Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

C–H activation

Abstract

Transition metal-catalysed C–H activation has emerged as an increasingly powerful platform for molecular syntheses, enabling applications to natural product syntheses, late-stage modification, pharmaceutical industries and material sciences, among others. This Primer summarizes representative best practices for the experimental set-up and data deposition for C–H activation, as well as discussing key developments including recent advances in asymmetric, photoinduced and electrocatalytic C–H activation. Likewise, strategies for applications of C–H activation towards the assembly of structurally complex (bio)polymers and drugs in academia and industry are discussed. In addition, current limitations in C–H activation and possible approaches for overcoming these shortcomings are reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progress in molecular synthesis towards C–H activation.
Fig. 2: Mechanisms for C–H activation and C–C bond formation via C–H activation.
Fig. 3: Approaches for transition metal-catalysed direct C–H amination with proposed mechanistic pathways.
Fig. 4: C–O bond formation via C–H activation.
Fig. 5: Borylation and halogenation reactions via C–H activation.
Fig. 6: Computational approaches in catalytic C–H bond activation studies.
Fig. 7: Asymmetric C–H activation.
Fig. 8: C–H activation used for total synthesis.
Fig. 9: Synthesis and modification of (bio)polymers and application towards late-stage diversification.
Fig. 10: Challenges and priorities for C–H activation in the next decade.
Fig. 11: Dual catalysis: C–H activation + photocatalysis.
Fig. 12: Electrochemical C–H activation.

Similar content being viewed by others

References

  1. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Google Scholar 

  2. Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4442–4489 (2005).

    Google Scholar 

  3. Khake, S. M. & Chatani, N. Chelation-assisted nickel-catalyzed C–H functionalizations. Trends Chem. 1, 524–539 (2019).

    Google Scholar 

  4. Gandeepan, P. et al. 3d transition metals for C–H activation. Chem. Rev. 119, 2192–2452 (2019).

    Google Scholar 

  5. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Google Scholar 

  6. Wang, C. S., Dixneuf, P. H. & Soule, J. F. Photoredox catalysis for building C–C bonds from C(sp2)–H bonds. Chem. Rev. 118, 7532–7585 (2018).

    Google Scholar 

  7. Chu, J. C. K. & Rovis, T. Complementary strategies for directed C(sp3)–H functionalization: a comparison of transition-metal-catalyzed activation, hydrogen atom transfer, and carbene/nitrene transfer. Angew. Chem. Int. Ed. 57, 62–101 (2018).

    Google Scholar 

  8. Murakami, K., Yamada, S., Kaneda, T. & Itami, K. C–H functionalization of azines. Chem. Rev. 117, 9302–9332 (2017).

    Google Scholar 

  9. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    Google Scholar 

  10. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Google Scholar 

  11. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    Google Scholar 

  12. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    ADS  Google Scholar 

  13. Egorova, K. S. & Ananikov, V. P. Toxicity of metal compounds: knowledge and myths. Organometallics 36, 4071–4090 (2017).

    Google Scholar 

  14. Allian, A. D. et al. Process safety in the pharmaceutical industry—part I: thermal and reaction hazard evaluation processes and techniques. Org. Process. Res. Dev. 24, 2529–2548 (2020).

    Google Scholar 

  15. Baumann, M., Moody, T. S., Smyth, M. & Wharry, S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org. Process. Res. Dev. 24, 1802–1813 (2020).

    Google Scholar 

  16. Meyer, T. H., Finger, L. H., Gandeepan, P. & Ackermann, L. Resource economy by metallaelectrocatalysis: merging electrochemistry and C–H activation. Trends Chem. 1, 63–76 (2019).

    Google Scholar 

  17. Chatt, J. & Davidson, J. M. 154. The tautomerism of arene and ditertiary phosphine complexes of ruthenium(0), and the preparation of new types of hydrido-complexes of ruthenium(II). J. Chem. Soc. https://doi.org/10.1039/JR9650000843 (1965).

    Article  Google Scholar 

  18. Cope, A. C. & Siekman, R. W. Formation of covalent bonds from platinum or palladium to carbon by direct substitution. J. Am. Chem. Soc. 87, 3272–3273 (1965).

    Google Scholar 

  19. Janowicz, A. H. & Bergman, R. G. Carbon–hydrogen activation in completely saturated hydrocarbons: direct observation of M + R–H → M(R)(H). J. Am. Chem. Soc. 104, 352–354 (1982). This investigation represents a pioneering study on the activation of unactivated C–H bonds via oxidative addition to a coordinatively unsaturated, in situ-generated iridium(I) complex.

    Google Scholar 

  20. Kleiman, J. P. & Dubeck, M. The preparation of cyclopentadienyl [o-(phenylazo)phenyl]nickel. J. Am. Chem. Soc. 85, 1544–1545 (1963).

    Google Scholar 

  21. Omae, I. Intramolecular five-membered ring compounds and their applications. Coord. Chem. Rev. 248, 995–1023 (2004).

    Google Scholar 

  22. Duff, J. M. & Shaw, B. L. Complexes of iridium(III) and rhodium(III) with metallated and unmetallated dimethyl(1-naphthyl)- and methylphenyl(1-naphthyl)-phosphine. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9720002219 (1972).

    Article  Google Scholar 

  23. De Sarkar, S., Liu, W., Kozhushkov, S. I. & Ackermann, L. Weakly coordinating directing groups for ruthenium(II)-catalyzed C–H activation. Adv. Synth. Catal. 356, 1461–1479 (2014).

    Google Scholar 

  24. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    Google Scholar 

  25. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Google Scholar 

  26. Balcells, D., Clot, E. & Eisenstein, O. C–H bond activation in transition metal species from a computational perspective. Chem. Rev. 110, 749–823 (2010). This review analyses various mechanistic manifolds of transition metal-catalysed C–H activation in detail and classifies these based on computational investigations.

    Google Scholar 

  27. Ackermann, L., Vicente, R. & Althammer, A. Assisted ruthenium-catalyzed C–H bond activation: carboxylic acids as cocatalysts for generally applicable direct arylations in apolar solvents. Org. Lett. 10, 2299–2302 (2008). This study introduces carboxylate assistance for ruthenium-catalysed C–H activation, which allows for versatile transformations operative in apolar solvents.

    Google Scholar 

  28. Lapointe, D. & Fagnou, K. Overview of the mechanistic work on the concerted metallation–deprotonation pathway. Chem. Lett. 39, 1118–1126 (2010).

    Google Scholar 

  29. Biswas, B., Sugimoto, M. & Sakaki, S. C–H bond activation of benzene and methane by M(η2-O2CH)2 (M = Pd or Pt). A theoretical study. Organometallics 19, 3895–3908 (2000).

    Google Scholar 

  30. Davies, D. L., Macgregor, S. A. & McMullin, C. L. Computational studies of carboxylate-assisted C–H activation and functionalization at Group 8–10 transition metal centers. Chem. Rev. 117, 8649–8709 (2017).

    Google Scholar 

  31. Rogge, T., Oliveira, J. C. A., Kuniyil, R., Hu, L. & Ackermann, L. Reactivity-controlling factors in carboxylate-assisted C–H activation under 4d and 3d transition metal catalysis. ACS Catal. 10, 10551–10558 (2020).

    Google Scholar 

  32. Murahashi, S. Synthesis of phthalimidines from Schiff bases and carbon monoxide. J. Am. Chem. Soc. 77, 6403–6404 (1955). This pioneering investigation arguably represents the first example of catalytic C–H activation, thereby laying the foundation for numerous further advances and achievements in this research area.

    Google Scholar 

  33. Fujiwara, Y., Moritani, I., Danno, S., Asano, R. & Teranishi, S. Aromatic substitution of olefins. VI. Arylation of olefins with palladium(II) acetate. J. Am. Chem. Soc. 91, 7166–7169 (1969). This publication accomplishes the olefination of arenes with unactivated olefines via palladium-catalysed C–H activation for the first time.

    Google Scholar 

  34. Lewis, L. N. & Smith, J. F. Catalytic carbon–carbon bond formation via ortho-metalated complexes. J. Am. Chem. Soc. 108, 2728–2735 (1986). This study employs ortho-metallated ruthenium complexes for the catalytic formation of C–C bonds, thus inspiring further developments in C–H activation by the action of ruthenium catalysts.

    Google Scholar 

  35. Nakamura, N., Tajima, Y. & Sakai, K. Direct phenylation of isoxazoles using palladium catalysts. Synthesis of 4-phenylmuscimol. Heterocycles 17, 235–245 (1982).

    Google Scholar 

  36. Murai, S. et al. Efficient catalytic addition of aromatic carbon–hydrogen bonds to olefins. Nature 366, 529–531 (1993). This study constitutes one of the most notable contributions to catalysed C–H activation featuring a broad applicability.

    ADS  Google Scholar 

  37. Matsubara, T., Koga, N., Musaev, D. G. & Morokuma, K. Density functional study on activation of ortho-CH bond in aromatic ketone by Ru complex. Role of unusual five-coordinated d6 metallacycle intermediate with agostic interaction. J. Am. Chem. Soc. 120, 12692–12693 (1998).

    Google Scholar 

  38. Daugulis, O., Roane, J. & Tran, L. D. Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc. Chem. Res. 48, 1053–1064 (2015).

    Google Scholar 

  39. Hummel, J. R., Boerth, J. A. & Ellman, J. A. Transition-metal-catalyzed C–H bond addition to carbonyls, imines, and related polarized π bonds. Chem. Rev. 117, 9163–9227 (2017).

    Google Scholar 

  40. Dong, Z., Ren, Z., Thompson, S. J., Xu, Y. & Dong, G. Transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev. 117, 9333–9403 (2017).

    Google Scholar 

  41. Rej, S., Ano, Y. & Chatani, N. Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020).

    Google Scholar 

  42. Satoh, T. & Miura, M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. Chem. Eur. J. 16, 11212–11222 (2010).

    Google Scholar 

  43. Baudoin, O. Ring construction by palladium(0)-catalyzed C(sp3)–H activation. Acc. Chem. Res. 50, 1114–1123 (2017).

    Google Scholar 

  44. He, C., Whitehurst, W. G. & Gaunt, M. J. Palladium-catalyzed C(sp3)–H bond functionalization of aliphatic amines. Chem 5, 1031–1058 (2019).

    Google Scholar 

  45. Chen, Z. et al. Catalytic alkylation of unactivated C(sp3)–H bonds for C(sp3)–C(sp3) bond formation. Chem. Soc. Rev. 48, 4921–4942 (2019).

    Google Scholar 

  46. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C–H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006). This publication constitutes a milestone in C–H activation chemistry, owing to the elegant design of a hydrogen-bonding linker, which non-covalently binds to the substrates and enables remote C–H activation.

    ADS  Google Scholar 

  47. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    ADS  Google Scholar 

  48. Yang, Y.-F. et al. Palladium-catalyzed meta-selective C–H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity. J. Am. Chem. Soc. 136, 344–355 (2014).

    Google Scholar 

  49. Dey, A., Sinha, S. K., Achar, T. K. & Maiti, D. Accessing remote meta- and para-C(sp2)–H bonds with covalently attached directing groups. Angew. Chem. Int. Ed. 58, 10820–10843 (2018).

    Google Scholar 

  50. Bag, S. et al. Remote para-C–H functionalization of arenes by a D-shaped biphenyl template-based assembly. J. Am. Chem. Soc. 137, 11888–11891 (2015). This publication arguably presents a directed para-selective C–H activation, employing a carefully designed D-shaped template.

    Google Scholar 

  51. Zhang, Z., Tanaka, K. & Yu, J.-Q. Remote site-selective C–H activation directed by a catalytic bifunctional template. Nature 543, 538–542 (2017).

    ADS  Google Scholar 

  52. Mihai, M. T., Genov, G. R. & Phipps, R. J. Access to the meta position of arenes through transition metal catalysed C–H bond functionalisation: a focus on metals other than palladium. Chem. Soc. Rev. 47, 149–171 (2018).

    Google Scholar 

  53. Leitch, J. A. & Frost, C. G. Ruthenium-catalysed σ-activation for remote meta-selective C–H functionalisation. Chem. Soc. Rev. 46, 7145–7153 (2017).

    Google Scholar 

  54. Korvorapun, K., Kuniyil, R. & Ackermann, L. Late-stage diversification by selectivity switch in meta-C–H activation: evidence for singlet stabilization. ACS Catal. 10, 435–440 (2020).

    Google Scholar 

  55. Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).

    Google Scholar 

  56. Li, J. et al. N-Acyl amino acid ligands for ruthenium(II)-catalyzed meta-C–H tert-alkylation with removable auxiliaries. J. Am. Chem. Soc. 137, 13894–13901 (2015).

    Google Scholar 

  57. Catellani, M., Motti, E. & Della Ca’, N. Catalytic sequential reactions involving palladacycle-directed aryl coupling steps. Acc. Chem. Res. 41, 1512–1522 (2008).

    Google Scholar 

  58. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o,o′-disubstituted vinylarenes. Angew. Chem. Int. Ed. Engl. 36, 119–122 (1997).

    Google Scholar 

  59. Okumura, S. et al. para-Selective alkylation of benzamides and aromatic ketones by cooperative nickel/aluminum catalysis. J. Am. Chem. Soc. 138, 14699–14704 (2016).

    Google Scholar 

  60. St John-Campbell, S. & Bull, J. A. Transient imines as ‘next generation’ directing groups for the catalytic functionalisation of C–H bonds in a single operation. Org. Biomol. Chem. 16, 4582–4595 (2018).

    Google Scholar 

  61. Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C–H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).

    Google Scholar 

  62. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp3)–H bonds using a transient directing group. Science 351, 252–256 (2016).

    ADS  Google Scholar 

  63. Yao, Q.-J., Zhang, S., Zhan, B.-B. & Shi, B.-F. Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed asymmetric C–H olefination enabled by a transient chiral auxiliary. Angew. Chem. Int. Ed. 56, 6617–6621 (2017).

    Google Scholar 

  64. Liao, G. et al. Scalable, stereocontrolled formal syntheses of (+)-isoschizandrin and (+)-steganone: development and applications of palladium(II)-catalyzed atroposelective C–H alkynylation. Angew. Chem. Int. Ed. 57, 3661–3665 (2018).

    Google Scholar 

  65. Brown, D. G. & Bostrom, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Google Scholar 

  66. Goldberg, F. W., Kettle, J. G., Kogej, T., Perry, M. W. & Tomkinson, N. P. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov. Today 20, 11–17 (2015).

    Google Scholar 

  67. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Google Scholar 

  68. Tsang, W. C., Zheng, N. & Buchwald, S. L. Combined C–H functionalization/C–N bond formation route to carbazoles. J. Am. Chem. Soc. 127, 14560–14561 (2005). This article represents the first example of a palladium-catalysed direct C–H amination via C–N bond-forming reductive elimination from a carbometallation intermediate.

    Google Scholar 

  69. Thu, H. Y., Yu, W. Y. & Che, C. M. Intermolecular amidation of unactivated sp2 and sp3 C–H bonds via palladium-catalyzed cascade C–H activation/nitrene insertion. J. Am. Chem. Soc. 128, 9048–9049 (2006). This study reports the first example of an intermolecular C–H amination by oxidative palladium catalysis to showcase the utility of a carbometallation intermediate as an electrophilic amine source.

    Google Scholar 

  70. Wang, Z., Ni, J., Kuninobu, Y. & Kanai, M. Copper-catalyzed intramolecular C(sp3)–H and C(sp2)–H amidation by oxidative cyclization. Angew. Chem. Int. Ed. 53, 3496–3499 (2014).

    Google Scholar 

  71. Chen, X., Hao, X. S., Goodhue, C. E. & Yu, J. Q. Cu(II)-catalyzed functionalizations of aryl C–H bonds using O2 as an oxidant. J. Am. Chem. Soc. 128, 6790–6791 (2006).

    Google Scholar 

  72. Zhang, L. B. et al. Cobalt(II)-catalyzed C–H amination of arenes with simple alkylamines. Org. Lett. 18, 1318–1321 (2016).

    Google Scholar 

  73. Zhao, H., Shang, Y. & Su, W. Rhodium(III)-catalyzed intermolecular N-chelator-directed aromatic C–H amidation with amides. Org. Lett. 15, 5106–5109 (2013).

    Google Scholar 

  74. Suzuki, C., Hirano, K., Satoh, T. & Miura, M. Direct synthesis of N–H carbazoles via iridium(III)-catalyzed intramolecular C–H amination. Org. Lett. 17, 1597–1600 (2015).

    Google Scholar 

  75. Yan, Q. et al. Nickel-catalyzed direct amination of arenes with alkylamines. Org. Lett. 17, 2482–2485 (2015).

    Google Scholar 

  76. Wu, X., Zhao, Y. & Ge, H. Nickel-catalyzed site-selective amidation of unactivated C(sp3)–H bonds. Chem. Eur. J. 20, 9530–9533 (2014).

    Google Scholar 

  77. Yang, M. et al. Silver-catalysed direct amination of unactivated C–H bonds of functionalized molecules. Nat. Commun. 5, 4707 (2014).

    ADS  Google Scholar 

  78. Hartwig, J. F. Electronic effects on reductive elimination to form carbon–carbon and carbon–heteroatom bonds from palladium(II) complexes. Inorg. Chem. 46, 1936–1947 (2007).

    Google Scholar 

  79. Wang, F. & Stahl, S. S. Merging photochemistry with electrochemistry: functional-group tolerant electrochemical amination of C(sp3)–H bonds. Angew. Chem. Int. Ed. 58, 6385–6390 (2019).

    Google Scholar 

  80. Yang, Q. L. et al. Copper-catalyzed electrochemical C–H amination of arenes with secondary amines. J. Am. Chem. Soc. 140, 11487–11494 (2018).

    Google Scholar 

  81. Sauermann, N., Mei, R. & Ackermann, L. Electrochemical C–H amination by cobalt catalysis in a renewable solvent. Angew. Chem. Int. Ed. 57, 5090–5094 (2018).

    Google Scholar 

  82. Qiu, Y., Stangier, M., Meyer, T. H., Oliveira, J. C. A. & Ackermann, L. Iridium-catalyzed electrooxidative C–H activation by chemoselective redox-catalyst cooperation. Angew. Chem. Int. Ed. 57, 14179–14183 (2018).

    Google Scholar 

  83. Gao, X., Wang, P., Zeng, L., Tang, S. & Lei, A. Cobalt(II)-catalyzed electrooxidative C–H amination of arenes with alkylamines. J. Am. Chem. Soc. 140, 4195–4199 (2018).

    Google Scholar 

  84. Choi, S., Chatterjee, T., Choi, W. J., You, Y. & Cho, E. J. Synthesis of carbazoles by a merged visible light photoredox and palladium-catalyzed process. ACS Catal. 5, 4796–4802 (2015).

    Google Scholar 

  85. Tan, Y. & Hartwig, J. F. Palladium-catalyzed amination of aromatic C–H bonds with oxime esters. J. Am. Chem. Soc. 132, 3676–3677 (2010).

    Google Scholar 

  86. Kawano, T., Hirano, K., Satoh, T. & Miura, M. A new entry of amination reagents for heteroaromatic C–H bonds: copper-catalyzed direct amination of azoles with chloroamines at room temperature. J. Am. Chem. Soc. 132, 6900–6901 (2010).

    Google Scholar 

  87. Grohmann, C., Wang, H. & Glorius, F. Rh[III]-catalyzed direct C–H amination using N-chloroamines at room temperature. Org. Lett. 14, 656–659 (2012).

    Google Scholar 

  88. Ng, K. H., Zhou, Z. & Yu, W. Y. Rhodium(III)-catalyzed intermolecular direct amination of aromatic C–H bonds with N-chloroamines. Org. Lett. 14, 272–275 (2012).

    Google Scholar 

  89. Kim, J. Y. et al. Rhodium-catalyzed intermolecular amidation of arenes with sulfonyl azides via chelation-assisted C–H bond activation. J. Am. Chem. Soc. 134, 9110–9113 (2012).

    Google Scholar 

  90. Peng, J., Xie, Z., Chen, M., Wang, J. & Zhu, Q. Copper-catalyzed C(sp2)–H amidation with azides as amino sources. Org. Lett. 16, 4702–4705 (2014).

    Google Scholar 

  91. Sun, B., Yoshino, T., Matsunaga, S. & Kanai, M. Air-stable carbonyl(pentamethylcyclopentadienyl)cobalt diiodide complex as a precursor for cationic (pentamethylcyclopentadienyl)cobalt(III) catalysis: application for directed C-2 selective C–H amidation of indoles. Adv. Synth. Catal. 356, 1491–1495 (2014).

    Google Scholar 

  92. Bhanuchandra, M., Yadav, M. R., Rit, R. K., Rao Kuram, M. & Sahoo, A. K. Ru(II)-catalyzed intermolecular ortho-C–H amidation of aromatic ketones with sulfonyl azides. Chem. Commun. 49, 5225–5227 (2013).

    Google Scholar 

  93. Liu, B., Li, B. & Wang, B. Ru(II)-catalyzed amidation reactions of 8-methylquinolines with azides via C(sp3)–H activation. Chem. Commun. 51, 16334–16337 (2015).

    Google Scholar 

  94. Wang, H., Tang, G. & Li, X. Rhodium(III)-catalyzed amidation of unactivated C(sp3)–H bonds. Angew. Chem. Int. Ed. 54, 13049–13052 (2015).

    Google Scholar 

  95. Kang, T., Kim, Y., Lee, D., Wang, Z. & Chang, S. Iridium-catalyzed intermolecular amidation of sp3 C–H bonds: late-stage functionalization of an unactivated methyl group. J. Am. Chem. Soc. 136, 4141–4144 (2014).

    Google Scholar 

  96. Ryu, J., Kwak, J., Shin, K., Lee, D. & Chang, S. Ir(III)-catalyzed mild C–H amidation of arenes and alkenes: an efficient usage of acyl azides as the nitrogen source. J. Am. Chem. Soc. 135, 12861–12868 (2013).

    Google Scholar 

  97. Sun, K., Li, Y., Xiong, T., Zhang, J. & Zhang, Q. Palladium-catalyzed C–H aminations of anilides with N-fluorobenzenesulfonimide. J. Am. Chem. Soc. 133, 1694–1697 (2011).

    Google Scholar 

  98. Zhou, B., Du, J., Yang, Y., Feng, H. & Li, Y. Rhodium-catalyzed direct addition of aryl C–H bonds to nitrosobenzenes at room temperature. Org. Lett. 15, 6302–6305 (2013).

    Google Scholar 

  99. Breslow, R. & Gellman, S. H. Tosylamidation of cyclohexane by a cytochrome-P-450 Model. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39820001400 (1982).

    Article  Google Scholar 

  100. Breslow, R. & Gellman, S. H. Intramolecular nitrene carbon–hydrogen insertions mediated by transition-metal complexes as nitrogen analogs of cytochrome P-450 reactions. J. Am. Chem. Soc. 105, 6728–6729 (1983).

    Google Scholar 

  101. Varela-Álvarez, A. et al. Rh2(II,III) catalysts with chelating carboxylate and carboxamidate supports: electronic structure and nitrene transfer reactivity. J. Am. Chem. Soc. 138, 2327–2341 (2016).

    Google Scholar 

  102. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    Google Scholar 

  103. Caballero, A. et al. Highly regioselective functionalization of aliphatic carbon–hydrogen bonds with a perbromohomoscorpionate copper(I) catalyst. J. Am. Chem. Soc. 125, 1446–1447 (2003).

    Google Scholar 

  104. Albone, D. P., Aujla, P. S., Challenger, S. & Derrick, A. M. A simple copper catalyst for both aziridination of alkenes and amination of activated hydrocarbons with chloramine-T trihydrate. J. Org. Chem. 63, 9569–9571 (1998).

    Google Scholar 

  105. Harvey, M. E., Musaev, D. G. & Du Bois, J. A diruthenium catalyst for selective, intramolecular allylic C–H amination: reaction development and mechanistic insight gained through experiment and theory. J. Am. Chem. Soc. 133, 17207–17216 (2011).

    Google Scholar 

  106. Ragaini, F. et al. Amination of benzylic C–H bonds by arylazides catalyzed by CoII-porphyrin complexes: a synthetic and mechanistic study. Chem. Eur. J. 9, 249–259 (2003).

    Google Scholar 

  107. Paradine, S. M. et al. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp3)–H amination. Nat. Chem. 7, 987–994 (2015).

    Google Scholar 

  108. Yu, X. Q., Huang, J. S., Zhou, X. G. & Che, C. M. Amidation of saturated C–H bonds catalyzed by electron-deficient ruthenium and manganese porphyrins. A highly catalytic nitrogen atom transfer process. Org. Lett. 2, 2233–2236 (2000).

    Google Scholar 

  109. Aguila, M. J., Badiei, Y. M. & Warren, T. H. Mechanistic insights into C–H amination via dicopper nitrenes. J. Am. Chem. Soc. 135, 9399–9406 (2013).

    Google Scholar 

  110. Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science 359, 1016–1021 (2018).

    ADS  Google Scholar 

  111. Hwang, Y., Jung, H., Lee, E., Kim, D. & Chang, S. Quantitative analysis on two-point ligand modulation of iridium catalysts for chemodivergent C–H amidation. J. Am. Chem. Soc. 142, 8880–8889 (2020).

    Google Scholar 

  112. Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2, 219–227 (2019). This investigation achieves the challenging construction of valuable γ-lactams in an asymmetric fashion under iridium catalysis, employing a novel chiral hydrogen-bonding ligand.

    Google Scholar 

  113. Lee, J. et al. Versatile Cp*Co(III)(LX) catalyst system for selective intramolecular C–H amidation reactions. J. Am. Chem. Soc. 142, 12324–12332 (2020).

    Google Scholar 

  114. Jung, H. et al. Harnessing secondary coordination sphere interactions that enable the selective amidation of benzylic C–H bonds. J. Am. Chem. Soc. 141, 15356–15366 (2019).

    Google Scholar 

  115. Liang, Y.-F. & Jiao, N. Oxygenation via C–H/C–C bond activation with molecular oxygen. Acc. Chem. Res. 50, 1640–1653 (2017).

    Google Scholar 

  116. Thirunavukkarasu, V. S., Kozhushkov, S. I. & Ackermann, L. C–H nitrogenation and oxygenation by ruthenium catalysis. Chem. Commun. 50, 29–39 (2014).

    Google Scholar 

  117. Caballero, A. & Pérez, P. J. Methane as raw material in synthetic chemistry: the final frontier. Chem. Soc. Rev. 42, 8809–8820 (2013).

    Google Scholar 

  118. Gol’dshleger, N. F., Khidekel, M. L., Shilov, A. E. & Shteinman, A. A. Oxidative dehydrogenation of saturated hydrocarbons in palladium(II) complex solutions. Kinet. Katal. 15, 261 (1974).

    Google Scholar 

  119. Jintoku, T., Nishimura, K., Takaki, K. & Fujiwara, Y. Palladium catalyzed transformation of benzene to phenol with molecular oxygen. Chem. Lett. 19, 1687–1688 (1990).

    Google Scholar 

  120. Dick, A. R., Hull, K. L. & Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C–H bonds. J. Am. Chem. Soc. 126, 2300–2301 (2004). This contribution demonstrates the selective formation of C–O bonds via palladium-catalysed C(sp2)–H and challenging C(sp3)–H activation.

    Google Scholar 

  121. Giri, R. et al. Pd-catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic C–H bond oxidation. Angew. Chem. Int. Ed. 44, 7420–7424 (2005).

    Google Scholar 

  122. Thirunavukkarasu, V. S., Hubrich, J. & Ackermann, L. Ruthenium-catalyzed oxidative C(sp2)–H bond hydroxylation: site-selective C–O bond formation on benzamides. Org. Lett. 14, 4210–4213 (2012).

    Google Scholar 

  123. Shan, G., Han, X., Lin, Y., Yu, S. & Rao, Y. Broadening the catalyst and reaction scope of regio- and chemoselective C–H oxygenation: a convenient and scalable approach to 2-acylphenols by intriguing Rh(II) and Ru(II) catalysis. Org. Biomol. Chem. 11, 2318–2322 (2013).

    Google Scholar 

  124. Wang, Z., Kuninobu, Y. & Kanai, M. Copper-mediated direct C(sp3)–H and C(sp2)–H acetoxylation. Org. Lett. 16, 4790–4793 (2014).

    Google Scholar 

  125. Bhadra, S., Dzik, W. I. & Gooßen, L. J. Synthesis of aryl ethers from benzoates through carboxylate-directed C–H-activating alkoxylation with concomitant protodecarboxylation. Angew. Chem. Int. Ed. 52, 2959–2962 (2013).

    Google Scholar 

  126. Ueno, R., Natsui, S. & Chatani, N. Cobalt(II)-catalyzed acyloxylation of C–H bonds in aromatic amides with carboxylic acids. Org. Lett. 20, 1062–1065 (2018).

    Google Scholar 

  127. Yang, F., Zhang, H., Liu, X., Wang, B. & Ackermann, L. Transition metal-catalyzed regio-selective aromatic C–H bond oxidation for C–O bond formation. Chin. J. Org. Chem. 39, 59 (2019).

    Google Scholar 

  128. Kim, J., Shin, K., Jin, S., Kim, D. & Chang, S. Oxidatively induced reductive elimination: exploring the scope and catalyst systems with Ir, Rh, and Ru complexes. J. Am. Chem. Soc. 141, 4137–4146 (2019).

    Google Scholar 

  129. Li, L., Brennessel, W. W. & Jones, W. D. An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C–H activation with [Cp*MCl2]2 (M = Rh, Ir). J. Am. Chem. Soc. 130, 12414–12419 (2008).

    Google Scholar 

  130. Wendlandt, A. E., Suess, A. M. & Stahl, S. S. Copper-catalyzed aerobic oxidative C–H functionalizations: trends and mechanistic insights. Angew. Chem. Int. Ed. 50, 11062–11087 (2011).

    Google Scholar 

  131. Zhang, Y.-H. & Yu, J.-Q. Pd(II)-catalyzed hydroxylation of arenes with 1 atm of O2 or air. J. Am. Chem. Soc. 131, 14654–14655 (2009).

    Google Scholar 

  132. Yan, Y. et al. PdCl2 and N-hydroxyphthalimide co-catalyzed C–H hydroxylation by dioxygen activation. Angew. Chem. Int. Ed. 52, 5827–5831 (2013).

    ADS  Google Scholar 

  133. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Google Scholar 

  134. Canty, A. J., Denney, M. C., van Koten, G., Skelton, B. W. & White, A. H. Carbon–oxygen bond formation at metal(IV) centers:  reactivity of palladium(II) and platinum(II) complexes of the [2,6-(dimethylaminomethyl)phenyl-N,C,N]-(pincer) ligand toward iodomethane and dibenzoyl peroxide; structural studies of M(II) and M(IV) complexes. Organometallics 23, 5432–5439 (2004).

    Google Scholar 

  135. Massignan, L. et al. C–H oxygenation reactions enabled by dual catalysis with electrogenerated hypervalent iodine species and ruthenium complexes. Angew. Chem. Int. Ed. 59, 3184–3189 (2020).

    Google Scholar 

  136. Sauer, G. S. & Lin, S. An electrocatalytic approach to the radical difunctionalization of alkenes. ACS Catal. 8, 5175–5187 (2018).

    Google Scholar 

  137. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Google Scholar 

  138. Kalsi, D., Dutta, S., Barsu, N., Rueping, M. & Sundararaju, B. Room-temperature C–H bond functionalization by merging cobalt and photoredox catalysis. ACS Catal. 8, 8115–8120 (2018).

    Google Scholar 

  139. Zhang, S.-K., Struwe, J., Hu, L. & Ackermann, L. Nickela-electrocatalyzed C–H alkoxylation with secondary alcohols: oxidation-induced reductive elimination at nickel(III). Angew. Chem. Int. Ed. 59, 3178–3183 (2020).

    Google Scholar 

  140. Sauermann, N., Meyer, T. H., Tian, C. & Ackermann, L. Electrochemical cobalt-catalyzed C–H oxygenation at room temperature. J. Am. Chem. Soc. 139, 18452–18455 (2017). This contribution achieves C–H oxygenation under cobalt catalysis, employing electricity as the environmentally benign oxidant.

    Google Scholar 

  141. Meyer, T. H., Oliveira, J. C. A., Ghorai, D. & Ackermann, L. Insights into cobalta(III/IV/II)-electrocatalysis: oxidation-induced reductive elimination for twofold C–H activation. Angew. Chem. Int. Ed. 59, 10955–10960 (2020).

    Google Scholar 

  142. Waltz, K. M., He, X., Muhoro, C. & Hartwig, J. F. Hydrocarbon functionalization by transition metal boryls. J. Am. Chem. Soc. 117, 11357–11358 (1995).

    Google Scholar 

  143. Waltz, K. M. & Hartwig, J. F. Selective functionalization of alkanes by transition-metal boryl complexes. Science 277, 211–213 (1997).

    Google Scholar 

  144. Iverson, C. N. & Smith, M. R. Stoichiometric and catalytic B–C bond formation from unactivated hydrocarbons and boranes. J. Am. Chem. Soc. 121, 7696–7697 (1999).

    Google Scholar 

  145. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. high turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).

    Google Scholar 

  146. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. & Smith, M. R. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    ADS  Google Scholar 

  147. Preshlock, S. M. et al. High-throughput optimization of Ir-catalyzed C–H borylation: a tutorial for practical applications. J. Am. Chem. Soc. 135, 7572–7582 (2013).

    Google Scholar 

  148. Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002 (2011).

    Google Scholar 

  149. Boller, T. M. et al. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes. J. Am. Chem. Soc. 127, 14263–14278 (2005).

    Google Scholar 

  150. Press, L. P., Kosanovich, A. J., McCulloch, B. J. & Ozerov, O. V. High-turnover aromatic C–H borylation catalyzed by POCOP-type pincer complexes of iridium. J. Am. Chem. Soc. 138, 9487–9497 (2016).

    Google Scholar 

  151. Zhu, L. et al. Ir(III)/Ir(V) or Ir(I)/Ir(III) catalytic cycle? Steric-effect-controlled mechanism for the para-C–H borylation of arenes. Organometallics 36, 2107–2115 (2017).

    Google Scholar 

  152. Zhong, R.-L. & Sakaki, S. sp3 C–H borylation catalyzed by iridium(III) triboryl complex: comprehensive theoretical study of reactivity, regioselectivity, and prediction of excellent ligand. J. Am. Chem. Soc. 141, 9854–9866 (2019).

    Google Scholar 

  153. Shi, Y., Gao, Q. & Xu, S. Chiral bidentate boryl ligand enabled iridium-catalyzed enantioselective C(sp3)–H borylation of cyclopropanes. J. Am. Chem. Soc. 141, 10599–10604 (2019).

    Google Scholar 

  154. Jones, M. R., Fast, C. D. & Schley, N. D. Iridium-catalyzed sp3 C–H borylation in hydrocarbon solvent enabled by 2,2′-dipyridylarylmethane ligands. J. Am. Chem. Soc. 142, 6488–6492 (2020).

    Google Scholar 

  155. Cook, A. K., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science 351, 1421–1424 (2016).

    ADS  Google Scholar 

  156. Smith, K. T. et al. Catalytic borylation of methane. Science 351, 1424–1427 (2016).

    ADS  Google Scholar 

  157. Ahn, S. et al. Rational design of a catalyst for the selective monoborylation of methane. ACS Catal. 8, 10021–10031 (2018).

    Google Scholar 

  158. Obligacion, J. V., Semproni, S. P. & Chirik, P. J. Cobalt-catalyzed C–H borylation. J. Am. Chem. Soc. 136, 4133–4136 (2014).

    Google Scholar 

  159. Obligacion, J. V., Semproni, S. P., Pappas, I. & Chirik, P. J. Cobalt-catalyzed C(sp2)-H borylation: mechanistic insights inspire catalyst design. J. Am. Chem. Soc. 138, 10645–10653 (2016).

    Google Scholar 

  160. Obligacion, J. V. & Chirik, P. J. Mechanistic studies of cobalt-catalyzed C(sp2)–H borylation of five-membered heteroarenes with pinacolborane. ACS Catal. 7, 4366–4371 (2017).

    Google Scholar 

  161. Genov, G. R., Douthwaite, J. L., Lahdenperä, A. S. K., Gibson, D. C. & Phipps, R. J. Enantioselective remote C–H activation directed by a chiral cation. Science 367, 1246–1251 (2020).

    ADS  Google Scholar 

  162. Kuninobu, Y., Ida, H., Nishi, M. & Kanai, M. A meta-selective C–H borylation directed by a secondary interaction between ligand and substrate. Nat. Chem. 7, 712–717 (2015).

    Google Scholar 

  163. Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalyzed carbon–halogen bond formation. Chem. Rev. 116, 8003–8104 (2016).

    Google Scholar 

  164. Giri, R., Chen, X. & Yu, J.-Q. Palladium-catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew. Chem. Int. Ed. 44, 2112–2115 (2005).

    Google Scholar 

  165. Hull, K. L., Anani, W. Q. & Sanford, M. S. Palladium-catalyzed fluorination of carbon-hydrogen bonds. J. Am. Chem. Soc. 128, 7134–7135 (2006).

    Google Scholar 

  166. Alsters, P. L. et al. Rigid five- and six-membered C,N,N′-bound aryl-, benzyl-, and alkylorganopalladium complexes: sp2 vs. sp3 carbon-hydrogen activation during cyclopalladation and palladium(IV) intermediates in oxidative addition reactions with dihalogens and alkyl halides. Organometallics 12, 1831–1844 (1993).

    Google Scholar 

  167. Newkome, G. R., Puckett, W. E., Gupta, V. K. & Kiefer, G. E. Cyclometalation of the platinum metals with nitrogen and alkyl, alkenyl, and benzyl carbon donors. Chem. Rev. 86, 451–489 (1986).

    Google Scholar 

  168. McMurtrey, K. B., Racowski, J. M. & Sanford, M. S. Pd-catalyzed C–H fluorination with nucleophilic fluoride. Org. Lett. 14, 4094–4097 (2012).

    Google Scholar 

  169. Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011).

    ADS  Google Scholar 

  170. Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).

    Google Scholar 

  171. Sperger, T., Sanhueza, I. A., Kalvet, I. & Schoenebeck, F. Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem. Rev. 115, 9532–9586 (2015).

    Google Scholar 

  172. Musaev, D. G., Figg, T. M. & Kaledin, A. L. Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C–H bond functionalization. Chem. Soc. Rev. 43, 5009–5031 (2014).

    Google Scholar 

  173. Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).

    ADS  Google Scholar 

  174. Riplinger, C., Pinski, P., Becker, U., Valeev, E. F. & Neese, F. Sparse maps—a systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 144, 024109 (2016).

    ADS  Google Scholar 

  175. Bursch, M. et al. Understanding and quantifying London dispersion effects in organometallic complexes. Acc. Chem. Res. 52, 258–266 (2019).

    Google Scholar 

  176. Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).

    ADS  Google Scholar 

  177. Casanova-Páez, M., Dardis, M. B. & Goerigk, L. ωB2PLYP and ωB2GPPLYP: the first two double-hybrid density functionals with long-range correction optimized for excitation energies. J. Chem. Theory Comput. 15, 4735–4744 (2019).

    Google Scholar 

  178. Mennucci, B. & Tomasi, J. Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 106, 5151–5158 (1997).

    ADS  Google Scholar 

  179. Pyykkö, P. Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem. 63, 45–64 (2012).

    ADS  Google Scholar 

  180. Küchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994).

    ADS  Google Scholar 

  181. Hay, P. J. & Martin, R. L. Theoretical studies of the structures and vibrational frequencies of actinide compounds using relativistic effective core potentials with Hartree–Fock and density functional methods: UF6, NpF6, and PuF6. J. Chem. Phys. 109, 3875–3881 (1998).

    ADS  Google Scholar 

  182. Pantazis, D. A., Chen, X.-Y., Landis, C. R. & Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008).

    Google Scholar 

  183. Senn, H. M. & Thiel, W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 48, 1198–1229 (2009).

    Google Scholar 

  184. Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K. & Frisch, M. J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. THEOCHEM 461–462, 1–21 (1999).

    Google Scholar 

  185. Maseras, F. & Morokuma, K. IMOMM: a new integrated ab initio+molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J. Comput. Chem. 16, 1170–1179 (1995).

    Google Scholar 

  186. Burke, K., Werschnik, J. & Gross, E. K. U. Time-dependent density functional theory: past, present, and future. J. Chem. Phys. 123, 062206 (2005).

    ADS  Google Scholar 

  187. Finley, J., Malmqvist, P.-Å., Roos, B. O. & Serrano-Andrés, L. The multi-state CASPT2 method. Chem. Phys. Lett. 288, 299–306 (1998).

    ADS  Google Scholar 

  188. Houk, K. N. & Liu, F. Holy grails for computational organic chemistry and biochemistry. Acc. Chem. Res. 50, 539–543 (2017).

    Google Scholar 

  189. Besora, M. et al. A quantitative model for alkane nucleophilicity based on C–H bond structural/topological descriptors. Angew. Chem. Int. Ed. 59, 3112–3116 (2020).

    Google Scholar 

  190. McLarney, B. D., Hanna, S., Musaev, D. G. & France, S. Predictive model for the [Rh2(esp)2]-catalyzed intermolecular C(sp3)–H bond insertion of β-carbonyl ester carbenes: interplay between theory and experiment. ACS Catal. 9, 4526–4538 (2019).

    Google Scholar 

  191. Zimmerman, P. M. Automated discovery of chemically reasonable elementary reaction steps. J. Comput. Chem. 34, 1385–1392 (2013).

    Google Scholar 

  192. Maeda, S., Harabuchi, Y., Takagi, M., Taketsugu, T. & Morokuma, K. Artificial force induced reaction (AFIR) method for exploring quantum chemical potential energy surfaces. Chem. Rec. 16, 2232–2248 (2016).

    Google Scholar 

  193. Reyes, R. L. et al. Asymmetric remote C–H borylation of aliphatic amides and esters with a modular iridium catalyst. Science 369, 970–974 (2020).

    ADS  Google Scholar 

  194. Zahrt, A. F. et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science 363, eaau5631 (2019).

    Google Scholar 

  195. Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).

    Google Scholar 

  196. Giri, R., Shi, B.-F., Engle, K. M., Maugel, N. & Yu, J.-Q. Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chem. Soc. Rev. 38, 3242–3272 (2009).

    Google Scholar 

  197. O’Malley, S. J., Tan, K. L., Watzke, A., Bergman, R. G. & Ellman, J. A. Total synthesis of (+)-lithospermic acid by asymmetric intramolecular alkylation via catalytic C–H bond activation. J. Am. Chem. Soc. 127, 13496–13497 (2005).

    Google Scholar 

  198. Kakiuchi, F., Le Gendre, P., Yamada, A., Ohtaki, H. & Murai, S. Atropselective alkylation of biaryl compounds by means of transition metal-catalyzed C–H/olefin coupling. Tetrahedron Asymmetry 11, 2647–2651 (2000).

    Google Scholar 

  199. Wencel-Delord, J. & Colobert, F. Asymmetric C(sp2)–H activation. Chem. Eur. J. 19, 14010–14017 (2013).

    Google Scholar 

  200. Shi, B.-F., Maugel, N., Zhang, Y.-H. & Yu, J.-Q. PdII-catalyzed enantioselective activation of C(sp2)–H and C(sp3)–H bonds using monoprotected amino acids as chiral ligands. Angew. Chem. Int. Ed. 47, 4882–4886 (2008).

    Google Scholar 

  201. Shi, B.-F., Zhang, Y.-H., Lam, J. K., Wang, D.-H. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C–H olefination of diphenylacetic acids. J. Am. Chem. Soc. 132, 460–461 (2010).

    Google Scholar 

  202. Laforteza, B. N., Chan, K. S. L. & Yu, J.-Q. Enantioselective ortho-C–H cross-coupling of diarylmethylamines with organoborons. Angew. Chem. Int. Ed. 54, 11143–11146 (2015).

    Google Scholar 

  203. Diesel, J. & Cramer, N. Generation of heteroatom stereocenters by enantioselective C–H functionalization. ACS Catal. 9, 9164–9177 (2019).

    Google Scholar 

  204. Albicker, M. R. & Cramer, N. Enantioselective palladium-catalyzed direct arylations at ambient temperature: access to indanes with quaternary stereocenters. Angew. Chem. Int. Ed. 48, 9139–9142 (2009).

    Google Scholar 

  205. Saget, T. & Cramer, N. Enantioselective C–H arylation strategy for functionalized dibenzazepinones with quaternary stereocenters. Angew. Chem. Int. Ed. 52, 7865–7868 (2013).

    Google Scholar 

  206. Shintani, R., Otomo, H., Ota, K. & Hayashi, T. Palladium-catalyzed asymmetric synthesis of silicon-stereogenic dibenzosiloles via enantioselective C–H bond functionalization. J. Am. Chem. Soc. 134, 7305–7308 (2012).

    Google Scholar 

  207. Li, Z., Lin, Z.-Q., Yan, C.-G. & Duan, W.-L. Pd-catalyzed asymmetric C–H bond activation for the synthesis of P-stereogenic dibenzophospholes. Organometallics 38, 3916–3920 (2019).

    Google Scholar 

  208. Liao, G., Zhou, T., Yao, Q.-J. & Shi, B.-F. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C–H functionalization. Chem. Commun. 55, 8514–8523 (2019).

    Google Scholar 

  209. Hazra, C. K., Dherbassy, Q., Wencel-Delord, J. & Colobert, F. Synthesis of axially chiral biaryls through sulfoxide-directed asymmetric mild C–H activation and dynamic kinetic resolution. Angew. Chem. Int. Ed. 53, 13871–13875 (2014).

    Google Scholar 

  210. Zheng, J. & You, S.-L. Construction of axial chirality by rhodium-catalyzed asymmetric dehydrogenative Heck coupling of biaryl compounds with alkenes. Angew. Chem. Int. Ed. 53, 13244–13247 (2014).

    Google Scholar 

  211. Liao, G., Zhang, T., Lin, Z.-K. & Shi, B.-F. Transition metal-catalyzed enantioselective C–H functionalization via chiral transient directing group strategies. Angew. Chem. Int. Ed. 59, 19773–19786 (2020).

    Google Scholar 

  212. Dhawa, U. et al. Enantioselective pallada-electrocatalyzed C–H activation by transient directing groups: expedient access to helicenes. Angew. Chem. Int. Ed. 59, 13451–13457 (2020).

    Google Scholar 

  213. Yamaguchi, K., Yamaguchi, J., Studer, A. & Itami, K. Hindered biaryls by C–H coupling: bisoxazoline-Pd catalysis leading to enantioselective C–H coupling. Chem. Sci. 3, 2165–2169 (2012).

    Google Scholar 

  214. Dherbassy, Q., Djukic, J.-P., Wencel-Delord, J. & Colobert, F. Two stereoinduction events in one C–H activation step: a route towards terphenyl ligands with two atropisomeric axes. Angew. Chem. Int. Ed. 57, 4668–4672 (2018).

    Google Scholar 

  215. Nguyen, Q.-H., Guo, S.-M., Royal, T., Baudoin, O. & Cramer, N. Intermolecular Palladium(0)-catalyzed atropo-enantioselective C–H arylation of heteroarenes. J. Am. Chem. Soc. 142, 2161–2167 (2020).

    Google Scholar 

  216. Ye, B. & Cramer, N. Chiral cyclopentadienyl ligands as stereocontrolling element in asymmetric C–H functionalization. Science 338, 504–506 (2012).

    ADS  Google Scholar 

  217. Hyster, T. K., Knörr, L., Ward, T. R. & Rovis, T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338, 500–503 (2012).

    ADS  Google Scholar 

  218. Coulter, M. M., Dornan, P. K. & Dong, V. M. Rh-catalyzed intramolecular olefin hydroacylation: enantioselective synthesis of seven- and eight-membered heterocycles. J. Am. Chem. Soc. 131, 6932–6933 (2009).

    Google Scholar 

  219. Woźniak, Ł. & Cramer, N. Enantioselective C–H bond functionalizations by 3d transition-metal catalysts. Trends Chem. 1, 471–484 (2019).

    Google Scholar 

  220. Loup, J. et al. Asymmetric iron-catalyzed C–H alkylation enabled by remote ligand meta-substitution. Angew. Chem. Int. Ed. 56, 14197–14201 (2017).

    Google Scholar 

  221. Yang, J. & Yoshikai, N. Cobalt-catalyzed enantioselective intramolecular hydroacylation of ketones and olefins. J. Am. Chem. Soc. 136, 16748–16751 (2014). This publication achieves intramolecular hydroacylation in an asymmetric fashion employing a low-valent cobalt catalyst bearing a chiral diphosphine ligand.

    Google Scholar 

  222. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp3)–H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    Google Scholar 

  223. Nakanishi, M., Katayev, D., Besnard, C. & Kündig, E. P. Fused indolines by palladium-catalyzed asymmetric C–C coupling involving an unactivated methylene group. Angew. Chem. Int. Ed. 50, 7438–7441 (2011).

    Google Scholar 

  224. Martin, N., Pierre, C., Davi, M., Jazzar, R. & Baudoin, O. Diastereo- and enantioselective intramolecular C(sp3)-H arylation for the synthesis of fused cyclopentanes. Chem. Eur. J. 18, 4480–4484 (2012).

    Google Scholar 

  225. Saget, T. & Cramer, N. Palladium(0)-catalyzed enantioselective C–H arylation of cyclopropanes: efficient access to functionalized tetrahydroquinolines. Angew. Chem. Int. Ed. 51, 12842–12845 (2012).

    Google Scholar 

  226. Pedroni, J. & Cramer, N. TADDOL-based phosphorus(III)-ligands in enantioselective Pd(0)-catalysed C–H functionalisations. Chem. Commun. 51, 17647–17657 (2015).

    Google Scholar 

  227. Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C–H functionalization reactions. Acc. Chem. Res. 53, 833–851 (2020).

    Google Scholar 

  228. Sokolov, V. I., Troitskaya, L. L. & Reutov, O. A. Asymmetric cyclopalladation of dimethylaminomethylferrocene. J. Organomet. Chem. 182, 537–546 (1979). This pioneering contribution achieves the asymmetric cyclopalladation of ferrocene derivatives.

    Google Scholar 

  229. Hu, L. et al. PdII-catalyzed enantioselective C(sp3)–H activation/cross-coupling reactions of free carboxylic acids. Angew. Chem. Int. Ed. 58, 2134–2138 (2019).

    Google Scholar 

  230. Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 353, 1023–1027 (2016).

    ADS  Google Scholar 

  231. Reyes, R. L., Sato, M., Iwai, T. & Sawamura, M. Asymmetric synthesis of α-aminoboronates via rhodium-catalyzed enantioselective C(sp3)–H borylation. J. Am. Chem. Soc. 142, 589–597 (2020).

    Google Scholar 

  232. Park, H. S., Fan, Z., Zhu, R.-Y. & Yu, J.-Q. Distal γ-C(sp3)–H olefination of ketone derivatives and free carboxylic acids. Angew. Chem. Int. Ed. 59, 12853–12859 (2020).

    Google Scholar 

  233. Fukagawa, S. et al. Enantioselective C(sp3)–H amidation of thioamides catalyzed by a cobaltIII/chiral carboxylic acid hybrid system. Angew. Chem. Int. Ed. 58, 1153–1157 (2019). This study accomplishes challenging asymmetric amidations of C(sp3)–H bonds via Earth-abundant cobalt/chiral carboxylic acid catalysis.

    Google Scholar 

  234. Davies, H. M. L. & Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nat. Rev. Chem. 3, 347–360 (2019).

    Google Scholar 

  235. Johnson, J. A. & Sames, D. C–H bond activation of hydrocarbon segments in complex organic molecules: total synthesis of the antimitotic rhazinilam. J. Am. Chem. Soc. 122, 6321–6322 (2000). This study sets the stage for applications of C–H activations to natural product and total syntheses.

    Google Scholar 

  236. Dangel, B. D., Godula, K., Youn, S. W., Sezen, B. & Sames, D. C–C bond formation via C–H bond activation: synthesis of the core of teleocidin B4. J. Am. Chem. Soc. 124, 11856–11857 (2002).

    Google Scholar 

  237. Li, J., Zhang, X. & Renata, H. Asymmetric chemoenzymatic synthesis of (–)-podophyllotoxin and related aryltetralin lignans. Angew. Chem. Int. Ed. 58, 11657–11660 (2019).

    Google Scholar 

  238. Potter, T. J. & Ellman, J. A. Total synthesis of (+)-pancratistatin by the Rh(III)-catalyzed addition of a densely functionalized benzamide to a sugar-derived nitroalkene. Org. Lett. 19, 2985–2988 (2017).

    Google Scholar 

  239. Xu, X., Liu, Y. & Park, C.-M. Rhodium(III)-catalyzed intramolecular annulation through C–H activation: total synthesis of (±)-antofine, (±)-septicine, (±)-tylophorine, and rosettacin. Angew. Chem. Int. Ed. 51, 9372–9376 (2012).

    Google Scholar 

  240. Chapman, L. M., Beck, J. C., Wu, L. & Reisman, S. E. Enantioselective total synthesis of (+)-psiguadial B. J. Am. Chem. Soc. 138, 9803–9806 (2016).

    Google Scholar 

  241. Ye, Q., Qu, P. & Snyder, S. A. Total syntheses of scaparvins B, C, and D enabled by a key C–H functionalization. J. Am. Chem. Soc. 139, 18428–18431 (2017).

    Google Scholar 

  242. Hung, K., Condakes, M. L., Morikawa, T. & Maimone, T. J. Oxidative entry into the Illicium sesquiterpenes: enantiospecific synthesis of (+)-pseudoanisatin. J. Am. Chem. Soc. 138, 16616–16619 (2016).

    Google Scholar 

  243. Siler, D. A., Mighion, J. D. & Sorensen, E. J. An enantiospecific synthesis of jiadifenolide. Angew. Chem. Int. Ed. 53, 5332–5335 (2014).

    Google Scholar 

  244. Leal, R. A. et al. Application of a palladium-catalyzed C–H functionalization/indolization method to syntheses of cis-trikentrin A and herbindole B. Angew. Chem. Int. Ed. 55, 11824–11828 (2016).

    Google Scholar 

  245. Fox, J. C., Gilligan, R. E., Pitts, A. K., Bennett, H. R. & Gaunt, M. J. The total synthesis of K-252c (staurosporinone) via a sequential C–H functionalisation strategy. Chem. Sci. 7, 2706–2710 (2016).

    Google Scholar 

  246. Lindovska, P. & Movassaghi, M. Concise synthesis of (–)-hodgkinsine, (–)-calycosidine, (–)-hodgkinsine B, (–)-quadrigemine C, and (–)-psycholeine via convergent and directed modular assembly of cyclotryptamines. J. Am. Chem. Soc. 139, 17590–17596 (2017).

    Google Scholar 

  247. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

    ADS  Google Scholar 

  248. Berger, M., Knittl-Frank, C., Bauer, S., Winter, G. & Maulide, N. Application of relay C–H oxidation logic to polyhydroxylated oleanane triterpenoids. Chem 6, 1183–1189 (2020).

    Google Scholar 

  249. Quinn, R. K. et al. Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc. 138, 696–702 (2016).

    Google Scholar 

  250. Hong, B. et al. Enantioselective total synthesis of (–)-incarviatone A. J. Am. Chem. Soc. 137, 11946–11949 (2015).

    Google Scholar 

  251. Feng, Y. et al. Total synthesis of verruculogen and fumitremorgin a enabled by ligand-controlled C–H borylation. J. Am. Chem. Soc. 137, 10160–10163 (2015).

    Google Scholar 

  252. Fischer, D. F. & Sarpong, R. Total synthesis of (+)-complanadine a using an iridium-catalyzed pyridine C–H functionalization. J. Am. Chem. Soc. 132, 5926–5927 (2010).

    Google Scholar 

  253. Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).

    ADS  Google Scholar 

  254. Cherney, E. C., Lopchuk, J. M., Green, J. C. & Baran, P. S. A unified approach to ent-atisane diterpenes and related alkaloids: synthesis of (–)-methyl atisenoate, (–)-isoatisine, and the hetidine skeleton. J. Am. Chem. Soc. 136, 12592–12595 (2014).

    Google Scholar 

  255. Renata, H. et al. Development of a concise synthesis of ouabagenin and hydroxylated corticosteroid analogues. J. Am. Chem. Soc. 137, 1330–1340 (2015).

    Google Scholar 

  256. Xue, F. et al. Formal total syntheses of (–)- and (+)-actinophyllic acid. J. Org. Chem. 83, 754–764 (2018).

    Google Scholar 

  257. Furst, L., Narayanam, J. M. R. & Stephenson, C. R. J. Total synthesis of (+)-gliocladin C enabled by visible-light photoredox catalysis. Angew. Chem. Int. Ed. 50, 9655–9659 (2011).

    Google Scholar 

  258. Rosen, B. R., Werner, E. W., O’Brien, A. G. & Baran, P. S. Total synthesis of dixiamycin B by electrochemical oxidation. J. Am. Chem. Soc. 136, 5571–5574 (2014).

    Google Scholar 

  259. Loskot, S. A., Romney, D. K., Arnold, F. H. & Stoltz, B. M. Enantioselective total synthesis of nigelladine a via late-stage C–H oxidation enabled by an engineered P450 enzyme. J. Am. Chem. Soc. 139, 10196–10199 (2017).

    Google Scholar 

  260. de Rond, T. et al. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme. Nat. Chem. Biol. 13, 1155–1157 (2017).

    Google Scholar 

  261. Zwick, C. R. & Renata, H. Evolution of biocatalytic and chemocatalytic C–H functionalization strategy in the synthesis of manzacidin C. J. Org. Chem. 83, 7407–7415 (2018).

    Google Scholar 

  262. Zhang, Y., Zhang, H., Ghosh, D. & Williams, R. O. Just how prevalent are peptide therapeutic products? A critical review. Int. J. Pharm. 587, 119491–119491 (2020).

    Google Scholar 

  263. Brandhofer, T. & García Mancheño, O. Site-selective C–H bond activation/functionalization of α-amino acids and peptide-like derivatives. Eur. J. Org. Chem. 2018, 6050–6067 (2018).

    Google Scholar 

  264. Wang, W., Lorion, M. M., Shah, J., Kapdi, A. R. & Ackermann, L. Late-stage peptide diversification by position-selective C–H activation. Angew. Chem. Int. Ed. 57, 14700–14717 (2018).

    Google Scholar 

  265. Sengupta, S. & Mehta, G. Macrocyclization via C–H functionalization: a new paradigm in macrocycle synthesis. Org. Biomol. Chem. 18, 1851–1876 (2020).

    Google Scholar 

  266. Ruiz-Rodriguez, J., Albericio, F. & Lavilla, R. Postsynthetic modification of peptides: chemoselective C-arylation of tryptophan residues. Chem. Eur. J. 16, 1124–1127 (2010).

    Google Scholar 

  267. Dong, H., Limberakis, C., Liras, S., Price, D. & James, K. Peptidic macrocyclization via palladium-catalyzed chemoselective indole C-2 arylation. Chem. Commun. 48, 11644–11646 (2012).

    Google Scholar 

  268. Zhu, Y., Bauer, M. & Ackermann, L. Late-stage peptide diversification by bioorthogonal catalytic C–H arylation at 23 °C in H2O. Chem. Eur. J. 21, 9980–9983 (2015).

    Google Scholar 

  269. Reay, A. J. et al. Mild and regioselective Pd(OAc)2-catalyzed C–H arylation of tryptophans by [ArN2]X, promoted by tosic acid. ACS Catal. 7, 5174–5179 (2017).

    Google Scholar 

  270. Mendive-Tapia, L. et al. New peptide architectures through C–H activation stapling between tryptophan–phenylalanine/tyrosine residues. Nat. Commun. 6, 7160 (2015).

    ADS  Google Scholar 

  271. Perez-Rizquez, C., Abian, O. & Palomo, J. M. Site-selective modification of tryptophan and protein tryptophan residues through PdNP bionanohybrid-catalysed C–H activation in aqueous media. Chem. Commun. 55, 12928–12931 (2019). This publication represents the forefront of the application of C–H activation to peptide modification, detailing the site-selective C–H activation of one or two Trp residues in the protein Cal-B in aqueous media at room temperature using a palladium nanoparticle biohybrid catalyst.

    Google Scholar 

  272. Hansen, M. B., Hubálek, F., Skrydstrup, T. & Hoeg-Jensen, T. Chemo- and regioselective ethynylation of tryptophan-containing peptides and proteins. Chem. Eur. J. 22, 1572–1576 (2016).

    Google Scholar 

  273. Tolnai, G. L., Brand, J. P. & Waser, J. Gold-catalyzed direct alkynylation of tryptophan in peptides using TIPS-EBX. Beilstein. J. Org. Chem. 12, 745–749 (2016).

    Google Scholar 

  274. Bai, Z., Cai, C., Yu, Z. & Wang, H. Backbone-enabled directional peptide macrocyclization through late-stage palladium-catalyzed δ-C(sp2)–H olefination. Angew. Chem. Int. Ed. 57, 13912–13916 (2018).

    Google Scholar 

  275. Bai, Z., Cai, C., Sheng, W., Ren, Y. & Wang, H. Late-stage peptide macrocyclization by palladium-catalyzed site-selective C–H olefination of tryptophan. Angew. Chem. Int. Ed. 59, 14686–14692 (2020).

    Google Scholar 

  276. Schischko, A., Ren, H., Kaplaneris, N. & Ackermann, L. Bioorthogonal diversification of peptides through selective ruthenium(II)-catalyzed C–H activation. Angew. Chem. Int. Ed. 56, 1576–1580 (2017).

    Google Scholar 

  277. Schischko, A. et al. Late-stage peptide C–H alkylation for bioorthogonal C–H activation featuring solid phase peptide synthesis. Nat. Commun. 10, 3553 (2019).

    ADS  Google Scholar 

  278. Ruan, Z., Sauermann, N., Manoni, E. & Ackermann, L. Manganese-catalyzed C–H alkynylation: expedient peptide synthesis and modification. Angew. Chem. Int. Ed. 56, 3172–3176 (2017).

    Google Scholar 

  279. Wang, W., Subramanian, P., Martinazzoli, O., Wu, J. & Ackermann, L. Glycopeptides by linch-pin C–H activations for peptide–carbohydrate conjugation by manganese(I)-catalysis. Chem. Eur. J. 25, 10585–10589 (2019).

    Google Scholar 

  280. Lorion, M. M., Kaplaneris, N., Son, J., Kuniyil, R. & Ackermann, L. Late-stage peptide diversification through cobalt-catalyzed C–H activation: sequential multicatalysis for stapled peptides. Angew. Chem. Int. Ed. 58, 1684–1688 (2019).

    Google Scholar 

  281. Peng, J., Li, C., Khamrakulov, M., Wang, J. & Liu, H. Rhodium(III)-catalyzed C–H alkenylation: access to maleimide-decorated tryptophan and tryptophan-containing peptides. Org. Lett. 22, 1535–1541 (2020).

    Google Scholar 

  282. Gong, W., Zhang, G., Liu, T., Giri, R. & Yu, J. Q. Site-selective C(sp3)–H functionalization of di-, tri-, and tetrapeptides at the N-terminus. J. Am. Chem. Soc. 136, 16940–16946 (2014).

    Google Scholar 

  283. Tang, J., He, Y., Chen, H., Sheng, W. & Wang, H. Synthesis of bioactive and stabilized cyclic peptides by macrocyclization using C(sp3)–H activation. Chem. Sci. 8, 4565–4570 (2017).

    Google Scholar 

  284. Noisier, A. F. M., García, J., Ionuţ, I. A. & Albericio, F. Stapled peptides by late-stage C(sp3)–H activation. Angew. Chem. Int. Ed. 56, 314–318 (2017).

    Google Scholar 

  285. Mondal, B., Roy, B. & Kazmaier, U. Stereoselective peptide modifications via β-C(sp3)–H arylations. J. Org. Chem. 81, 11646–11655 (2016).

    Google Scholar 

  286. Li, X. et al. Synthesis of cyclophane-braced peptide macrocycles via palladium-catalyzed intramolecular C(sp3)–H arylation of N-methyl alanine at C-termini. Org. Lett. 22, 0–4 (2020).

    Google Scholar 

  287. Bauer, M., Wang, W., Lorion, M. M., Dong, C. & Ackermann, L. Internal peptide late-stage diversification: peptide-isosteric triazoles for primary and secondary C(sp3)–H activation. Angew. Chem. Int. Ed. 57, 203–207 (2018).

    Google Scholar 

  288. Wang, W., Lorion, M. M., Martinazzoli, O. & Ackermann, L. Bodipy peptide labeling by late-stage C(sp3)–H activation. Angew. Chem. Int. Ed. 57, 10554–10558 (2018).

    Google Scholar 

  289. Wu, J., Kaplaneris, N., Ni, S., Kaltenhäuser, F. & Ackermann, L. Late-stage C(sp2)–H and C(sp3)–H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem. Sci. 11, 6521–6526 (2020).

    Google Scholar 

  290. Zhan, B. B., Fan, J., Jin, L. & Shi, B. F. Divergent synthesis of silicon-containing peptides via Pd-catalyzed post-assembly γ-C(sp3)–H silylation. ACS Catal. 9, 3298–3303 (2019).

    Google Scholar 

  291. Li, B. et al. Construction of natural-product-like cyclophane-braced peptide macrocycles via sp3 C–H arylation. J. Am. Chem. Soc. 141, 9401–9407 (2019).

    Google Scholar 

  292. Liu, L., Liu, Y. H. & Shi, B. F. Synthesis of amino acids and peptides with bulky side chains: via ligand-enabled carboxylate-directed γ-C(sp3)–H arylation. Chem. Sci. 11, 290–294 (2020).

    Google Scholar 

  293. Weng, Y. et al. Peptide late-stage C(sp3)–H arylation by native asparagine assistance without exogenous directing group. Chem. Sci. 11, 9290–9295 (2020).

    Google Scholar 

  294. Pouliot, J.-R., Grenier, F., Blaskovits, J. T., Beaupré, S. & Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 116, 14225–14274 (2016).

    Google Scholar 

  295. Nielsen, K. T., Bechgaard, K. & Krebs, F. C. Removal of palladium nanoparticles from polymer materials. Macromolecules 38, 658–659 (2005).

    ADS  Google Scholar 

  296. Ishikawa, T., Motoyanagi, J. & Minoda, M. Synthesis of brush-shaped π-conjugated polymers based on well-defined thiophene-end-capped poly(vinyl ether)s. Chem. Lett. 45, 415–417 (2016).

    Google Scholar 

  297. Okamoto, K., Housekeeper, J. B., Michael, F. E. & Luscombe, C. K. Thiophene based hyperbranched polymers with tunable branching using direct arylation methods. Polym. Chem. 4, 3499–3506 (2013).

    Google Scholar 

  298. Liu, D.-P. et al. Fluorinated porous organic polymers via direct C–H arylation polycondensation. ACS Macro Lett. 2, 522–526 (2013).

    Google Scholar 

  299. Schipper, D. J. & Fagnou, K. Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials. Chem. Mater. 23, 1594–1600 (2011).

    Google Scholar 

  300. Gobalasingham, N. S., Noh, S. & Thompson, B. C. Palladium-catalyzed oxidative direct arylation polymerization (Oxi-DArP) of an ester-functionalized thiophene. Polym. Chem. 7, 1623–1631 (2016).

    Google Scholar 

  301. Lu, W., Kuwabara, J. & Kanbara, T. Polycondensation of dibromofluorene analogues with tetrafluorobenzene via direct arylation. Macromolecules 44, 1252–1255 (2011).

    ADS  Google Scholar 

  302. Bohra, H. & Wang, M. Direct C–H arylation: a ‘Greener’ approach towards facile synthesis of organic semiconducting molecules and polymers. J. Mater. Chem. A 5, 11550–11571 (2017).

    Google Scholar 

  303. Gather, M. C., Köhnen, A. & Meerholz, K. White organic light-emitting diodes. Adv. Mater. 23, 233–248 (2011).

    Google Scholar 

  304. Facchetti, A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2011).

    Google Scholar 

  305. Jin, Y. et al. A novel naphtho[1,2-c:5,6-c′]bis([1,2,5]thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater. 28, 9811–9818 (2016).

    Google Scholar 

  306. Wakioka, M., Kitano, Y. & Ozawa, F. A highly efficient catalytic system for polycondensation of 2,7-dibromo-9,9-dioctylfluorene and 1,2,4,5-tetrafluorobenzene via direct arylation. Macromolecules 46, 370–374 (2013).

    ADS  Google Scholar 

  307. Pankow, R. M., Ye, L. & Thompson, B. C. Copper catalyzed synthesis of conjugated copolymers using direct arylation polymerization. Polym. Chem. 9, 4120–4124 (2018).

    Google Scholar 

  308. Kuwabara, J. et al. Synthesis of conjugated polymers via direct C–H/C–Cl coupling reactions using a Pd/Cu binary catalytic system. Polym. Chem. 10, 2298–2304 (2019).

    Google Scholar 

  309. Tsuchiya, K. & Ogino, K. Catalytic oxidative polymerization of thiophene derivatives. Polym. J. 45, 281–286 (2013).

    Google Scholar 

  310. Huang, Q. et al. Cu-catalysed oxidative C–H/C–H coupling polymerisation of benzodiimidazoles: an efficient approach to regioregular polybenzodiimidazoles for blue-emitting materials. Chem. Commun. 50, 13739–13741 (2014).

    Google Scholar 

  311. Della, Ca’, N., Fontana, M., Motti, E. & Catellani, M. Pd/Norbornene: a winning combination for selective aromatic functionalization via C–H bond activation. Acc. Chem. Res. 49, 1389–1400 (2016).

    Google Scholar 

  312. Liu, S., Jin, Z., Teo, Y. C. & Xia, Y. Efficient synthesis of rigid ladder polymers via palladium catalyzed annulation. J. Am. Chem. Soc. 136, 17434–17437 (2014).

    Google Scholar 

  313. Lai, H. W. H. et al. Tuning the molecular weights, chain packing, and gas-transport properties of CANAL ladder polymers by short alkyl substitutions. Macromolecules 52, 6294–6302 (2019).

    ADS  Google Scholar 

  314. Ma, X. et al. Facile synthesis and study of microporous catalytic arene–norbornene annulation — Tröger’s base ladder polymers for membrane air separation. ACS Macro Lett. 9, 680–685 (2020).

    Google Scholar 

  315. Yang, Y., Nishiura, M., Wang, H. & Hou, Z. Metal-catalyzed CH activation for polymer synthesis and functionalization. Coord. Chem. Rev. 376, 506–532 (2018).

    Google Scholar 

  316. Ringelberg, S. N., Meetsma, A., Hessen, B. & Teuben, J. H. Thiophene C–H activation as a chain-transfer mechanism in ethylene polymerization:  catalytic formation of thienyl-capped polyethylene. J. Am. Chem. Soc. 121, 6082–6083 (1999).

    Google Scholar 

  317. Yamamoto, A., Nishiura, M., Oyamada, J., Koshino, H. & Hou, Z. Scandium-catalyzed syndiospecific chain-transfer polymerization of styrene using anisoles as a chain transfer agent. Macromolecules 49, 2458–2466 (2016).

    ADS  Google Scholar 

  318. Kaneko, H., Nagae, H., Tsurugi, H. & Mashima, K. End-functionalized polymerization of 2-vinylpyridine through initial C–H bond activation of N-heteroaromatics and internal alkynes by yttrium ene–diamido complexes. J. Am. Chem. Soc. 133, 19626–19629 (2011).

    Google Scholar 

  319. Schaffer, A., Kränzlein, M. & Rieger, B. Precise synthesis of poly(dimethylsiloxane) copolymers through C–H bond-activated macroinitiators via yttrium-mediated group transfer polymerization and ring-opening polymerization. Macromolecules 53, 8382–8392 (2020).

    ADS  Google Scholar 

  320. Perry, M. R. et al. Catalytic synthesis of secondary amine-containing polymers: variable hydrogen bonding for tunable rheological properties. Macromolecules 49, 4423–4430 (2016).

    ADS  Google Scholar 

  321. Kuanr, N. et al. Dynamic cross-linking of catalytically synthesized poly(aminonorbornenes). Macromolecules 53, 2649–2661 (2020).

    ADS  Google Scholar 

  322. Guo, H., Tapsak, M. A. & Weber, W. P. Ruthenium-catalyzed regioselective step-growth copolymerization of p-(dialkylamino)acetophenones and α,ω-dienes. Macromolecules 28, 4714–4718 (1995).

    ADS  Google Scholar 

  323. Shin, J. et al. Controlled functionalization of crystalline polystyrenes via activation of aromatic C–H bonds. Macromolecules 40, 8600–8608 (2007).

    ADS  Google Scholar 

  324. Kondo, Y. et al. Rhodium-catalyzed, regiospecific functionalization of polyolefins in the melt. J. Am. Chem. Soc. 124, 1164–1165 (2002).

    Google Scholar 

  325. Gupta, S. K. & Weber, W. P. Ruthenium-catalyzed chemical modification of poly(vinylmethylsiloxane) with 9-acetylphenanthrene. Macromolecules 35, 3369–3373 (2002).

    ADS  Google Scholar 

  326. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016). This review outlines the strategies for LSF very well.

    Google Scholar 

  327. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Google Scholar 

  328. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Google Scholar 

  329. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

    Google Scholar 

  330. Dai, H.-X., Stepan, A. F., Plummer, M. S., Zhang, Y.-H. & Yu, J.-Q. Divergent C–H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc. 133, 7222–7228 (2011). This article presents a divergent approach to SAR exploration by C–H functionalization.

    Google Scholar 

  331. Tomberg, A. et al. Relative strength of common directing groups in palladium-catalyzed aromatic C–H activation. iScience 20, 373–391 (2019).

    ADS  Google Scholar 

  332. Li, J., De Sarkar, S. & Ackermann, L. Meta- and para-selective C–H functionalization by C–H activation. Top. Organomet. Chem. 55, 217–257 (2016).

    Google Scholar 

  333. Friis, S. D., Johansson, M. J. & Ackermann, L. Cobalt-catalysed C–H methylation for late-stage drug diversification. Nat. Chem. 12, 511–519 (2020). This study achieves the late-stage diversification of various natural products and drugs by C–H methylation under sustainable cobalt catalysis.

    Google Scholar 

  334. Wencel-Delord, J. Decorating and diversifying drugs. Nat. Chem. 12, 505–506 (2020).

    Google Scholar 

  335. Rodrigalvarez, J. et al. Catalytic C(sp3)–H bond activation in tertiary alkylamines. Nat. Chem. 12, 76–81 (2020). This publication achieves challenging C(sp3)–H activations in tertiary alkylamines employing a palladium/mono-protected amino acid catalyst.

    Google Scholar 

  336. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Google Scholar 

  337. Larsen, M. A. & Hartwig, J. F. Iridium-catalyzed C–H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism. J. Am. Chem. Soc. 136, 4287–4299 (2014). This article fully investigates the scope of iridium-catalysed C–H borylation of heteroarenes, including guidelines for the regiochemical outcome of these processes.

    Google Scholar 

  338. Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    ADS  Google Scholar 

  339. Loup, J., Dhawa, U., Pesciaioli, F., Wencel-Delord, J. & Ackermann, L. Enantioselective C–H activation with earth-abundant 3d transition metals. Angew. Chem. Int. Ed. 58, 12803–12818 (2019). This review summarizes recent developments in the challenging area of asymmetric C–H activation under environmentally benign 3d transition metal catalysis.

    Google Scholar 

  340. Fan, Z. et al. Rational development of remote C–H functionalization of biphenyl: experimental and computational studies. Angew. Chem. Int. Ed. 59, 4770–4777 (2020). This combined experimental and computational study discloses efficient and selective nitrile-directed meta-C–H activations, proceeding through a hetero-bimetallic silver–palladium intermediate.

    Google Scholar 

  341. Yu, Q., Hu, L., Wang, Y., Zheng, S. & Huang, J. Directed meta-selective bromination of arenes with ruthenium catalysts. Angew. Chem. Int. Ed. 54, 15284–15288 (2015).

    Google Scholar 

  342. Shen, P.-X., Wang, X.-C., Wang, P., Zhu, R.-Y. & Yu, J.-Q. Ligand-enabled meta-C–H alkylation and arylation using a modified norbornene. J. Am. Chem. Soc. 137, 11574–11577 (2015).

    Google Scholar 

  343. Wang, X.-C. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

    ADS  Google Scholar 

  344. Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).

    Google Scholar 

  345. Funes-Ardoiz, I. & Maseras, F. Oxidative coupling mechanisms: current state of understanding. ACS Catal. 8, 1161–1172 (2018).

    Google Scholar 

  346. Ano, Y. & Chatani, N. ortho-Directed C–H alkylation of substituted benzenes. Org. React. 100, 622–670 (2019).

    Google Scholar 

  347. Guillemard, L. & Wencel-Delord, J. When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein J. Org. Chem. 16, 1754–1804 (2020).

    Google Scholar 

  348. Capaldo, L., Quadri, L. L. & Ravelli, D. Merging photocatalysis with electrochemistry: the dawn of a new alliance in organic synthesis. Angew. Chem. Int. Ed. 58, 17508–17510 (2019).

    Google Scholar 

  349. Samanta, R. C., Meyer, T. H., Siewert, I. & Ackermann, L. Renewable resources for sustainable metallaelectro-catalyzed C–H activation. Chem. Sci. 11, 8657–8670 (2020).

    Google Scholar 

  350. Gandeepan, P., Finger, L. H., Meyer, T. H. & Ackermann, L. 3d metallaelectrocatalysis for resource economical syntheses. Chem. Soc. Rev. 49, 4254–4272 (2020).

    Google Scholar 

  351. Jorner, K., Tomberg, A., Bauer, C., Sköld, C. & Norrby, P.-O. Organic reactivity from mechanism to machine learning. Nat. Rev. Chem. 5, 240–255 (2021).

    Google Scholar 

  352. Struble, T. J., Coley, C. W. & Jensen, K. F. Multitask prediction of site selectivity in aromatic C–H functionalization reactions. React. Chem. Eng. 5, 896–902 (2020).

    Google Scholar 

  353. Dwivedi, V., Kalsi, D. & Sundararaju, B. Electrochemical-/photoredox aspects of transition metal-catalyzed directed C–H bond activation. ChemCatChem 11, 5160–5187 (2019).

    Google Scholar 

  354. De Abreu, M., Belmont, P. & Brachet, E. Synergistic photoredox/transition-metal catalysis for carbon–carbon bond formation reactions. Eur. J. Org. Chem. 2020, 1327–1378 (2020).

    Google Scholar 

  355. Fabry, D. C. & Rueping, M. Merging visible light photoredox catalysis with metal catalyzed C–H activations: on the role of oxygen and superoxide ions as oxidants. Acc. Chem. Res. 49, 1969–1979 (2016).

    Google Scholar 

  356. Zoller, J., Fabry, D. C., Ronge, M. A. & Rueping, M. Synthesis of indoles using visible light: photoredox catalysis for palladium-catalyzed C–H activation. Angew. Chem. Int. Ed. 53, 13264–13268 (2014).

    Google Scholar 

  357. Fabry, D. C., Zoller, J., Raja, S. & Rueping, M. Combining rhodium and photoredox catalysis for C–H functionalizations of arenes: oxidative Heck reactions with visible light. Angew. Chem. Int. Ed. 53, 10228–10231 (2014).

    Google Scholar 

  358. Fabry, D. C., Ronge, M. A., Zoller, J. & Rueping, M. C–H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant. Angew. Chem. Int. Ed. 54, 2801–2805 (2015).

    Google Scholar 

  359. Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011).

    Google Scholar 

  360. Sahoo, M. K., Midya, S. P., Landge, V. G. & Balaraman, E. A unified strategy for silver-, base-, and oxidant-free direct arylation of C–H bonds. Green Chem. 19, 2111–2117 (2017).

    Google Scholar 

  361. Jiang, J., Zhang, W.-M., Dai, J.-J., Xu, J. & Xu, H.-J. Visible-light-promoted C–H arylation by merging palladium catalysis with organic photoredox catalysis. J. Org. Chem. 82, 3622–3630 (2017).

    Google Scholar 

  362. Zhou, C., Li, P., Zhu, X. & Wang, L. Merging photoredox with palladium catalysis: decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids under mild reaction conditions. Org. Lett. 17, 6198–6201 (2015).

    Google Scholar 

  363. Sharma, U. K., Gemoets, H. P. L., Schröder, F., Noël, T. & & Van der Eycken, E. V. Merger of visible-light photoredox catalysis and C–H activation for the room-temperature C-2 acylation of indoles in batch and flow. ACS Catal. 7, 3818–3823 (2017).

    Google Scholar 

  364. Gandeepan, P., Koeller, J., Korvorapun, K., Mohr, J. & Ackermann, L. Visible-light for ruthenium-catalyzed meta-C–H alkylation at room temperature. Angew. Chem. Int. Ed. 58, 9820–9825 (2019).

    Google Scholar 

  365. Greaney, M. & Sagadevan, A. Meta-selective C–H activation of arenes at room temperature using visible light: dual-function ruthenium catalysis. Angew. Chem. Int. Ed. 58, 9826–9830 (2019).

    Google Scholar 

  366. Thongpaen, J. et al. Visible light induced rhodium(I)-catalyzed C–H borylation. Angew. Chem. Int. Ed. 58, 15244–15248 (2019).

    Google Scholar 

  367. Gauchot, V., Sutherland, D. R. & Lee, A. L. Dual gold and photoredox catalysed C–H activation of arenes for aryl–aryl cross couplings. Chem. Sci. 8, 2885–2889 (2017).

    Google Scholar 

  368. Liang, Y.-F., Steinbock, R., Yang, L. & Ackermann, L. Continuous visible-light photoflow approach for a manganese-catalyzed (het)arene C–H arylation. Angew. Chem. Int. Ed. 57, 10625–10629 (2018).

    Google Scholar 

  369. Yang, F., Koeller, J. & Ackermann, L. Photoinduced copper-catalyzed C–H arylation at room temperature. Angew. Chem. Int. Ed. 55, 4759–4762 (2016).

    Google Scholar 

  370. Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci. 7, 89–93 (2016).

    Google Scholar 

  371. Ackermann, L. Metalla-electrocatalyzed C–H activation by earth-abundant 3d metals and beyond. Acc. Chem. Res. 53, 84–104 (2020).

    Google Scholar 

  372. Ma, C., Fang, P. & Mei, T.-S. Recent advances in C–H functionalization using electrochemical transition metal catalysis. ACS Catal. 8, 7179–7189 (2018).

    Google Scholar 

  373. Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    Google Scholar 

  374. Kathiravan, S., Suriyanarayanan, S. & Nicholls, I. A. Electrooxidative amination of sp2 C–H bonds: coupling of amines with aryl amides via copper catalysis. Org. Lett. 21, 1968–1972 (2019).

    Google Scholar 

  375. Zhang, S.-K., Samanta, R. C., Sauermann, N. & Ackermann, L. Nickel-catalyzed electrooxidative C–H amination: support for nickel(IV). Chem. Eur. J. 24, 19166–19170 (2018).

    Google Scholar 

  376. Tang, S., Wang, D., Liu, Y., Zeng, L. & Lei, A. Cobalt-catalyzed electrooxidative C–H/N–H [4 + 2] annulation with ethylene or ethyne. Nat. Commun. 9, 798 (2018).

    ADS  Google Scholar 

  377. Qiu, Y., Tian, C., Massignan, L., Rogge, T. & Ackermann, L. Electrooxidative ruthenium-catalyzed C–H/O–H annulation by weak O-coordination. Angew. Chem. Int. Ed. 57, 5818–5822 (2018).

    Google Scholar 

  378. Ma, C. et al. Palladium-catalyzed C–H activation/C–C cross-coupling reactions via electrochemistry. Chem. Commun. 53, 12189–12192 (2017).

    Google Scholar 

  379. Kakiuchi, F. et al. Palladium-catalyzed aromatic C–H halogenation with hydrogen halides by means of electrochemical oxidation. J. Am. Chem. Soc. 131, 11310–11311 (2009).

    Google Scholar 

  380. Amatore, C., Cammoun, C. & Jutand, A. Electrochemical recycling of benzoquinone in the Pd/benzoquinone-catalyzed Heck-type reactions from arenes. Adv. Synth. Catal. 349, 292–296 (2007).

    Google Scholar 

  381. Samanta, R. C., Struwe, J. & Ackermann, L. Nickela-electrocatalyzed mild C–H alkylations at room temperature. Angew. Chem. Int. Ed. 59, 14154–14159 (2020).

    Google Scholar 

  382. Qiu, Y., Scheremetjew, A., Finger, L. H. & Ackermann, L. Electrophotocatalytic undirected C–H trifluoromethylations of (het)arenes. Chem. Eur. J. 26, 3241–3246 (2020).

    Google Scholar 

  383. Wang, F. & Stahl, S. S. Merging photochemistry with electrochemistry: functional-group tolerant electrochemical amination of C(sp3)–H bonds. Angew. Chem. Int. Ed. 58, 6385–6390 (2019).

    Google Scholar 

  384. Kong, W.-J. et al. Flow rhodaelectro-catalyzed alkyne annulations by versatile C–H activation: mechanistic support for rhodium(III/IV). J. Am. Chem. Soc. 141, 17198–17206 (2019).

    Google Scholar 

  385. Noël, T., Cao, Y. & Laudadio, G. The fundamentals behind the use of flow reactors in electrochemistry. Acc. Chem. Res. 52, 2858–2869 (2019).

    Google Scholar 

  386. Meyer, T. H., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem 6, 2484–2496 (2020).

    Google Scholar 

  387. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Google Scholar 

  388. Mehta, A., Saha, B., Koohang, A. A. & Chorghade, M. S. Arene ruthenium catalyst MCAT-53 for the synthesis of heterobiaryl compounds in water through aromatic C–H bond activation. Org. Process. Res. Dev. 22, 1119–1130 (2018).

    Google Scholar 

  389. Ackermann, L. Robust ruthenium(II)-catalyzed C–H arylations: carboxylate assistance for the efficient synthesis of angiotensin-II-receptor blockers. Org. Process. Res. Dev. 19, 260–269 (2015).

    Google Scholar 

  390. Park, Y., Jee, S., Kim, J. G. & Chang, S. Study of sustainability and scalability in the Cp*Rh(III)-catalyzed direct C–H amidation with 1,4,2-dioxazol-5-ones. Org. Process. Res. Dev. 19, 1024–1029 (2015).

    Google Scholar 

  391. Pitzer, L., Schafers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).

    Google Scholar 

  392. Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Dev. 23, 1213–1242 (2019).

    Google Scholar 

  393. Grimme, S. & Schreiner, P. R. Computational chemistry: the fate of current methods and future challenges. Angew. Chem. Int. Ed. 57, 4170–4176 (2018).

    Google Scholar 

  394. Gandeepan, P., Kaplaneris, N., Santoro, S., Vaccaro, L. & Ackermann, L. Biomass-derived solvents for sustainable transition metal-catalyzed C–H activation. ACS Sustain. Chem. Eng. 7, 8023–8040 (2019).

    Google Scholar 

  395. Santoro, S., Kozhushkov, S. I., Ackermann, L. & Vaccaro, L. Heterogeneous catalytic approaches in C–H activation reactions. Green Chem. 18, 3471–3493 (2016).

    Google Scholar 

  396. Strieth-Kalthoff, F., Sandfort, F., Segler, M. H. S. & Glorius, F. Machine learning the ropes: principles, applications and directions in synthetic chemistry. Chem. Soc. Rev. 49, 6154–6168 (2020).

    Google Scholar 

  397. Nugent, W. A., Ovenall, D. W. & Holmes, S. J. Catalytic C–H activation in early transition-metal dialkylamides and alkoxides. Organometallics 2, 161–162 (1983).

    Google Scholar 

  398. Gilmour, D. J., Lauzon, J. M. P., Clot, E. & Schafer, L. L. Ta-catalyzed hydroaminoalkylation of alkenes: insights into ligand-modified reactivity using DFT. Organometallics 37, 4387–4394 (2018).

    Google Scholar 

  399. Maspero, F. & Clerici, M. G. Catalytic C-alkylation of secondary amines with alkenes. Synthesis 1980, 305–306 (1980).

    Google Scholar 

  400. Herzon, S. B. & Hartwig, J. F. Direct, catalytic hydroaminoalkylation of unactivated olefins with N-alkyl arylamines. J. Am. Chem. Soc. 129, 6690–6691 (2007).

    Google Scholar 

  401. Prochnow, I., Zark, P., Müller, T. & Doye, S. The mechanism of the titanium-catalyzed hydroaminoalkylation of alkenes. Angew. Chem. Int. Ed. 50, 6401–6405 (2011).

    Google Scholar 

  402. Bexrud, J. A., Eisenberger, P., Leitch, D. C., Payne, P. R. & Schafer, L. L. Selective C–H activation α to primary amines. Bridging metallaaziridines for catalytic, intramolecular α-alkylation. J. Am. Chem. Soc. 131, 2116–2118 (2009).

    Google Scholar 

  403. Chong, E. & Schafer, L. L. 2-Pyridonate titanium complexes for chemoselectivity. accessing intramolecular hydroaminoalkylation over hydroamination. Org. Lett. 15, 6002–6005 (2013).

    Google Scholar 

  404. Rosien, M., Töben, I., Schmidtmann, M., Beckhaus, R. & Doye, S. Titanium-catalyzed hydroaminoalkylation of ethylene. Chem. Eur. J. 26, 2138–2142 (2020).

    Google Scholar 

  405. Daneshmand, P. et al. Cyclic ureate tantalum catalyst for preferential hydroaminoalkylation with aliphatic amines: mechanistic insights into substrate controlled reactivity. J. Am. Chem. Soc. 142, 15740–15750 (2020).

    Google Scholar 

  406. Payne, P. R., Garcia, P., Eisenberger, P., Yim, J. C. H. & Schafer, L. L. Tantalum catalyzed hydroaminoalkylation for the synthesis of α- and β-substituted N-heterocycles. Org. Lett. 15, 2182–2185 (2013).

    Google Scholar 

  407. Doerfler, J., Preuss, T., Schischko, A., Schmidtmann, M. & Doye, S. A 2,6-bis(phenylamino)pyridinato titanium catalyst for the highly regioselective hydroaminoalkylation of styrenes and 1,3-butadienes. Angew. Chem. Int. Ed. 53, 7918–7922 (2014).

    Google Scholar 

  408. Bielefeld, J., Mannhaupt, S., Schmidtmann, M. & Doye, S. Hydroaminoalkylation of allenes. Synlett 30, 967–971 (2019).

    Google Scholar 

  409. Liu, F., Luo, G., Hou, Z. & Luo, Y. Mechanistic insights into scandium-catalyzed hydroaminoalkylation of olefins with amines: origin of regioselectivity and charge-based prediction model. Organometallics 36, 1557–1565 (2017).

    Google Scholar 

  410. Reznichenko, A. L. & Hultzsch, K. C. The mechanism of hydroaminoalkylation catalyzed by group 5 metal binaphtholate complexes. J. Am. Chem. Soc. 134, 3300–3311 (2012).

    Google Scholar 

  411. Zi, G., Zhang, F. & Song, H. Highly enantioselective hydroaminoalkylation of secondary amines catalyzed by group 5 metal amides with chiral biarylamidate ligands. Chem. Commun. 46, 6296–6298 (2010).

    Google Scholar 

  412. Braun, C., Nieger, M., Bräse, S. & Schafer, L. L. Planar-chiral [2.2]paracyclophane-based pyridonates as ligands for tantalum-catalyzed hydroaminoalkylation. ChemCatChem 11, 5264–5268 (2019).

    Google Scholar 

  413. Nako, A. E., Oyamada, J., Nishiura, M. & Hou, Z. Scandium-catalysed intermolecular hydroaminoalkylation of olefins with aliphatic tertiary amines. Chem. Sci. 7, 6429–6434 (2016).

    Google Scholar 

  414. Su, J., Zhou, Y. & Xu, X. Hydroaminoalkylation of sterically hindered alkenes with N,N-dimethyl anilines using a scandium catalyst. Org. Biomol. Chem. 17, 2013–2019 (2019).

    Google Scholar 

Download references

Acknowledgements

Generous support by the Deutsche Forschungsgemeinschaft (DFG) (SPP 1807 and Gottfried–Wilhelm–Leibniz prize to L.A.) and the Onassis Foundation (fellowship to N.K.) is gratefully acknowledged. The research leading to these results has received funding from the NMBP‐01–2016 Program of the European Union’s Horizon 2020 Framework Program H2020/2014–2020 under Grant Agreement No. 720996. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement No. 860762. D.G.M. acknowledges the National Science Foundation (NSF) grant under the CCI Center for Selective C–H Functionalization (CHE-1700982). Z.E.W. and M.A.B. thank the Maurice Wilkins Centre for Molecular Biodiscovery for financial support. J.W.-D. thanks the CNRS (Centre National de la Recherche Scientifique), the Ministere de l’Education Nationale et de la Recherche France and the ANR-DFG programme, grant number Projet ANR-17-CE07-0049-01. This work was supported by a Grant in Aid for Specially Promoted Research by MEXT (No. 17H06091). M.J.J. thanks the Swedish Foundation for Strategic Environmental Research (Mistra; project Mistra SafeChem).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.R., N.K. and L.A.); Experimentation (T.R., N.K., L.A., M.J.J., N.C., J.K., S.C., B.P., L.L.S. and D.G.M.); Applications (D.G.M., J.W.-D., C.A.R., R.S., Z.E.W., M.A.B. and M.J.J.); Reproducibility and data deposition (T.R., N.K. and L.A.); Limitations and optimizations (T.R., N.K., J.W.-D., M.J.J. and L.A.); Outlook (T.R., N.K., L.L.S., M.J.J. and L.A.); Overview of the Primer (L.A.).

Corresponding authors

Correspondence to Naoto Chatani, Sukbok Chang, Benudhar Punji, Laurel L. Schafer, Djamaladdin G. Musaev, Joanna Wencel-Delord, Richmond Sarpong, Margaret A. Brimble, Magnus J. Johansson or Lutz Ackermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks J. M. Joo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Beilstein Journal of Organic Synthesis: https://www.beilstein-journals.org/bjoc/home

Cambridge Crystallographic Data Centre: https://www.ccdc.cam.ac.uk/

Nature Protocols: https://www.nature.com/nprot/

Organic Syntheses: http://www.orgsyn.org/

Synlett: https://www.thieme-connect.com/products/ejournals/journal/10.1055/s-00000083?lang=en

Synthesis: https://www.thieme-connect.com/products/ejournals/journal/10.1055/s-00000084

Supplementary information

Glossary

Chemoselectivity

The preferential reaction of compounds at one out of two or more functional groups.

Position selectivity

The preferential reaction of a compound at one out of two or more reaction sites.

Directing groups

Lewis-basic functional groups that coordinate the transition metal complex and bring it in close proximity to a desired bond.

σ-Bond metathesis

The simultaneous cleavage of two σ-bonds and the formation of two new σ-bonds via a concerted four-membered transition state.

Density functional theory

A widely employed and versatile quantum mechanical modelling method for the investigation of electronic structures of many-body systems, in particular in computational chemistry.

LUMO

The lowest-energy unoccupied molecular orbital (completely or partly vacant) of a molecular entity.

HOMO

The highest-energy occupied molecular orbital (filled or partly filled) of a molecular entity.

Chiral

Derived from the Ancient Greek word ‘cheir (χείρ)’, and based on the fact that the right and left hands are in a mirror image relationship with each other and do not overlap, a chiral molecule is one whose mirror image does not overlap itself, and therefore has an enantiomer.

Relativistic effects

Corrections to the non-relativistic energy that originate from the movement of heavy atom inner shell electrons with velocities corresponding to a significant fraction of the velocity of light, that is, spin–orbit coupling.

Molecular dynamics

A simulation procedure consisting of the computation of the motion of atoms in a molecule or of individual atoms or molecules in solids, liquids and gases, according to Newton’s laws of motion. The forces acting on the atoms, required to simulate their motions, are generally calculated using molecular mechanics force fields.

Quantum mechanical

The treatment of a (molecular) system according to the laws of quantum mechanics.

Prochiral

The property of an achiral molecule, which can be transformed into a chiral compound through a chemical transformation.

Achiral

The absence of a stereogenic element.

Post-translational modification

The (typically covalent) modification of proteins after their biosynthesis, usually catalysed by enzymes.

Macrocyclization

The joining of two parts of a molecule to form a large ring with more than 12 atoms.

Peptide stapling

The addition of a synthetic brace between two amino acids of a peptide to constrain its confirmation, often as an α-helix.

High-throughput experimentation

A scientific method of conducting large numbers of experiments in parallel, typically employed in drug discovery.

Process mass intensity

A green chemistry metrics, defined as the ratio of the total mass in a process or process step to the total mass of products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogge, T., Kaplaneris, N., Chatani, N. et al. C–H activation. Nat Rev Methods Primers 1, 43 (2021). https://doi.org/10.1038/s43586-021-00041-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-021-00041-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing