu, X. et al. Review: electrochemical stripping analysis of trace heavy metals using screen-printed electrodes. Anal. Lett. 46, 2479–2502 (2013).

    Google Scholar 

  49. Honeychurch, K. Screen-printed electrochemical sensors and biosensors for monitoring metal pollutants. Insciences J. 2, 1–51 (2012).

    Google Scholar 

  50. Pitsou, M. et al. “Green” three-electrode sensors fabricated by injection-moulding for on-site stripping voltammetric determination of trace In(III) and Tl(I). Chemosensors https://doi.org/10.3390/chemosensors9110310 (2021).

    Article  Google Scholar 

  51. Gao, W. et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens. 1, 866–874 (2016).

    Google Scholar 

  52. Zhang, W., Zhang, H., Williams, S. E. & Zhou, A. Microfabricated three-electrode on-chip PDMS device with a vibration motor for stripping voltammetric detection of heavy metal ions. Talanta 132, 321–326 (2015).

    Google Scholar 

  53. Baracu, A. M. & Dinu Gugoasa, L. A. Review — recent advances in microfabrication, design and applications of amperometric sensors and biosensors. J. Electrochem. Soc. 168, 037503 (2021).

    ADS  Google Scholar 

  54. Roditi, E., Tsetsoni, M., Kokkinos, C. & Economou, A. Integrated on-chip sensor with sputtered Ag–Au–Au electrodes for the voltammetric determination of trace Hg(II). Sens. Actuators B Chem. 286, 125–130 (2019).

    Google Scholar 

  55. Lee, K. Y., Ambrosi, A. & Pumera, M. 3D-printed metal electrodes for heavy metals detection by anodic stripping voltammetry. Electroanalysis 29, 2444–2453 (2017).

    Google Scholar 

  56. Walters, J. G., Ahmed, S., Terrero Rodríguez, I. M. & O’Neil, G. D. Trace analysis of heavy metals (Cd, Pb, Hg) using native and modified 3D printed graphene/poly(lactic acid) composite electrodes. Electroanalysis 32, 859–866 (2020).

    Google Scholar 

  57. Economou, A. Recent developments in on-line electrochemical stripping analysis — an overview of the last 12 years. Anal. Chim. Acta 683, 38–51 (2010).

    Google Scholar 

  58. Baltima, A., Panagopoulou, H., Economou, A. & Kokkinos, C. 3D-printed fluidic electrochemical microcell for sequential injection/stripping analysis of heavy metals. Anal. Chim. Acta 1159, 338426 (2021).

    Google Scholar 

  59. Zou, Z. et al. Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement. Sens. Actuators B Chem. 134, 18–24 (2008).

    Google Scholar 

  60. Gharib Naseri, N., Baldock, S. J., Economou, A., Goddard, N. J. & Fielden, P. R. Disposable electrochemical flow cells for catalytic adsorptive stripping voltammetry (CAdSV) at a bismuth film electrode (BiFE). Anal. Bioanal. Chem. 391, 1283–1292 (2008).

    Google Scholar 

  61. Shen, L.-L., Zhang, G.-R., Li, W., Biesalski, M. & Etzold, B. J. M. Modifier-free microfluidic electrochemical sensor for heavy-metal detection. ACS Omega 2, 4593–4603 (2017).

    Google Scholar 

  62. Kokkinos, C. T., Giokas, D. L., Economou, A. S., Petrou, P. S. & Kakabakos, S. E. Paper-based microfluidic device with integrated sputtered electrodes for stripping voltammetric determination of DNA via quantum dot labeling. Anal. Chem. 90, 1092–1097 (2018). This work combines three emerging trends in ESA: microengineering fabrication, paper support and nanomaterial-based ESA bioassay.

    Google Scholar 

  63. Herzog, G. & Beni, V. Stripping voltammetry at micro-interface arrays: a review. Anal. Chim. Acta 769, 10–21 (2013).

    Google Scholar 

  64. Daniele, S., Baldo, A. M. & Bragato, C. Recent developments in stripping analysis on microelectrodes. Curr. Anal. Chem. 4, 215–228 (2008).

    Google Scholar 

  65. Beni, V. & Arrigan, W. M. D. Microelectrode arrays and microfabricated devices in electrochemical stripping analysis. Curr. Anal. Chem. 4, 229–241 (2008).

    Google Scholar 

  66. Gouveia-Caridade, C. & Brett, M. A. C. Strategies, development and applications of polymer-modified electrodes for stripping analysis. Curr. Anal. Chem. 4, 206–214 (2008).

    Google Scholar 

  67. Ward Jones, E. S. & Compton, G. R. Fabrication and applications of nanoparticle-modified electrodes in stripping analysis. Curr. Anal. Chem. 4, 177–182 (2008).

    Google Scholar 

  68. Metters, J. P. & Banks, C. E. in Nanosensors for Chemical and Biological Applications (ed. Honeychurch, K. C.) 54–79 (Woodhead, 2014).

  69. Lu, Y. et al. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178, 324–338 (2018).

    Google Scholar 

  70. Chapman, C. S. & van den Berg, C. M. G. Anodic stripping voltammetry using a vibrating electrode. Electroanalysis 19, 1347–1355 (2007).

    Google Scholar 

  71. Grundler, P. Stripping analysis enhanced by ultrasound, electrode heating and magnetic fields. Curr. Anal. Chem. 4, 263–270 (2008).

    Google Scholar 

  72. Rodrigues, J. A. et al. Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition. Anal. Chim. Acta 701, 152–156 (2011).

    Google Scholar 

  73. Salaün, P., Gibbon-Walsh, K. & van den Berg, C. M. G. Beyond the hydrogen wave: new frontier in the detection of trace elements by stripping voltammetry. Anal. Chem. 83, 3848–3856 (2011).

    Google Scholar 

  74. Anson, F. C. Patterns of ionic and molecular adsorption at electrodes. Acc. Chem. Res. 8, 400–407 (1975).

    Google Scholar 

  75. Scholz, F. Voltammetric techniques of analysis: the essentials. ChemTexts 1, 17 (2015).

    Google Scholar 

  76. Laborda, E., González, J. & Molina, Á. Recent advances on the theory of pulse techniques: a mini review. Electrochem. Commun. 43, 25–30 (2014).

    Google Scholar 

  77. Carter, M. T. & Osteryoung, R. A. in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (eds Meyers, R. A., White H. S. & Crooks, R. M.) (Wiley, 2006).

  78. Honeychurch, M. J., Díaz-Cruz, J. M., Serrano, N., Ariño, C. & Esteban, M. in Encyclopedia of Analytical Science 3rd edn (eds Worsfold, P., Poole, C., Townshend, A. & Miró, M.) 230–237 (Academic, 2019).

  79. Serrano, N., Diaz-Cruz, J., Arino, C. & Esteban, M. Stripping chronopotentiometry in environmental analysis. Electroanalysis 19, 2039–2049 (2007).

    Google Scholar 

  80. Soares, H. M. V. M. & Vasconcelos, M. T. S. D. Potentiometric stripping analysis vs. differential pulse anodic stripping voltammetry for copper(II) analysis at relatively positive deposition potential. Anal. Chim. Acta 303, 255–263 (1995).

    Google Scholar 

  81. Coetzee, J. F. & Ecoff, M. J. Potentiometric stripping analysis at microelectrodes in various solvents and some comparisons with voltammetric stripping analysis. Anal. Chem. 63, 957–963 (1991).

    Google Scholar 

  82. Town, R. M. Potentiometric stripping analysis and anodic stripping voltammetry for measurement of copper(II) and lead(II) complexation by fulvic acid: a comparative study. Electroanalysis 9, 407–415 (1997).

    Google Scholar 

  83. Omanović, D., Garnier, C., Gibbon–Walsh, K. & Pižeta, I. Electroanalysis in environmental monitoring: tracking trace metals — a mini review. Electrochem. Commun. 61, 78–83 (2015).

    Google Scholar 

  84. Buffle, J. & Chalmers, R. A. Complexation reactions in aquatic systems: an analytical approach (Ellis Horwood, 1988).

  85. Han, H. & Pan, D. Voltammetric methods for speciation analysis of trace metals in natural waters. Trends Environ. Anal. Chem. 29, e00119 (2021).

    Google Scholar 

  86. Bott, A. W. Voltammetric determination of trace concentrations of metals in the environment. Curr. Sep. 14, 24–30 (1995).

    Google Scholar 

  87. Namieśnik, J. & Rabajczyk, A. The speciation and physico-chemical forms of metals in surface waters and sediments. Chem. Speciat. Bioavailab. 22, 1–24 (2010).

    Google Scholar 

  88. Wasiewska, L. A. et al. Reagent free electrochemical-based detection of silver ions at interdigitated microelectrodes using in-situ pH control. Sens. Actuators B Chem. 333, 129531 (2021).

    Google Scholar 

  89. Rotureau, E. et al. Electroanalytical metal sensor with built-in oxygen filter. Anal. Chim. Acta 1167, 338544 (2021).

    Google Scholar 

  90. Yu, X.-L. & He, Y. Application of Box–Behnken designs in parameters optimization of differential pulse anodic stripping voltammetry for lead(II) determination in two electrolytes. Sci. Rep. 7, 2789 (2017).

    ADS  Google Scholar 

  91. Tarley, C. R. T. et al. Chemometric tools in electroanalytical chemistry: methods for optimization based on factorial design and response surface methodology. Microchem. J. 92, 58–67 (2009).

    Google Scholar 

  92. Furlanetto, S., Pinzauti, S., Gratteri, P., La Porta, E. & Calzeroni, G. Experimental design strategies in the optimization and robustness testing of adsorptive stripping voltammetric conditions for kynurenic acid determination. J. Pharm. Biomed. Anal. 15, 1585–1594 (1997).

    Google Scholar 

  93. Pinto, L. & Lemos, S. G. Multivariate optimization of the voltammetric determination of Cd, Cu, Pb and Zn at bismuth film. Application to analysis of biodiesel. Microchem. J. 110, 417–424 (2013).

    Google Scholar 

  94. Buffle, J. & Tercier-Waeber, M. L. Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. Trends Anal. Chem. 24, 172–191 (2005).

    Google Scholar 

  95. Jagner, D. & Graneli, A. Potentiometric stripping analysis. Anal. Chim. Acta 83, 19–26 (1976). This work conceptualizes PSA.

    Google Scholar 

  96. Serrano, N., Díaz-Cruz, J. M., Ariño, C. & Esteban, M. Comparison of constant-current stripping chronopotentiometry and anodic stripping voltammetry in metal speciation studies using mercury drop and film electrodes. J. Electroanal. Chem. 560, 105–116 (2003).

    Google Scholar 

  97. Stromberg, A. G. & Romanenko, S. V. Determination of the true form of overlapping peaks, deformed by the base line in the case of stripping voltammetry. Fresenius J. Anal. Chem. 361, 276–279 (1998).

    Google Scholar 

  98. Romanenko, S. V., Romanenko, E. S. & Kolpakova, N. A. Use of a spline function of a fractional degree for the description of the base line in the determination of platinum by stripping voltammetry. J. Anal. Chem. 56, 51–55 (2001).

    Google Scholar 

  99. Górski, Ł., Jakubowska, M., Baś, B. & Kubiak, W. W. Application of genetic algorithm for baseline optimization in standard addition voltammetry. J. Electroanal. Chem. 684, 38–46 (2012).

    Google Scholar 

  100. Cobelo-García, A., Santos-Echeandía, J., López-Sánchez, D. E., Almécija, C. & Omanović, D. Improving the voltammetric quantification of ill-defined peaks using second derivative signal transformation: example of the determination of platinum in water and sediments. Anal. Chem. 86, 2308–2313 (2014).

    Google Scholar 

  101. Economou, A., Fielden, P. R. & Packham, A. J. Data smoothing in stripping voltammetry by simplex function fitting. Anal. Lett. 30, 2595–2610 (1997).

    Google Scholar 

  102. Economou, A. & Fielden, P. R. Digital filtering in stripping analysis. Anal. Chim. Acta 305, 165–175 (1995).

    Google Scholar 

  103. Díaz-Cruz, J. M., Esteban, M. & Ariño, C. Chemometrics in Electroanalysis (Springer, 2019).

  104. Prikler, S. & Einax, J. W. Wavelet transform as a new approach to the enhancement of signal-to-noise ratio in anodic stripping voltammetry. Anal. Bioanal. Chem. 395, 1707 (2009).

    Google Scholar 

  105. Economou, A., Fielden, P. R., Gaydecki, P. A. & Packham, A. J. Data enhancement in adsorptive stripping voltammetry by the application of digital signal processing techniques. Analyst 119, 847–853 (1994).

    ADS  Google Scholar 

  106. Romanenko, S. V., Larin, S. L. & Stasyuk, N. V. Use of differentiation and smoothing in linear-sweep and staircase stripping voltammetry of some metals. J. Anal. Chem. 55, 1063–1068 (2000).

    Google Scholar 

  107. Jakubowska, M. Signal processing in electrochemistry. Electroanalysis 23, 553–572 (2011). This work presents a comprehensive review of data evaluation methods in electrochemistry.

    Google Scholar 

  108. Akrami, A., Niazi, A. & Bagheban-Shahri, F. Determination of trace amounts of gold in environmental samples by adsorptive stripping voltammetry of its complex with rhodamine using Osc-Pls. J. Chem. Health Risks https://doi.org/10.22034/jchr.2018.544004 (2012).

    Article  Google Scholar 

  109. Melucci, D. & Locatelli, C. Multivariate calibration in differential pulse stripping voltammetry using a home-made carbon-nanotubes paste electrode. J. Electroanal. Chem. 675, 25–31 (2012).

    Google Scholar 

  110. Galeano-Díaz, T., Guiberteau-Cabanillas, A., Espinosa-Mansilla, A. & López-Soto, M. D. Adsorptive stripping square wave voltammetry (Ad-SSWV) accomplished with second-order multivariate calibration: determination of fenitrothion and its metabolites in river water samples. Anal. Chim. Acta 618, 131–139 (2008).

    Google Scholar 

  111. Galeano-Díaz, T., Acedo-Valenzuela, M.-I., Mora-Diez, N. & Silva-Rodríguez, A. Simultaneous differential pulse adsorptive stripping determination of imipramine and its metabolite desipramine by the PLS-1 multivariate method. Electroanalysis 23, 449–455 (2011).

    Google Scholar 

  112. Ni, Y., Qiu, P. & Kokot, S. Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics. Anal. Chim. Acta 516, 7–17 (2004).

    Google Scholar 

  113. Esteban, M., Ariño, C. & Díaz-Cruz, J. M. Chemometrics in electroanalytical chemistry. Crit. Rev. Anal. Chem. 36, 295–313 (2006).

    Google Scholar 

  114. Zhang, J.-q. et al. In situ fast analysis of cadmium in rice by diluted acid extraction-anodic stripping voltammetry. RSC Adv. 9, 19965–19972 (2019).

    ADS  Google Scholar 

  115. Whang, C. W., Page, J. A., VanLoon, G. & Griffin, M. P. Modified standard additions calibration for anodic stripping voltammetry. Anal. Chem. 56, 539–542 (1984).

    Google Scholar 

  116. Gerlach, R. W. & Kowalski, B. R. The generalized standard addition method: intermetallic interferences in anodic stripping voltammetry. Anal. Chim. Acta 134, 119–127 (1982).

    Google Scholar 

  117. Fernando, A. R. & Kratochvil, B. Internal standards in differential pulse anodic stripping voltammetry. Can. J. Chem. 69, 755–758 (1991).

    Google Scholar 

  118. Brown, R. J. C., Roberts, M. R. & Brett, D. J. L. Stripping voltammetry using sequential standard addition calibration with the analytes themselves acting as internal standards. Anal. Chim. Acta 635, 1–5 (2009).

    Google Scholar 

  119. Wang, J., Anik Kirgöz, Ü. & Lu, J. Stripping voltammetry with the electrode material acting as a ‘built-in’ internal standard. Electrochem. Commun. 3, 703–706 (2001).

    Google Scholar 

  120. Ellison, S. L. R. & Thompson, M. Standard additions: myth and reality. Analyst 133, 992–997 (2008).

    ADS  Google Scholar 

  121. Monticelli, D., Ciceri, E. & Dossi, C. Optimization and validation of an automated voltammetric stripping technique for ultratrace metal analysis. Anal. Chim. Acta 594, 192–198 (2007).

    Google Scholar 

  122. Ozkan, S. A., Kauffmann, J.-M. & Zuman, P. Electroanalysis in Biomedical and Pharmaceutical Sciences: Voltammetry, Amperometry, Biosensors, Applications (eds Ozkan, S. A., Kauffmann, J.-M. & Zuman, P.) 235–266 (Springer, 2015).

  123. Gustavo González, A. & Ángeles Herrador, M. A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal. Chem. 26, 227–238 (2007).

    Google Scholar 

  124. Wang, J. Analytical Electrochemistry 2nd edn (Wiley-VCH, 2000).

  125. Brainina, K., Malakhova, N. & Stozhko, N. Stripping voltammetry in environmental and food analysis. Fresenius J. Anal. Chem. 368, 307–325 (2000).

    Google Scholar 

  126. Thomas, F. G. & Henze, G. Introduction to Voltammetric Analysis: Theory and Practice (CSIRO, 2001).

  127. Bulska, E. & Ruszczyńska, A. Analytical techniques for trace element determination. Phys. Sci. Rev. https://doi.org/10.1515/psr-2017-8002 (2017).

    Article  Google Scholar 

  128. Gustavsson, I. & Hansson, L. Intercomparison studies of stripping voltammetry and atomic absorption spectrometry of Zn, Cd, Pb, Cu, Ni and Co in Baltic sea water. Int. J. Environ. Anal. Chem. 17, 57–72 (1984).

    Google Scholar 

  129. Rodriguez Villarreal, K., Alva, A., Santos, Z. V. & Roman-Gonzalez, A. Comparative study of methods that detect levels of lead and its consequent toxicity in the blood. Int. J. Adv. Comput. Sci. Appl. https://doi.org/10.14569/IJACSA.2019.0100664 (2019).

    Article  Google Scholar 

  130. World Health Organization. Brief Guide to Analytical Methods for Measuring Lead in Blood 2nd edn, 14 (World Health Organization, 2020).

  131. Niedzielski, P. & Siepak, M. Analytical methods for determining arsenic, antimony and selenium in environmental samples. Pol. J. Environ. Stud. 12, 653–667 (2003).

    Google Scholar 

  132. Cartier, C., Bannier, A., Pirog, M., Nour, S. & Prévost, M. A rapid method for lead service line detection. J. AWWA 104, E596–E607 (2012).

    Google Scholar 

  133. Taylor, L. et al. Evaluation of a portable blood lead analyzer with occupationally exposed populations. Am. J. Ind. Med. 40, 354–362 (2001).

    Google Scholar 

  134. Nakata, H. et al. Assessment of LeadCare® II analysis for testing of a wide range of blood lead levels in comparison with ICP-MS analysis. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.129832 (2021).

    Article  Google Scholar 

  135. Ortiz, M. et al. Lead in candy consumed and blood lead levels of children living in Mexico City. Environ. Res. 147, 497–502 (2016).

    Google Scholar 

  136. Boesen, A. et al. Assessment of the LeadCare® Plus for use on Scandinavian brown bears (Ursus arctos). Front. Vet. Sci. https://doi.org/10.3389/fvets.2019.00285 (2019).

    Article  Google Scholar 

  137. Brown, C., Luebbert, J., Mulcahy, D., Schamber, J. & Rosenberg, D. Blood lead levels of wild Steller’s eiders (Polysticta stelleri) and black scoters (Melanitta nigra) in Alaska using a portable blood lead analyzer. J. Zoo. Wildl. Med. 37, 361–365 (2006).

    Google Scholar 

  138. Serrano, N., Alberich, A., Diaz-Cruz, J., Arino, C. & Esteban, M. Coating methods, modifiers and applications of bismuth screen-printed electrodes. Trends Anal. Chem. 46, 15–29 (2013).

    Google Scholar 

  139. March, G., Nguyen, T. & Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015).

    Google Scholar 

  140. Holmes, J., Pathirathna, P. & Hashemi, P. Novel frontiers in voltammetric trace metal analysis: towards real time, on-site, in situ measurements. Trends Anal. Chem. 111, 206–219 (2019).

    Google Scholar 

  141. van den Berg, C. Potentials and potentialities of cathodic stripping voltammetry of trace-elements in natural-waters. Anal. Chim. Acta 250, 265–276 (1991).

    Google Scholar 

  142. van den Berg, C. M. G. in Methods of Seawater Analysis (eds Grasshoff, K., Kremling, K. & Ehrhardt, M.) 302–318 (Wiley, 1999).

  143. Pihlar, B., Valenta, P. & Nürnberg, H. New high-performance analytical procedure for the voltammetric determination of nickel in routine analysis of waters, biological materials and food. Fresenius Z. Anal. Chem. 307, 337–346 (1981).

    Google Scholar 

  144. Tercier, M. & Buffle, J. Insitu voltammetric measurements in natural-waters — future-prospects and challenges. Electroanalysis 5, 187–200 (1993).

    Google Scholar 

  145. Paneli, M. & Voulgaropoulos, A. Applications of adsorptive stripping voltammetry in the determination of trace and ultratrace metals. Electroanalysis 5, 355–373 (1993).

    Google Scholar 

  146. Achterberg, E. & Braungardt, C. Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters. Anal. Chim. Acta 400, 381–397 (1999).

    Google Scholar 

  147. Czae, M. & Wang, J. Pushing the detectability of voltammetry: how low can we go? Talanta 50, 921–928 (1999).

    Google Scholar 

  148. Bobrowski, A. & Zarebski, J. Catalytic systems in adsorptive stripping voltammetry. Electroanalysis 12, 1177–1186 (2000). This work presents a comprehensive review of catalytic systems in ESA.

    Google Scholar 

  149. Bobrowski, A. & Zarebski, J. Catalytic adsorptive stripping voltammetry at film electrodes. Curr. Anal. Chem. 4, 191–201 (2008).

    Google Scholar 

  150. Bobrowski, A., Krolicka, A. & Zarebski, J. Characteristics of voltammetric determination and speciation of chromium — a review. Electroanalysis 21, 1449–1458 (2009).

    Google Scholar 

  151. Bobrowski, A. & Zarebski, J. Review of the catalytic voltammetric determination of titanium traces. Acta Chim. Slov. 59, 233–241 (2012).

    Google Scholar 

  152. Wang, J. et al. Stripping analysis into the 21st century: faster, smaller, cheaper, simpler and better. Anal. Chim. Acta 385, 429–435 (1999).

    Google Scholar 

  153. Tercier-Waeber, M. et al. A novel probe and microsensors for in situ, continuous, automatic profiling of trace elements in natural waters. Oceans’98 — Conf. Proc. 1–3, 956–959 (1998).

    Google Scholar 

  154. Howell, K. et al. Voltammetric in situ measurements of trace metals in coastal waters. Trends Anal. Chem. 22, 828–835 (2003).

    Google Scholar 

  155. Tercier, M., Buffle, J. & Graziottin, F. Novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters. Electroanalysis 10, 355–363 (1998).

    Google Scholar 

  156. Wang, J. et al. Flow probe for in situ electrochemical monitoring of trace chromium. Analyst 124, 349–352 (1999).

    ADS  Google Scholar 

  157. Wang, J. et al. Remote electrochemical sensor for monitoring trace mercury. Electroanalysis 10, 399–402 (1998).

    Google Scholar 

  158. Wang, J. et al. Renewable-reagent electrochemical sensor for monitoring trace metal contaminants. Anal. Chem. 69, 2640–2645 (1997).

    Google Scholar 

  159. Romanus, A., Muller, H. & Kirsch, D. Application of adsorptive stripping voltammetry (AdSV) for the analysis of trace-metals in brine.1. Batch voltammetric measurements. Fresenius J. Anal. Chem. 340, 363–370 (1991).

    Google Scholar 

  160. Romanus, A., Muller, H. & Kirsch, D. Application of adsorptive stripping voltammetry (AdSV) for the analysis of trace-metals in brine. 2. Development and evaluation of a flow-injection system. Fresenius J. Anal. Chem. 340, 371–376 (1991).

    Google Scholar 

  161. O’Mahony, A. M. & Wang, J. Electrochemical detection of gunshot residue for forensic analysis: a review. Electroanalysis 25, 1341–1358 (2013).

    Google Scholar 

  162. Santos, A., Takeuchi, R., Fenga, P. & Ramos, S. in Applications and Experiences of Quality Control (ed. Ivanov, O.) 451–495 (InTech, 2011).

  163. Wygant, B. R. & Lambert, T. N. Thin film electrodes for anodic stripping voltammetry: a mini-review. Front. Chem. https://doi.org/10.3389/fchem.2021.809535 (2022).

    Article  Google Scholar 

  164. Sanga, N. A., Jahed, N., Leve, Z., Iwuoha, E. I. & Pokpas, K. Simultaneous adsorptive stripping voltammetric analysis of heavy metals at graphenated cupferron pencil rods. J. Electrochem. Soc. 169, 017502 (2022).

    ADS  Google Scholar 

  165. Mettakoonpitak, J., Volckens, J. & Henry, C. S. Janus electrochemical paper-based analytical devices for metals detection in aerosol samples. Anal. Chem. 92, 1439–1446 (2020). This work presents a modern multiplexed approach for the determination of several trace metals by ESA on a paper-based device.

    Google Scholar 

  166. Florence, T. Electrochemical approaches to trace-element speciation in waters — a review. Analyst 111, 489–505 (1986).

    ADS  Google Scholar 

  167. Florence, T. Trace-element speciation by anodic-stripping voltammetry. Analyst 117, 551–553 (1992).

    ADS  Google Scholar 

  168. Monticelli, D. & Caprara, S. Voltammetric tools for trace element speciation in fresh waters: methodologies, outcomes and future perspectives. Environ. Chem. 12, 683–705 (2015).

    Google Scholar 

  169. Companys, E., Galceran, J., Pinheiro, J., Puy, J. & Salaun, P. A review on electrochemical methods for trace metal speciation in environmental media. Curr. Opin. Electrochem. 3, 144–162 (2017). This work presents a comprehensive review of metal speciation methods using ESA.

    Google Scholar 

  170. Town, R. & van Leeuwen, H. Stripping chronopotentiometry at scanned deposition potential (SSCP): an effective methodology for dynamic speciation analysis of nanoparticulate metal complexes. J. Electroanal. Chem. https://doi.org/10.1016/j.jelechem.2019.113530 (2019).

    Article  Google Scholar 

  171. Korolczuk, M. & Rutyna, I. New methodology for anodic stripping voltammetric determination of methylmercury. Electrochem. Commun. 10, 1024–1026 (2008).

    Google Scholar 

  172. Van den Berg, C. Organic and inorganic speciation of copper in the Irish Sea. Mar. Chem. 14, 201–212 (1984).

    Google Scholar 

  173. Bas, B. Refreshable mercury film silver based electrode for determination of chromium(VI) using catalytic adsorptive stripping voltammetry. Anal. Chim. Acta 570, 195–201 (2006).

    Google Scholar 

  174. Bobrowski, A., Kapturski, P. & Zarebski, J. Catalytic adsorptive stripping chronopotentiometric determination of hexavalent chromium at a silver amalgam film electrode of prolonged application. Electroanalysis 23, 2265–2269 (2011).

    Google Scholar 

  175. Espada-Bellido, E., Bi, Z. & van den Berg, C. Determination of chromium in estuarine waters by catalytic cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode. Talanta 105, 287–291 (2013).

    Google Scholar 

  176. Lin, L., Lawrence, N., Thongngamdee, S., Wang, J. & Lin, Y. Catalytic adsorptive stripping determination of trace chromium(VI) at the bismuth film electrode. Talanta 65, 144–148 (2005).

    Google Scholar 

  177. Yong, L. et al. Quantitative analysis of trace chromium in blood samples. Combination of the advanced oxidation process with catalytic adsorptive stripping voltammetry. Anal. Chem. 78, 7582–7587 (2006).

    Google Scholar 

  178. Jorge, E., Rocha, M., Fonseca, I. & Neto, M. Studies on the stripping voltammetric determination and speciation of chromium at a rotating-disc bismuth film electrode. Talanta 81, 556–564 (2010).

    Google Scholar 

  179. Hue, N. et al. Determination of chromium in natural water by adsorptive stripping voltammetry using in situ bismuth film electrode. J. Environ. Public Health https://doi.org/10.1155/2020/1347836 (2020).

    Article  Google Scholar 

  180. Ouyang, R. et al. Improved Bi film wrapped single walled carbon nanotubes for ultrasensitive electrochemical detection of trace Cr(VI). Electrochim. Acta 113, 686–693 (2013).

    Google Scholar 

  181. Bond, A. 200 years of practical electroanalytical chemistry: past, present and future directions illustrated by reference to the on-line, on-stream and off-line determination of trace metals in zinc plant electrolyte by voltammetric and potentiometric techniques. Anal. Chim. Acta 400, 333–379 (1999).

    Google Scholar 

  182. Bobrowski, A. & Bond, A. Catalytic adsorptive stripping voltammetric determination of cobalt as an α-benzil dioxime complex in the presence of an extremely large excess of zinc. Electroanalysis 3, 157–162 (1991).

    Google Scholar 

  183. Mrzljak, R. et al. Online monitoring of cobalt in zinc plant electrolyte by differential-pulse adsorptive stripping voltammetry. Anal. Chim. Acta 281, 281–290 (1993).

    Google Scholar 

  184. Zarebski, J. Studies on some catalytic-systems by means of polarographic and voltammetric methods 2. Chem. Anal. 32, 223–232 (1987).

    Google Scholar 

  185. Golimowski, J., Valenta, P. & Nurnberg, H. Trace determination of chromium in various water types by adsorption differential pulse voltammetry. Fresenius Z. Anal. Chem. 322, 315–322 (1985).

    Google Scholar 

  186. Boussemart, M., van den Berg, C. & Ghaddaf, M. The determination of the chromium speciation in sea-water using catalytic cathodic stripping voltammetry. Anal. Chim. Acta 262, 103–115 (1992).

    Google Scholar 

  187. Sander, S. & Koschinsky, A. Onboard-ship redox speciation of chromium in diffuse hydrothermal fluids from the North Fiji Basin. Mar. Chem. 71, 83–102 (2000).

    Google Scholar 

  188. Li, Y. & Xue, H. Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry. Anal. Chim. Acta 448, 121–134 (2001).

    Google Scholar 

  189. Sander, S., Navratil, T. & Novotny, L. Study of the complexation, adsorption and electrode reaction mechanisms of chromium(VI) and (III) with DTPA under adsorptive stripping voltammetric conditions. Electroanalysis 15, 1513–1521 (2003).

    Google Scholar 

  190. Bobrowski, A. et al. Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration. Talanta 63, 1003–1012 (2004).

    Google Scholar 

  191. Grabarczyk, M., Korolczuk, M. & Kaczmarek, L. Simple and highly selective catalytic adsorptive voltammetric method for Cr(VI) determination. Electroanalysis 18, 2381–2384 (2006).

    Google Scholar 

  192. Smyth, W. & Smyth, M. Electrochemical analysis of organic pollutants. Pure Appl. Chem. 59, 245–256 (1987).

    Google Scholar 

  193. Smyth, W. Voltammetric determination of molecules of biological, environmental, and pharmaceutical importance. CRC Crit. Rev. Anal. Chem. 18, 155–208 (1987).

    Google Scholar 

  194. Barek, J., Peckova, K. & Vyskocil, V. Adsorptive stripping voltammetry of environmental carcinogens. Curr. Anal. Chem. 4, 242–249 (2008).

    Google Scholar 

  195. Vesela, H. & Šucman, E. Determination of acrylamide in food using adsorption stripping voltammetry. Czech. J. Food Sci. 31, 401–406 (2013).

    Google Scholar 

  196. Nissim, R. & Compton, R. G. Absorptive stripping voltammetry for cannabis detection. Chem. Cent. J. 9, 41 (2015).

    Google Scholar 

  197. Prabu, H., Talawar, M., Mukundan, T. & Asthana, S. Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials. Combust. Explos. Shock Waves 47, 87–95 (2011).

    Google Scholar 

  198. Palecek, E., Heyrovsky, M. & Dorcak, V. J. Heyrovsky’s oscillographic polarography. roots of present chronopotentiometric analysis of biomacromolecules. Electroanalysis 30, 1259–1270 (2018).

    Google Scholar 

  199. Fojta, M., Jelen, F., Havran, L. & Palecek, E. Electrochemical stripping techniques in analysis of nucleic acids and their constituents. Curr. Anal. Chem. 4, 250–262 (2008). This work is a direct analysis of nucleic acids using ESA.

    Google Scholar 

  200. Ozkan, S., Uslu, B. & Aboul-Enein, H. Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit. Rev. Anal. Chem. 33, 155–181 (2003).

    Google Scholar 

  201. Kul, D. Voltammetric analysis of atypical antipsychotic drugs with solid electrodes. Curr. Anal. Chem. 15, 240–248 (2019).

    Google Scholar 

  202. Gupta, V., Jain, R., Radhapyari, K., Jadon, N. & Agarwal, S. Voltammetric techniques for the assay of pharmaceuticals — a review. Anal. Biochem. 408, 179–196 (2011).

    Google Scholar 

  203. Goncalves, D., Silva, C. & De Souza, D. Pesticides determination in foods and natural waters using solid amalgam-based electrodes: challenges and trends. Talanta https://doi.org/10.1016/j.talanta.2020.120756 (2020).

    Article  Google Scholar 

  204. Lezi, N., Economopoulos, S., Prodromidis, M., Economou, A. & Tagmatarchis, N. Fabrication of a “green” and low-cost screen-printed graphene sensor and its application to the determination of caffeine by adsorptive stripping voltammetry. Int. J. Electrochem. Sci. 12, 6054–6067 (2017).

    Google Scholar 

  205. Gratteri, P. et al. Adsorptive stripping voltammetry for thiomersal assay. J. Pharm. Biomed. Anal. 12, 273–276 (1994).

    Google Scholar 

  206. Piech, R., Wymazala, J., Smajdor, J. & Paczosa-Bator, B. Thiomersal determination on a renewable mercury film silver-based electrode using adsorptive striping voltammetry. Anal. Methods 8, 1187–1193 (2016).

    Google Scholar 

  207. Penagos-Llanos, J., Calderon, J., Nagles, E. & Hurtado, J. Voltammetric determination of thiomersal with a new modified electrode based on a carbon paste electrode decorated with La2O3. J. Electroanal. Chem. 833, 536–542 (2019).

    Google Scholar 

  208. Gonzalez, C., Garcia-Beltran, O. & Nagles, E. A new and simple electroanalytical method to detect thiomersal in vaccines on a screen-printed electrode modified with chitosan. Anal. Methods 10, 1196–1202 (2018).

    Google Scholar 

  209. Kokkinos, C. & Economou, A. Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels — a review. Anal. Chim. Acta 961, 12–32 (2017).

    Google Scholar 

  210. Valera, E., Hernández-Albors, A. & Marco, M. P. Electrochemical coding strategies using metallic nanoprobes for biosensing applications. Trends Anal. Chem. 79, 9–22 (2016).

    Google Scholar 

  211. Qi, W., Wu, D., Xu, G., Nsabimana, J. & Nsabimana, A. Aptasensors based on stripping voltammetry. Chemosensors 4, 12 (2016).

    Google Scholar 

  212. Feng, J., Chu, C. & Ma, Z. Electrochemical signal substance for multiplexed immunosensing interface construction: a mini review. Molecules https://doi.org/10.3390/molecules27010267 (2022).

    Article  Google Scholar 

  213. Ellison, S. L. R. & Williams, A. (eds) Eurachem/CITAC guide: metrological traceability in analytical measurement: a guide to achieving comparable results in chemical measurement, 2nd edn. Eurachem https://www.eurachem.org/images/stories/Guides/pdf/ECTRC_2019_EN_P1.pdf (2019).

  214. Miller, J. C. & Miller, J. N. Statistics and Chemometrics for Analytical Chemistry 6th edn (Pearson, 2010).

  215. Pérez-Ràfols, C., Serrano, N., Diaz-Cruz, J. M., Arino, C. & Esteban, M. New approaches to antimony film screen-printed electrodes using carbon-based nanomaterials substrates. Anal. Chim. Acta 916, 17–23 (2016).

    Google Scholar 

  216. Han, X., Meng, Z., Zhang, H. & Zheng, J. Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg(II), Cu(II), Pb(II) and Cd(II) in foodstuff. Microchim. Acta 185, 274 (2018).

    Google Scholar 

  217. Wang, J. Analytical Electrochemistry 3rd edn (Wiley, 2006).

  218. Bard, A. J. & Faulkner, L. R. Electrochemical Methods. Fundamentals and Applications 2nd edn (Wiley, 2001).

  219. Hanssen, B. L., Siraj, S. & Wong, D. K. Y. Recent strategies to minimise fouling in electrochemical detection systems. Rev. Anal. Chem. 35, 1–28 (2016).

    Google Scholar 

  220. Hackel, L., Rotureau, E., Morrin, A. & Pinheiro, J. P. Developing on-site trace level speciation of lead, cadmium and zinc by stripping chronopotentiometry (SCP): fast screening and quantification of total metal concentrations. Molecules https://doi.org/10.3390/molecules26185502 (2021).

    Article  Google Scholar 

  221. Mart, L., Nürnberg, H. W. & Valenta, P. Prevention of contamination and other accuracy risks in voltammetric trace metal analysis of natural waters. Fresenius Z. Anal. Chem. 300, 350–362 (1980).

    Google Scholar 

  222. Wang, J., Lu, J., Hocevar, S. B., Farias, P. A. M. & Ogorevc, B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 72, 3218–3222 (2000). This work introduces the first ‘green’ electrode material (bismuth) in ESA.

    Google Scholar 

  223. Stulík, K., Amatore, C., Holub, K., Marecek, V. & Kutner, W. Microelectrodes. Definitions, characterization, and applications (technical report). Pure Appl. Chem. 72, 1483–1492 (2000).

    Google Scholar 

  224. Mohamad Nor, N., Ramli, N. H., Poobalan, H., Qi Tan, K. & Abdul Razak, K. Recent advancement in disposable electrode modified with nanomaterials for electrochemical heavy metal sensors. Crit. Rev. Anal. Chem. https://doi.org/10.1080/10408347.2021.1950521 (2021).

    Article  Google Scholar 

  225. Bott, A. W. Practical problems in voltammetry: 4. Preparation of working electrodes. Curr. Sep. 16, 79–84 (1997).

    Google Scholar 

  226. Bobrowski, A., Królicka, A. & Bobrowski, R. Renewable silver amalgam film electrodes in electrochemical stripping analysis — a review. J. Solid. State Electrochem. 20, 3217–3228 (2016).

    Google Scholar 

  227. Baś, B., Węgiel, K. & Jedlińska, K. The renewable bismuth bulk annular band working electrode: fabrication and application in the adsorptive stripping voltammetric determination of nickel(II) and cobalt(II). Anal. Chim. Acta 881, 44–53 (2015).

    Google Scholar 

  228. Porada, R., Jedlińska, K., Lipińska, J. & Baś, B. Review — voltammetric sensors with laterally placed working electrodes: a review. J. Electrochem. Soc. 167, 037536 (2020).

    ADS  Google Scholar 

  229. Copeland, T. R., Osteryoung, R. A. & Skogerboe, R. K. Elimination of copper–zinc intermetallic interferences in anodic stripping voltammetry. Anal. Chem. 46, 2093–2097 (1974).

    Google Scholar 

  230. Oviedo, O. A., Reinaudi, L., García, S. G. & Leiva, E. P. M. Underpotential Deposition. From Fundamentals and Theory to Applications at the Nanoscale. Series: Monographs in Electrochemistry. J. Solid State Electrochem. 20, 2383–2385 (2016).

    Google Scholar 

  231. Kadara, R. O. & Tothill, I. E. Resolving the copper interference effect on the stripping chronopotentiometric response of lead(II) obtained at bismuth film screen-printed electrode. Talanta 66, 1089–1093 (2005).

    Google Scholar 

  232. Scollary, G. R. et al. Elimination of zinc/copper intermetallic interference in the determination of zinc in wastewaters and seawater by potentiometric stripping analysis. Electroanalysis 5, 685–689 (1993).

    Google Scholar 

  233. Neiman, E. Y., Petrova, L. G., Ignatov, V. I. & Dolgopolova, G. M. The third element effect in anodic stripping voltammetry. Anal. Chim. Acta 113, 277–285 (1980).

    Google Scholar 

  234. Chan, H., Butler, A., Falck, D. M. & Freund, M. S. Artificial neural network processing of stripping analysis responses for identifying and quantifying heavy metals in the presence of intermetallic compound formation. Anal. Chem. 69, 2373–2378 (1997).

    Google Scholar 

  235. Lastres, E. et al. Use of neural networks in solving interferences caused by formation of intermetallic compounds in anodic stripping voltammetry. Electroanalysis 9, 251–254 (1997).

    Google Scholar 

  236. Liu, N., Zhao, G. & Liu, G. Coupling square wave anodic stripping voltammetry with support vector regression to detect the concentration of lead in soil under the interference of copper accurately. Sensors 20, 6792 (2020).

    ADS  Google Scholar 

  237. Florence, T. M., Batley, G. E. & Benes, P. Chemical speciation in natural waters. Crit. Rev. Anal. Chem. 9, 219–296 (1980).

    Google Scholar 

  238. Figura, P. & McDuffie, B. Determination of labilities of soluble trace metal species in aqueous environmental samples by anodic stripping voltammetry and Chelex column and batch methods. Anal. Chem. 52, 1433–1439 (1980).

    Google Scholar 

  239. Locatelli, C. Overlapping voltammetric peaks — an analytical procedure for simultaneous determination of trace metals. Application to food and environmental matrices. Analyt. Bioanal. Chem. 381, 1073–1081 (2005).

    Google Scholar 

  240. Romanenko, S. V., Stromberg, A. G., Selivanova, E. V. & Romanenko, E. S. Resolution of the overlapping peaks in the case of linear sweep anodic stripping voltammetry via curve fitting. Chemometr. Intell. Lab. Syst. 73, 7–13 (2004).

    Google Scholar 

  241. Economou, A., Fielden, P. R. & Packham, A. J. Deconvolution of analytical peaks by means of the fast Hartley transform. Analyst 121, 1015–1018 (1996).

    ADS  Google Scholar 

  242. Turnes, G., Cladera, A., Gómez, E., Estela, J. M. & Cerdà, V. Resolution of highly overlapped differential pulse polarographic and anodic stripping voltammetric peaks by multicomponent analysis. J. Electroanal. Chem. 338, 49–60 (1992).

    Google Scholar 

  243. Górski, Ł., Kubiak, W. W. & Jakubowska, M. Independent components analysis of the overlapping voltammetric signals. Electroanalysis 28, 1470–1477 (2016).

    Google Scholar 

  244. Cladera, A. et al. Resolution of highly overlapping differential pulse anodic stripping voltammetric signals using multicomponent analysis and neural networks. Anal. Chim. Acta 350, 163–169 (1997).

    Google Scholar 

  245. Qiu, P., Ni, Y.-N. & Kokot, S. Application of artificial neural networks to the determination of pesticides by linear sweep stripping voltammetry. Chin. Chem. Lett. 24, 246–248 (2013).

    Google Scholar 

  246. Sagberg, P. & Lund, W. Trace metal analysis by anodic-stripping voltammetry effect of surface-active substances. Talanta 29, 457–460 (1982).

    Google Scholar 

  247. Wang, J. & Luo, D.-B. Effect of surface-active compounds on voltammetric stripping analysis at the mercury film electrode. Talanta 31, 703–707 (1984).

    Google Scholar 

  248. Niewiara, E., Baś, B. & Kubiak, W. W. Elimination of SAS Interferences in catalytic adsorptive stripping voltammetric determination of Cr(VI) by means of fumed silica. Electroanalysis 19, 2185–2193 (2007).

    Google Scholar 

  249. Wang, J., Deo, R. P., Thongngamdee, S. & Ogorevc, B. Effect of surface-active compounds on the stripping voltammetric response of bismuth film electrodes. Electroanalysis 13, 1153–1156 (2001).

    Google Scholar 

  250. Kefala, G., Economou, A. & Voulgaropoulos, A. A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst 129, 1082–1090 (2004).

    ADS  Google Scholar 

  251. Grabarczyk, M. & Koper, A. Adsorptive stripping voltammetry of uranium: elimination of interferences from surface active substances and application to the determination in natural water samples. Anal. Methods 3, 1046–1050 (2011).

    Google Scholar 

  252. Wang, J. Decentralized electrochemical monitoring of trace metals: from disposable strips to remote electrodes. Plenary lecture. Analyst 119, 763–766 (1994).

    ADS  Google Scholar 

  253. Mahato, K. & Wang, J. Electrochemical sensors: from the bench to the skin. Sens. Actuators B Chem. 344, 130178 (2021).

    Google Scholar 

  254. Kim, J. et al. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 51, 41–45 (2015). This work presents a wearable tattoo-based sensor for zinc determination in sweat by ESA.

    Google Scholar 

  255. Malzahn, K., Windmiller, J. R., Valdés-Ramírez, G., Schöning, M. J. & Wang, J. Wearable electrochemical sensors for in situ analysis in marine environments. Analyst 136, 2912–2917 (2011).

    ADS  Google Scholar 

  256. O’Mahony, A. M., Windmiller, J. R., Samek, I. A., Bandodkar, A. J. & Wang, J. “Swipe and Scan”: integration of sampling and analysis of gunshot metal residues at screen-printed electrodes. Electrochem. Commun. 23, 52–55 (2012).

    Google Scholar 

  257. Daniele, S., Bragato, C., Antonietta Baldo, M., Wang, J. & Lu, J. The use of a remote stripping sensor for the determination of copper and mercury in the Lagoon of Venice. Analyst 125, 731–735 (2000).

    ADS  Google Scholar 

  258. Yang, Q. et al. Development of a heavy metal sensing boat for automatic analysis in natural waters utilizing anodic stripping voltammetry. ACS ES T Water 1, 2470–2476 (2021).

    Google Scholar 

  259. Wang, J. et al. Remote electrochemical sensor for trace metal contaminants. Anal. Chem. 67, 1481–1485 (1995). This work presents one of the very first remote sensors for multi-element determination of trace elements in the sea.

    Google Scholar 

  260. Zirino, A., Lieberman, S. & Clavell, C. Measurement of copper and zinc in San Diego Bay by automated anodic stripping voltammetry. Environ. Sci. Technol. 12, 73–79 (1978).

    ADS  Google Scholar 

  261. Lace, A. & Cleary, J. A review of microfluidic detection strategies for heavy metals in water. Chemosensors https://doi.org/10.3390/chemosensors9040060 (2021).

    Article  Google Scholar 

  262. Pungjunun, K. et al. Enhanced sensitivity and separation for simultaneous determination of tin and lead using paper-based sensors combined with a portable potentiostat. Sens. Actuators B Chem. 318, 128241 (2020).

    Google Scholar 

  263. Nunez-Bajo, E., Blanco-López, M. C., Costa-García, A. & Fernández-Abedul, M. T. Electrogeneration of gold nanoparticles on porous-carbon paper-based electrodes and application to inorganic arsenic analysis in white wines by chronoamperometric stripping. Anal. Chem. 89, 6415–6423 (2017).

    Google Scholar 

  264. Kokkinos, C. & Economou, A. in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry Vol. 7 (ed. Wandelt, K.) 261–268 (Elsevier, 2018).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.E. and D.S.); Experimentation (C.E.B. and R.D.C.); Results (C.A. and C.P.-R.); Applications (A.B. and A.K.); Reproducibility and data deposition (C.A. and C.P.-R.); Limitations and optimizations (A.E. and D.S.); Outlook (J.W.); overview of the Primer (A.E., C.A., C.E.B., A.B., R.D.C., A.K., C.P.-R., D.S. and J.W.).

Corresponding author

Correspondence to Anastasios Economou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Damien Arrigan, Jiri Barek, Dawei Pan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Conductivity: https://www.sciencedirect.com/topics/chemistry/conductivity

Ionic strength: https://www.sciencedirect.com/topics/chemistry/ionic-strength

Oligopeptides: https://www.sciencedirect.com/topics/chemistry/oligopeptide

Polysaccharides: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polysaccharide

Glossary

Pre-concentration

The process by which the analyte (or its compound) is deposited on the working electrode.

Working electrode

An electrode at which one or more analytes undergo a redox reaction and whose response is used as an analytical signal.

Convective mass transfer

A mechanism of mass transfer to the electrode based on the forced movement of solution caused by stirring, vibrations or heating.

Voltammetry

An electroanalytical technique that involves scanning the potential of the working electrode versus time and measurement of the current versus potential.

(Chrono-)Potentiometry

An electroanalytical technique that involves a redox reaction at the working electrode and measurement of the potential versus time.

Stripping voltammetry

A two-step electrochemical measurement. The first step is to accumulate material at an electrode, whereas the second step is to measure the amount of accumulated species by voltammetry.

Potentiometric stripping analysis

(PSA). An electrochemical measurement where material is accumulated at an electrode. The accumulated material is then removed either by chemical reaction or electrochemically at constant current while the electrode potential is measured.

Potentiostat

An instrument used to measure electric current. It controls the potential between working and reference electrodes and measures the current between working and auxiliary electrodes.

Reference electrode

An electrode with respect to which the potential of the working electrode is measured in an electrochemical cell.

Counter electrode

An electrode that carries the electric current flowing through an electrochemical cell. Any electrochemical processes that occur on the surface of this electrode are not of interest.

Non-faradaic (or capacitive) contributions

Refers to the current arising from an electrical double layer charging at an electrode–solution interface. Non-faradaic current is not associated with a redox reaction.

Polarization potential window

A range of electrode potentials where, when compared with the current from of the investigated reaction, the electric current from the electrode or electrolyte reaction is negligible.

Electron transfer rate

The rate at which electrons are exchanged between a working electrode and a redox species.

Overpotential

Additional potential above the equilibrium Nernst potential value that is required for an electric current to flow through the working electrode.

Anodic stripping voltammetry

(ASV). A stripping voltammetry method where electrochemical oxidation occurs during the stripping step of material accumulated at the working electrode.

Cathodic stripping voltammetry

(CSV). A stripping voltammetry method where electrochemical reduction occurs during the stripping step of material accumulated at the working electrode.

Faradaic current

An electric current that arises from redox reactions of electroactive species at a working electrode.

Voltammogram

The representation of current versus potential.

Constant current PSA

(Constant current potentiometric stripping analysis) or constant current stripping (chrono)potentiometry . An electrochemical measurement where material is accumulated at an electrode. The accumulated material is then electrochemically removed at constant current while the electrode potential is measured.

Potentiogram

A representation of the differential ΔtE versus potential.

Matrix effects

Effects of the matrix of the sample on the analytical response.

Matrix-matched standard solutions

Standard solutions prepared in a matrix similar to the matrix of the sample.

Adsorptive stripping voltammetry

(AdSV). A stripping voltammetry method where pre-concentration is achieved by adsorption of the analyte or its compound.

Underpotential deposition

A phenomenon of electrodeposition of a species (typically reduction of a metal cation to a solid metal) at a potential less negative than the equilibrium (Nernst) potential for the reduction of this metal (the equilibrium potential for the reduction of a metal is the potential at which the metal will deposit onto itself).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariño, C., Banks, C.E., Bobrowski, A. et al. Electrochemical stripping analysis. Nat Rev Methods Primers 2, 62 (2022). https://doi.org/10.1038/s43586-022-00143-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00143-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing