Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Luminescence dosimetry

Abstract

Luminescence dosimetry is the process of quantifying the absorbed dose of ionizing radiation using detectors that exhibit luminescence. The luminescence intensity scales with energy absorbed from the radiation field. Calibration enables conversion of the luminescence intensity to the quantity of interest, for example the absorbed dose, kerma and personal dose equivalent. The different techniques available — thermoluminescence (TL), optically stimulated luminescence (OSL) and radiophotoluminescence (RPL) — share a common theoretical framework. Alongside applications in radiation protection, including personal dosimetry and area monitoring, luminescence dosimetry is also used in industry, research and medicine. Examples include quality assurance in radiation therapy, mapping of radiation levels in new accelerators, the estimation of ionizing radiation dose to organs in medicine and accidents, and the characterization of the radiation environment in space. The objective of this Primer is to summarize the fundamental concepts of luminescence dosimetry, the main experimental considerations, analysis procedures, typical results, applications and limitations, with an outlook into potential future advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Steps involved in the application of luminescence dosimetry.
Fig. 2: Representation of the processes taking place during exposure (irradiation) and readout of a luminescence detector.
Fig. 3: Examples of luminescence detectors and a dosimeter and their response as a function of photon energy.
Fig. 4: Readout schemes and resultant luminescence in various conditions.
Fig. 5: Example of fitting of an experimental TL curve.
Fig. 6: Examples of applications of luminescence dosimeters.

Similar content being viewed by others

References

  1. Wondergem, J. Diagnostic Radiology Physics: a Handbook for Teachers and Students (eds Dance, D. R., Christofides, S., Maidment, A. D. A., McLean, I. D. & Ng, K. H.) 499–524 (International Atomic Energy Agency, 2014).

  2. Pearton, S. J. et al. Review — radiation damage in wide and ultra-wide bandgap semiconductors. ECS J. Solid State Sci. Technol. 10, 055008 (2021).

    Article  ADS  Google Scholar 

  3. Bagatin, M. & Gerardin, S. Ionizing Radiation Effects in Electronics: From Memories to Imagers (Devices, Circuits, and Systems) (CRC Press, 2020).

  4. Suntharalingam, N., Podgorsak, E. B. & Hendry, J. H. Radiation Oncology Physics: A Handbook for Teachers and Students (ed. Podgorsak, E. B.) 485–504 (International Atomic Energy Agency, 2005).

  5. Johns, H. E. & Cunningham, J. R. The Physics of Radiology (Charles C. Thomas, 1983).

  6. Bushberg, J. T., Seibert, J. A., Leidholdt, J. E. M. & Boone, J. M. The Essential Physics of Medical Imaging (Williams & Wilkins, 1994).

  7. ISO/ASTM ISO/ASTM 51956: Practice for Use of a Thermoluminescence-Dosimetry System (TLD System) for Radiation Processing. (International Organization for Standardization/ASTM International, 2013).

  8. IAEA. IAEA Safety Standards Series No. SSG-57: Radiation Safety in Well Logging. (International Atomic Energy Agency, 2020).

  9. García Solé, J., Bausá, L. E. & Jaque, D. An Introduction to the Optical Spectroscopy of Inorganic Solids (John Wiley & Sons, 2005).

  10. Duller, G. A. T., Bøtter-Jensen, L., Kohsiek, P. & Murray, A. S. A high sensitivity optically stimulated luminescence scanning system for measurement of single sand-sized grains. Radiat. Prot. Dosim. 84, 325–330 (1999).

    Article  Google Scholar 

  11. Yukihara, E. G. et al. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters. Phys. Med. Biol. 50, 5619–5628 (2005).

    Article  Google Scholar 

  12. IEC. IEC 62387:2020-01: Radiation Protection Instrumentation — Dosimetry Systems with Integrating Passive Detectors for Individual, Workplace and Environmental Monitoring of Photon and Beta Radiation. (International Electrotechnical Commission, 2020).

  13. ISO. ISO 14146: Radiological Protection — Criteria and Performance Limits for the Evaluation of Dosimetry Services. (International Organization for Standardization, 2018).

  14. ISO. ISO 21909-1: Passive Neutron Dosimetry Systems — Part 1: Performance and Test Requirements for Personal Dosimetry. (International Organisation for Standardisation, 2015).

  15. IEC. IEC 61066: Thermoluminescence Dosimetry Systems for Personal and Environmental Monitoring (International Electrotechnical Commission, 2006).

  16. Draeger, E. et al. A dose of reality: how 20 years of incomplete physics and dosimetry reporting in radiobiology studies may have contributed to the reproducibility crisis. Int. J. Radiat. Oncol. Biol. Phys. 106, 243–252 (2020).

    Article  Google Scholar 

  17. Andreo, P., Burns, D. T., Nahum, A. E., Seuntjens, J. & Attix, F. H. Fundamentals of Ionizing Radiation Dosimetry (Wiley, 2017). Important reference book for issues associated with dosimetry.

  18. Attix, F. H. Introduction to Radiological Physics and Radiation Dosimetry (Wiley-VCH, 2004).

  19. ICRU. ICRU Report 48: Phantoms and Computational Models in Therapy, Diagnosis and Protection (International Commission on Radiation Units and Measurements, 1992).

  20. Seco, J. & Verhaegen, F. Monte Carlo Techniques in Radiation Therapy (CRC Press, 2013).

  21. ISO/IEC. ISO/IEC Guide 99: International Vocabulary of Metrology — Basic and General Concepts and Associated Terms (VIM) (International Organization for Standardization, 2007).

  22. McKeever, S. W. S., Moscovitch, M. & Townsend, P. D. Thermoluminescence Dosimetry Materials: Properties and Uses (Nuclear Technology Publishing, 1995). Essential compilation of information on thermoluminescent materials.

  23. Bøtter-Jensen, L., McKeever, S. W. S. & Wintle, A. G. Optically Stimulated Luminescence Dosimetry (Elsevier, 2003).

  24. Yukihara, E. G. & McKeever, S. W. S. Optically Stimulated Luminescence: Fundamentals and Applications (John Wiley & Sons, 2011). Most recent comprehensive reference for optically stimulated luminescence phenomena and applications.

  25. Nahum, A. E. in Clinical Dosimetry Measurements in Radiotherapy (eds Rogers, D. W. O. & Cygler, J. E.) 91–136 (Medical Physics Publishing, 2009).

  26. Rogers, D. W. O. in Clinical Dosimetry Measurements in Radiotherapy (eds Rogers, D. W. O. & Cygler, J. E.) 137–145 (Medical Physics Publishing, 2009).

  27. Bos, A. J. J. High sensitivity thermoluminescence dosimetry. Nucl. Instrum. Methods Phys. Res. B 184, 3–28 (2001).

    Article  ADS  Google Scholar 

  28. ICRU. ICRU Report 66: Determination of Operational Dose Equivalent Quantities for Neutrons. J. ICRU 1, 1–93 (2001).

  29. Horowitz, Y. S. The theoretical and microdosimetric basis of thermoluminescence and applications to dosimetry. Phys. Med. Biol. 26, 765–824 (1981).

    Article  Google Scholar 

  30. ICRU. ICRU Report 51: Quantities and Units in Radiation Protection Dosimetry (International Commission on Radiation Units and Measurements, 1993).

  31. Olko, P. Microdosimetric Modelling Of Physical And Biological Detectors (The Henryk Niewodniczański Institute of Nuclear Physics, 2002).

  32. Bøtter-Jensen, L., Andersen, C. E., Duller, G. A. T., & Murray, A. S. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiat. Meas. 37, 535–541 (2003).

    Article  Google Scholar 

  33. Lapp, T. et al. A new luminescence detection and stimulation head for the Risø TL/OSL reader. Radiat. Meas. 81, 178–184 (2015).

    Article  Google Scholar 

  34. Richter, D., Richter, A. & Dornich, K. Lexsyg — a new system for luminescence research. Geochronometria 40, 220–228 (2013).

    Article  Google Scholar 

  35. Richter, D., Richter, A. & Dornich, K. Lexsyg smart — a luminescent detection system for dosimetry, material research and dating applications. Geochronometria 42, 202–209 (2015).

    Article  Google Scholar 

  36. McKeever, S. W. S. Thermoluminescence of Solids (Cambridge Univ. Press, 1985). Comprehensive reference for thermoluminescence phenomena and materials.

  37. Umisedo, N. K., Yoshimura, E. M., Gasparian, P. B. R. & Yukihara, E. G. Comparison between blue and green stimulated luminescence of Al2O3:C. Radiat. Meas. 45, 151–156 (2010).

    Article  Google Scholar 

  38. Aitken, M. J. Thermoluminescence Dating (Academic Press, 1985).

  39. Aitken, M. J. An Introduction to Optical Dating (Oxford Univ. Press, 1998).

  40. Murray, A. et al. Optically stimulated luminescence dating using quartz. Nat. Rev. Methods Primers 1, 72 (2021).

    Article  Google Scholar 

  41. Akselrod, M. S., Agersnap Larsen, N., Whitley, V. H. & McKeever, S. W. S. Thermal quenching of F-center luminescence in Al2O3:C. J. Appl. Phys. 84, 3364–3373 (1998).

    Article  ADS  Google Scholar 

  42. Chen, R. & McKeever, S. W. S. Theory of Thermoluminescence and Related Phenomena (World Scientific Publishing, 1997).

  43. Moscovitch, M. et al. A TLD system based on gas heating with linear time-temperature profile. Radiat. Prot. Dosim. 34, 361–364 (1990).

    Article  Google Scholar 

  44. Bulur, E. An alternative technique for optically stimulated luminescence (OSL) experiment. Radiat. Meas. 26, 701–709 (1996).

    Article  Google Scholar 

  45. McKeever, S. W. S. & Akselrod, M. S. Radiation dosimetry using pulsed optically stimulated luminescence of Al2O3:C. Radiat. Prot. Dosim. 84, 317–320 (1999).

    Article  Google Scholar 

  46. Akselrod, M. S. & McKeever, S. W. S. A radiation dosimetry method using pulsed optically stimulated luminescence. Radiat. Prot. Dosim. 81, 167–176 (1999).

    Article  Google Scholar 

  47. Chithambo, M. L. The analysis of time-resolved optically stimulated luminescence: II. Computer simulations and experimental results. J. Phys. D 40, 1880–1889 (2007).

    Article  ADS  Google Scholar 

  48. Schmidt, C., Simmank, O. & Kreutzer, S. Time-resolved optically stimulated luminescence of quartz in the nanosecond time domain. J. Lumin. 213, 376–387 (2019).

    Article  Google Scholar 

  49. Yukihara, E. G. & McKeever, S. W. S. Spectroscopy and optically stimulated luminescence of Al2O3:C using time-resolved measurements. J. Appl. Phys. 100, 083512 (2006).

    Article  ADS  Google Scholar 

  50. Dunn, L. et al. Commissioning of optically stimulated luminescence dosimeters for use in radiotherapy. Radiat. Meas. 51–52, 31–39 (2013).

    Article  Google Scholar 

  51. Scarboro, S. B. et al. Characterization of the nanoDot OSLD dosimeter in CT. Med. Phys. 42, 1797–1807 (2015).

    Article  Google Scholar 

  52. Akselrod, M. S. & Kouwenberg, J. Fluorescent nuclear track detectors — review of past, present and future of the technology. Radiat. Meas. 117, 35–51 (2018). Excellent overview of the use of luminescence for track detection.

    Article  Google Scholar 

  53. Yamamoto, T. RPL dosimetry: principles and applications. AIP Conf. Proc. 1345, 217–230 (2011). Succinct overview of properties of radiophotoluminescence dosimeters.

    Article  ADS  Google Scholar 

  54. Bilski, P. & Marczewska, B. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals. Nucl. Instrum. Methods Phys. Res. B 392, 41–45 (2017).

    Article  ADS  Google Scholar 

  55. Kry, S. F. et al. AAPM TG 191: clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Phys. 47, e19–e51 (2020). Important report from a task group of the American Associations of Physicists in Medicine on medical use of thermoluminescence and optically stimulated luminescent dosimeters.

    Article  Google Scholar 

  56. ISO. ISO 11929-1:2019: Determination of the Characteristic Limits (Decision Threshold, Detection Limit and Limits of the Confidence Interval) for Measurements of Ionizing Radiation — Fundamentals and Application — Part 1: Elementary Applications. (International Organisation for Standardisation, 2019).

  57. ICRU. ICRU report 85: fundamental quantities and units for ionizing radiation. J. ICRU 11, 1–38 (2011).

  58. ICRU. ICRU Report 95: operational quantities for external radiation exposure. J. ICRU 20, 7–130 (2020).

  59. Moscovitch, M. Dose algorithms for personal thermoluminescence dosimetry. Radiat. Prot. Dosim. 47, 373–380 (1993).

    Article  Google Scholar 

  60. ISO. ISO 4037-3: Radiological Protection - X and Gamma Reference Radiation for Calibrating Dosemeters and Doserate Meters and for Determining their Response as a Function of Photon Energy - Part 3: Calibration of area and Personal Dosemeters and the Measurement of their Response as a Function of Energy and angle of Incidence (International Organization for Standardization, 2019).

  61. ISO. ISO 8529-3: Reference Neutron Irradiations - Part 3: Calibration of Area and Personal Dosimeters and Determination of their Response as a function of Neutron Energy and Angle of Incidence (International Organization for Standardization, 1998).

  62. ISO. International Standard ISO 6980-2: Reference Beta Particle Radiations - Part 3: Calibration of Area and Personal Dosemeters and Determination of Response as a Function of Energy and Angle of Incidence (International Standardization Organization, 2006).

  63. IAEA. IAEA TRS-398: Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water (International Atomic Energy Agency, Vienna, 2000).

  64. IAEA. IAEA Technical Reports Series No. 457: Dosimetry in Diagnostic Radiology: An International Code of Practice (International Atomic Energy Agency, Vienna, 2007).

  65. Almond, P. R. et al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med. Phys. 26, 1847–1870 (1999).

    Article  Google Scholar 

  66. Lillicrap, S. C., Owen, B., Williams, J. R. & Williams, P. C. Code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. Phys. Med. Biol. 35, 1355–1360 (1990).

    Article  Google Scholar 

  67. Nath, R. et al. Code of practice for brachytherapy physics: report of the AAPM radiation therapy committee task group no. 56. Med. Phys. 24, 1557–1598 (1997).

    Article  Google Scholar 

  68. Palmans, H. et al. Dosimetry of small static fields used in external photon beam radiotherapy: Summay of TRS-483, the IAEA-AAPM international Code of Practice for reference and relative dose determination. Med. Phys. 45, e1123–e1145 (2018).

    Article  Google Scholar 

  69. Thwaites, D. I. et al. The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration. Phys. Med. Biol. 48, 2929–2970 (2003).

    Article  Google Scholar 

  70. Stanford, N. & McCurdy, D. E. A single TLD dose algorithm to satisfy federal standards and typical field conditions. Health Phys. 58, 691–704 (1990).

    Article  Google Scholar 

  71. Assenmacher, F., Boschung, M., Hohmann, E. & Mayer, S. Dosimetric properties of a personal dosimetry system based on radiophotoluminescence of silver doped phosphate glass. Radiat. Meas. 106, 235–241 (2017).

    Article  Google Scholar 

  72. Juto, N. in The First Asian and Oceanic Congress for Radiation Protection (AOCRP-1) (IRPA, 2002).

  73. Horowitz, Y. S., Oster, L., Satinger, D., Biderman, S. & Einav, Y. The composite structure of peak 5 in the glow curve of LiF:Mg,Ti (TLD-100): confirmation of peak 5a arising from locally trapped electron-hole configuration. Radiat. Prot. Dosim. 100, 123–126 (2002).

    Article  Google Scholar 

  74. Horowitz, Y. S. & Yossian, D. Computerised glow curve deconvolution: application to thermoluminescence dosimetry. Radiat. Prot. Dosim. 60, 1–114 (1995). Discussion on the analysis of the thermoluminescence from various materials.

    Google Scholar 

  75. Kitis, G., Gomes-Ros, J. M. & Tuyn, J. W. N. Thermoluminescence glow-curve deconvolution functions for first, second and general order kinetics. J. Phys. D: Appl. Phys. 31, 2636–2641 (1998).

    Article  ADS  Google Scholar 

  76. Chen, R. & Pagonis, V. Thermally and Optically Stimulated Luminescence: A Simulation Approach (John Wiley & Sons Ltd., 2011). Useful reference for the modelling of thermoluminescence and optically stimulated luminescence phenomena.

  77. Van den Eeckhout, K., Bos, A. J. J., Poelman, D. & Smet, P. F. Revealing trap depth distributions in persistent phosphors. Phys. Rev. B 87, 045126 (2013).

    Article  ADS  Google Scholar 

  78. Chithambo, M. L. An Introduction to Time-Resolved Optically Stimulated Luminescence (Morgan & Claypool Publishers, 2018).

  79. McKeever, S. W. S., Bøtter-Jensen, L., Agersnap Larsen, N. & Duller, G. A. T. Temperature dependence of OSL decay curves: experimental and theoretical aspects. Radiat. Meas. 27, 161–170 (1997).

    Article  Google Scholar 

  80. Chen, R. & McKeever, S. W. S. Characterization of nonlinearities in the dose dependence of thermoluminescence. Radiat. Meas. 23, 667–673 (1994).

    Article  Google Scholar 

  81. ISO. ISO 21748:2017: Guidance for the use of Repeatability, Reproducibility and Trueness Estimates in Measurement Uncertainty Evaluation (International Organization for Standardization, 2017).

  82. Wesolowska, P. E. et al. Characterization of three solid state dosimetry systems for use in high energy photon dosimetry audits in radiotherapy. Radiat. Meas. 106, 556–562 (2017).

    Article  Google Scholar 

  83. ICRU. ICRU Report 57: Conversion Coefficients for use in Radiological Protection Against External Radiation (International Commission on Radiation Units and Measurements, 1998).

  84. Mittani, J. C. R., da Silva, A. A. R., Vanhavere, F., Akselrod, M. S. & Yukihara, E. G. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al2O3:C. Nucl. Instrum. Methods Phys. Res. B 260, 663–671 (2007).

    Article  ADS  Google Scholar 

  85. Benton, E. R. & Benton, E. V. Space radiation dosimetry in low-Earth orbit and beyond. Nucl. Instrum. Methods Phys. Res. B 184, 255–294 (2001).

    Article  ADS  Google Scholar 

  86. Berger, T., Bilski, P., Hajek, M., Puchalska, M. & Reitz, G. The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B). Radiat. Res. 180, 622–637 (2013).

    Article  ADS  Google Scholar 

  87. Vanhavere, F. et al. DOsimetry of BIological EXperiments in SPace (DOBIES) with luminescence (OSL and TL) and track etch detectors. Radiat. Meas. 43, 694–697 (2008).

    Article  Google Scholar 

  88. ICRP. ICRP Publication 123: Assessment of Radiation Exposure of Astronauts in Space (ICRP, 2013).

  89. ICRU. ICRU Report 94: methods for initial-phase assessment of individual doses following acute exposure to ionizing radiation. J. ICRU 19, 3–162 (2019).

    Google Scholar 

  90. Bailiff, I. K., Sholom, S. & McKeever, S. W. S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: a review. Radiat. Meas. 94, 83–139 (2016). Comprehensive review on the use of luminescence dosimeters for retrospective and emergency dosimetry.

    Article  Google Scholar 

  91. Kerr, G. D. et al. Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies. Health Phys. 105, 140–149 (2013).

    Article  Google Scholar 

  92. McKeever, S. W. S., Sholom, S. & Chandler, J. R. Developments in the use of thermoluminescence and optically stimulated luminescence from mobile phones in emergency dosimetry. Radiat. Prot. Dosim. 192, 205–235 (2020).

    Article  Google Scholar 

  93. Discher, M., Woda, C., Ekendahl, D., Rojas-Palma, C. & Steinhausler, F. Evaluation of physical retrospective dosimetry methods in a realistic accident scenario: results of a field test. Radiat. Meas. 142, 106544 (2021).

    Article  Google Scholar 

  94. Izewska, J., Bera, P. & Vatnitsky, S. IEAE/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry. Radiat. Prot. Dosim. 101, 387–392 (2002).

    Article  Google Scholar 

  95. Alvarez, P., Kry, S. F., Stingo, F. & Followill, D. TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration. Radiat. Meas. 106, 412–415 (2017).

    Article  Google Scholar 

  96. Lye, J. et al. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters. Med. Phys. 41, 032102 (2014).

    Article  Google Scholar 

  97. Riegel, A. C. et al. In vivo dosimetry with optically stimulated luminescence dosimeters for conformal and intensity-modulated radiation therapy: a 2-year multicenter cohort study. Practical Radiat. Oncol. 7, e135–e144 (2017).

    Article  Google Scholar 

  98. Miften, M. et al. Management of radiotherapy patients with implanted cardiac pacemakers and defibrillators: a report of the AAPM TG-203. Med. Phys. 46, e757–e788 (2019).

    Article  Google Scholar 

  99. Bloemen-Van Gurp, E. J., Munheer, B. J., Verschueren, T. A. M. & Lambin, P. Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system. Int. J. Radiat. Oncol. Biol. Phys. 69, 1297–1304 (2007).

    Article  Google Scholar 

  100. Kairn, T., Wilks, R., Yu, L. T., Lancaster, C. & Crowe, S. B. In vivo monitoring of total skin electron dose using optically stimulated luminescence dosimeters. Rep. Practical Oncol. Radiother. 25, 35–40 (2020).

    Article  Google Scholar 

  101. Weber, D. C., Nouet, P., Kurtz, J. M. & Allal, A. S. Assessment of target dose delivery in anal cancer using in vivo thermoluminescent dosimetry. Radiother. Oncol. 59, 39–43 (2001).

    Article  Google Scholar 

  102. Bieri, S., Rouzaud, M. & Miralbell, R. Seminoma of the testis: is scrotal shielding necessary when radiotherapy is limited to the para-aortic nodes? Radiother. Oncol. 50, 349–353 (1999).

    Article  Google Scholar 

  103. Stovall, M. et al. Fetal dose from radiotherapy with photon beams: report of AAPM radiation therapy committee task group no. 36. Med. Phys. 22, 63–82 (1995).

    Article  Google Scholar 

  104. Olaciregui-Ruiz, I. et al. In vivo dosimetry in external beam photon radiotherapy: requirements and future directions for research, development, and clinical practice. Phys. Imag. Radiat. Oncol. 15, 108–116 (2020).

    Article  Google Scholar 

  105. Kry, S. F. et al. AAPM TG 158: measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med. Phys. 44, e391–e429 (2017).

    Article  Google Scholar 

  106. Zhuang, A. H. & Olch, A. J. Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments. Med. Phys. 41, 231–238 (2014).

    Article  Google Scholar 

  107. Wochnik, A. et al. Out-of-field doses for scanning proton radiotherapy of shallowly located paediatric tumours-a comparison of range shifter and 3D printed compensator. Phys. Med. Biol. 66, 035012 (2021).

    Article  Google Scholar 

  108. De Roover, R., Berghen, C., De Meerleer, G., Depuydt, T. & Crijns, W. Extended field radiotherapy measurements in a single shot using a BaFBr-based OSL-film. Phys. Med. Biol. 64, 165007 (2019).

    Article  Google Scholar 

  109. Crijns, W., Vandenbroucke, D., Leblans, P. & Depuydt, T. A reusable OSL-film for 2D radiotherapy dosimetry. Phys. Med. Biol. 62, 8441–8454 (2017).

    Article  Google Scholar 

  110. Yukihara, E. G. et al. An optically stimulated luminescence system to measure dose profiles in X-ray computed tomography. Phys. Med. Biol. 54, 6337–6352 (2009).

    Article  Google Scholar 

  111. Vrieze, T. J., Sturchio, G. M. & McCollough, C. H. Technical Note: Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index. Med. Phys. 39, 6580–6584 (2012).

    Article  Google Scholar 

  112. Bauhs, J. A. et al. CT dosimetry: comparison of measurement techniques and devices. RadioGraphics 28, 245–253 (2008).

    Article  Google Scholar 

  113. Kron, T. Applications of thermoluminescence dosimetry in medicine. Radiat. Prot. Dosim. 85, 333–340 (1999).

    Article  Google Scholar 

  114. Bilski, P. Dosimetry of densely ionising radiation with three LiF phosphors for space applications. Radiat. Prot. Dosim. 120, 397–400 (2006).

    Article  Google Scholar 

  115. Linz, U. Ion Beam Therapy: Fundamentals, Technology, Clinical Applications (Springer, 2012).

  116. Granville, D. A., Sahoo, N. & Sawakuchi, G. O. Calibration of the Al2O3:C optically stimulated luminescence (OSL) signal for linear energy transfer (LET) measurements in therapeutic proton beams. Phys. Med. Biol. 59, 4295–4310 (2014).

    Article  Google Scholar 

  117. Battistoni, G. et al. Overview of the FLUKA code. Ann. Nucl. Energy 82, 10–18 (2015).

    Article  Google Scholar 

  118. Agostinelli, S. et al. GEANT4 — a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    Article  ADS  Google Scholar 

  119. Werner, C. J. et al. MCNP Version 6.2 Release Notes (US DOE OSTI 2018).

  120. Sato, T. et al. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J. Nucl. Sci. Technol. 55, 684–690 (2018).

    Article  Google Scholar 

  121. Yukihara, E. G. et al. Time-resolved optically stimulated luminescence of Al2O3:C for ion beam therapy dosimetry. Phys. Med. Biol. 60, 6613–6638 (2015).

    Article  Google Scholar 

  122. Mobit, P. N., Nahum, A. E. & Philip, M. The energy correction factor of LiF thermoluminescent dosemeters in megavoltage electron beams: Monte Carlo simulations and experiments. Phys. Med. Biol. 41, 979–993 (1996).

    Article  Google Scholar 

  123. Vozenin, M. C., Hendry, J. H. & Limoli, C. L. Biological benefits of ultra-high dose rate FLASH radiotherapy: Sleeping Beauty awoken. Clin. Oncol. 31, 407–415 (2019).

    Article  Google Scholar 

  124. Karsch, L. et al. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Med. Phys. 5, 2447–2455 (2012).

    Article  Google Scholar 

  125. Christensen, J. B. et al. Al2O3:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry. Phys. Med. Biol. 66, 085003 (2021).

    Article  Google Scholar 

  126. Horowitz, Y., Oster, L. & Eliyahu, I. Review of dose-rate effects in the thermoluminescence of LiF:Mg,Ti (Harshaw). Radiat. Prot. Dosim. 179, 184–188 (2018).

    Article  Google Scholar 

  127. Chen, R. & Leung, P. L. Nonlinear dose dependence and dose-rate dependence of optically stimulated luminescence and thermoluminescence. Radiat. Meas. 33, 475–481 (2001).

    Article  Google Scholar 

  128. Chen, R., McKeever, S. W. S. & Durrani, S. A. Solution of the kinetic equations governing trap filling. Consequences concerning dose dependence and dose-rate effects. Phys. Rev. B 24, 4931–4944 (1981).

    Article  ADS  Google Scholar 

  129. Andersen, C. E. et al. Medical proton dosimetry using radioluminescence from aluminium oxide crystals attached to optical fiber cables. Nucl. Instrum. Methods. Phys. Res. A 580, 466–468 (2007).

    Article  ADS  Google Scholar 

  130. Klein, D. M., Lucas, A. C. & McKeever, S. W. S. A low-level environmental radiation monitor using optically stimulated luminescence from Al2O3:C: tests using Ra-226 and Th-232 sources. Radiat. Meas. 46, 1851–1855 (2011).

    Article  Google Scholar 

  131. Hoedlmoser, H., Bandalo, V. & Figel, M. BeOSL dosemeters and new ICRU operational quantities: response of existing dosemeters and modification options. Radiat. Meas. 139, 106482 (2020).

    Article  Google Scholar 

  132. Milliken, E. D., Oliveira, L. C., Denis, G. & Yukihara, E. G. Testing a model-guided approach to the development of new thermoluminescent materials using YAG:Ln produced by solution combustion synthesis. J. Lumin. 132, 2495–2504 (2012).

    Article  Google Scholar 

  133. Yukihara, E. G. et al. Systematic development of new thermoluminescence and optically stimulated luminescence materials. J. Lumin. 133, 203–210 (2013).

    Article  Google Scholar 

  134. Shrestha, N., vandenbroucke, D., Leblans, P. & Yukihara, E. G. Feasibility studies on the use of MgB4O7:Ce,Li-based films in 2D optically stimulated luminescence dosimetry. Phys. Open 5, 100037 (2020).

    Article  Google Scholar 

  135. Souza, L. F. et al. Dosimetric properties of MgB4O7:Dy,Li and MgB4O7:Ce,Li for optically stimulated luminescence applications. Radiat. Meas. 106, 196–199 (2017).

    Article  Google Scholar 

  136. Souza, L. F., Souza, D. N., Rivera, R. B., Vidal, R. M. & Caldas, L. V. E. Dosimetric characterization of MgB4O7:Ce,Li as an optically stimulated dosimeter for photon beam radiotherapy. Perspect. Sci. 12, 100397 (2019).

    Article  Google Scholar 

  137. Ahmed, M. F. et al. Demonstration of 2D dosimetry using Al2O3 optically stimulated luminescence films for therapeutic megavoltage x-ray and ion beams. Radiat. Meas. 106, 315–320 (2017).

    Article  Google Scholar 

  138. Sądel, M., Bilski, P., Kłosowski, M. & Sankowska, M. A new approach to the 2D radiation dosimetry based on optically stimulated luminescence of LiF:Mg,Cu,P. Radiat. Meas. 133 106293 (2020).

    Article  Google Scholar 

  139. Sadel, M. et al. Three-dimensional radiation dosimetry based on optically stimulated luminescence. J. Phys. Conf. Ser. 847, 012044 (2017).

    Article  Google Scholar 

  140. De Saint-Hubert, M. et al. Characterization of 2D Al2O3:C,Mg radiophotoluminescence films in charged particle beams. Radiat. Meas. 141, 106518 (2021).

    Article  Google Scholar 

  141. Nascimento, L. F. et al. 2D reader for dose mapping in radiotherapy using radiophotoluminescent films. Radiat. Meas. 129, 106202 (2019).

    Article  Google Scholar 

  142. Marczewska, B. et al. Two-dimensional thermoluminescence dosimetry using planar detectors and a TL reader with CCD camera readout. Radiat. Prot. Dosim. 120, 129–132 (2006).

    Article  Google Scholar 

  143. Marczewska, B., Bilski, P., Olko, P. & Waligórski, M. P. R. Measurement of 2-D dose distributions by large-area thermoluminescent detectors. Radiat. Meas. 38, 833–837 (2004).

    Article  Google Scholar 

  144. Sądel, M. et al. Two-dimensional radiation dosimetry based on LiMgPO4 powder embedded into silicone elastomer matrix. Radiat. Meas. 133, 106255 (2020).

    Article  Google Scholar 

  145. Shrestha, N., Yukihara, E. G., Cusumano, D. & Placidi, L. Al2O3:C and Al2O3:C,Mg optically stimulated luminescence 2D dosimetry applied to magnetic resonance guided radiotherapy. Radiat. Meas. 138, 106439 (2020).

    Article  Google Scholar 

  146. Spindeldreier, C. K. et al. Feasibility of dosimetry with optically stimulated luminescence detectors in magnetic fields. Radiat. Meas. 106, 346–351 (2017).

    Article  Google Scholar 

  147. Leblans, P., Vandenbroucke, D. & Willems, P. Storage phosphors for medical imaging. Materials 4, 1034–1086 (2011).

    Article  ADS  Google Scholar 

  148. Stabilini, A., Kiselev, D., Akselrod, M. S. & Yukihara, E. G. A Monte-Carlo study on the fluorescent nuclear track detector (FNTD) response to fast neutrons: which information can be obtained by single layer and 3D track reconstruction analyses? Radiat. Meas. 145, 106609 (2021).

    Article  Google Scholar 

  149. Talghader, J. J., Mah, M. L., Yukihara, E. G. & Coleman, A. C. Thermoluminescent microparticle thermal history sensors. Microsyst. Nanoeng. 2, 16037 (2016).

    Article  Google Scholar 

  150. Yukihara, E. G. et al. Particle temperature measurements in closed chamber detonations using thermoluminescence from Li2B4O7:Ag,Cu, MgB4O7:Dy,Li and CaSO4:Ce,Tb. J. Lumin. 165, 145–152 (2015).

    Article  Google Scholar 

  151. King, G. E., Guralnik, B., Valla, P. G. & Herman, F. Trapped-charge thermochronometry and thermometry: a status review. Chem. Geol. 446, 3–17 (2016).

    Article  ADS  Google Scholar 

  152. King, G. E., Herman, F. & Guralnik, B. Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry. Science 353, 800–804 (2016).

    Article  ADS  Google Scholar 

  153. Bos, A. J. J. Thermoluminescence as a research tool to investigate luminescence mechanisms. Materials 10, 1357 (2017).

    Article  ADS  Google Scholar 

  154. Vedda, A. & Fasoli, M. Tunneling recombinations in scintillators, phosphors, and dosimeters. Radiat. Meas. 118, 86–97 (2018).

    Article  Google Scholar 

  155. Hsu, P.-C. & Wang, T.-K. On the annealing procedure for CaF2:Dy. Radiat. Prot. Dosim. 16, 253–256 (1986).

    Google Scholar 

  156. Driscoll, C. M. H., Barthe, J. R., Oberhofer, M., Busuoli, G. & Hickman, C. Annealing procedures for commonly used radiothermoluminescent materials. Radiat. Prot. Dosim. 14, 17–32 (1986).

    Article  Google Scholar 

  157. Kutomi, Y. & Tomita, A. TSEE and TL of Li2B4O7:Cu single crystals. Radiat. Prot. Dosim. 33, 347–350 (1990).

    Article  Google Scholar 

  158. Yukihara, E. G. Luminescence properties of BeO optically stimulated luminescence (OSL) detectors. Radiat. Meas. 46, 580–587 (2011).

    Article  Google Scholar 

  159. Yukihara, E. G., Andrade, A. B. & Eller, S. BeO optically stimulated luminescence dosimetry using automated research readers. Radiat. Meas. 94, 27–34 (2016).

    Article  Google Scholar 

  160. Kurobori, T., Zheng, W., Miyamoto, Y., Nanto, H. & Yamamoto, T. The role of silver in the radiophotoluminescent properties in silver-activated phosphate glass and sodium chloride crystal. Opt. Mater. 32, 1231–1236 (2010).

    Article  ADS  Google Scholar 

  161. DeWerd, L. A. & Kunugi, K. Accurate dosimetry for radiobiology. Int. J. Radiat. Oncol. Biol. Phys. 111, e75–e81 (2021).

    Article  Google Scholar 

  162. Bateman, M. D. Handbook of Luminescence Dating (Whittle Publishing, 2019).

  163. Mijnheer, B., Beddar, S., Izewska, J. & Reft, C. In vivo dosimetry in external beam radiotherapy. Med. Phys. 40, 070903 (2013).

    Article  Google Scholar 

  164. Tanderup, K., Beddar, S., Andersen, C. E., Kertzscher, G. & Cygler, J. In vivo dosimetry in brachytherapy. Med. Phys. 40, 070902 (2013).

    Article  Google Scholar 

  165. ISO/ASTM. ISO/ASTM 51261:2013: Practice for Calibration of Routine Dosimetry Systems for Radiation Processing (International Organization for Standardization/ASTM International, 2013).

  166. Reitz, G. et al. Astronaut’s organ doses inferred from measurements in a human phantom outside the International Space Station. Radiat. Res. 171, 225–235 (2009).

    Article  ADS  Google Scholar 

  167. Berger, T. Radiation dosimetry onboard the International Space Station ISS. Z. Med. Phys. 18, 265–275 (2008).

    Article  Google Scholar 

  168. Kittel, C. Introduction to Solid State Physics (John Wiley & Sons, 1996).

  169. Mott, N. F. & Davis, E. A. Electronic Processes in Non-Crystalline Materials (Oxford Univ. Press, 2012).

  170. Knoll, G. F. Radiation Detection and Measurements (John Wiley & Sons, 2000).

Download references

Acknowledgements

E.M.Y. appreciates the support of the São Paulo Research Foundation (FAPESP) (grant no. 2018/05982-0) and of the Brazilian National Council for Scientific and Technological Development (CNPq) (grant no. 306843/2018-8). E.G.Y., J.B.C. and L.B. acknowledge the support from the Swiss Nuclear Safety Inspectorate (ENSI) (contract no. CTR00836).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (E.G.Y., S.W.S.M. and E.M.Y.); Experimentation (E.G.Y., S.W.S.M. and I.K.B.); Results (E.G.Y., S.W.S.M., G.O.S. and C.E.A.); Applications (E.G.Y., S.W.S.M., I.K.B. and G.O.S.); Reproducibility and data deposition (E.G.Y. and S.W.S.M.); Limitations and optimizations (E.G.Y. and S.W.S.M.); Outlook (E.G.Y. and S.W.S.M.); Overview of the Primer (E.G.Y., S.W.S.M., C.E.A., A.J.J.B., I.K.B., E.M.Y., G.O.S., L.B. and J.B.C.).

Corresponding author

Correspondence to Eduardo G. Yukihara.

Ethics declarations

Competing interests

C.E.A. is an employee of the Technical University of Denmark, a producer of luminescence dating instrumentation. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Reuven Chen, Go Okada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ionizing radiation

Both electromagnetic (X-rays, gamma-rays) and particle radiation of sufficient energy to cause ionizations in matter.

Deposited energy

Energy from the radiation field that stays in a volume in the form of excitations and ionizations of atoms and molecules.

Optically active centres

Lattice defects that introduce new absorption and/or emission bands in a crystalline insulator.

Thermoluminescence

(TL). Luminescence produced in an irradiated material under thermal stimulation of trapped charges.

Optically stimulated luminescence

(OSL). Luminescence produced in an irradiated material under optical stimulation of trapped charges.

Radiophotoluminescence

(RPL). Photoluminescence associated with radiation-induced optically active centres.

Luminescent detector

Element of the dosimetry system that is directly affected by the radiation.

Secondary electrons

Energetic electrons set in motion by photon interactions or the passage of charged particles in the material, which promote further ionizations in the material.

Mass–energy absorption coefficients

Fraction of the photon energy per unit mass that is transferred and remains in a volume in the medium.

Stopping power

Energy loss per track length for charged particles.

Charged particle equilibrium

(CPE). A condition in which the charged particles entering a volume of interest are balanced by an identical fluence of charged particles leaving that volume.

Phantom

Structure of specified shape and composition used to simulate the interaction of radiation in the body; phantoms simulating the human body or part of it are called body or anthropomorphic phantoms.

Bragg–Gray cavity

Detector or volume that is sufficiently small such that the energy deposited under photon irradiation is mainly by secondary electrons created outside the cavity.

Effective atomic number

(Zeff). Atomic number of a hypothetical elemental material whose probability for photoelectric interaction with photons of the radiation field is similar to that of the compound.

ICRU sphere

This is a reference 30-cm-diameter sphere consisting of 76.2% oxygen, 11.1% carbon, 10.1% hydrogen and 2.6% nitrogen and with a density of 1 g cm–3, used for the definition of operational quantities for area dosimetry.

Linear energy transfer

(LET). Mean energy deposited by a charged particle as a result of collisions with electrons per unit of traversed distance (J m–1 or, more typically, keV μm–1].

Luminescence dosimeter

Physical holder combining one or more luminescent detectors (sensors) and additional components such as filters and identification.

Resetting

Process (thermal or optical) of restoring a material or detector to its pre-irradiation state.

Phototransfer

Transfer of electronic charges between defects of different thermal stability in crystalline material.

Detection limit

The smallest true value of the measurement that ensures a specified probability of being detectable by the measurement procedure.

Ionization quenching

Reduction in luminescence efficiency with ionization density associated with the dose deposition, often estimated through the particle linear energy transfer.

Spread-out Bragg peak

Depth–dose pattern of energy deposition of heavy charged particles (protons, carbon ions) optimized for radiotherapy, combining several particle energies.

Radiation transport codes

Computational codes typically based on Monte Carlo methods for the simulation of the radiation interaction processes based on their interaction probabilities.

Radioluminescence

Luminescence emitted by the material during irradiation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yukihara, E.G., McKeever, S.W.S., Andersen, C.E. et al. Luminescence dosimetry. Nat Rev Methods Primers 2, 26 (2022). https://doi.org/10.1038/s43586-022-00102-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00102-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing