Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Recombineering and MAGE

Abstract

Recombination-mediated genetic engineering, also known as recombineering, is the genomic incorporation of homologous single-stranded or double-stranded DNA into bacterial genomes. Recombineering and its derivative methods have radically improved genome engineering capabilities, perhaps none more so than multiplex automated genome engineering (MAGE). MAGE is representative of a set of highly multiplexed single-stranded DNA-mediated technologies. First described in Escherichia coli, both MAGE and recombineering are being rapidly translated into diverse prokaryotes and even into eukaryotic cells. Together, this modern set of tools offers the promise of radically improving the scope and throughput of experimental biology by providing powerful new methods to ease the genetic manipulation of model and non-model organisms. In this Primer, we describe recombineering and MAGE, their optimal use, their diverse applications and methods for pairing them with other genetic editing tools. We then look forward to the future of genetic engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-stranded and double-stranded recombineering and MAGE.
Fig. 2: Optimizing the ARF in bacteria.
Fig. 3: Eukaryotic MAGE.
Fig. 4: Reading out MAGE results.
Fig. 5: Library-scale genome diversification using MAGE-seq and DIvERGE.
Fig. 6: Advanced techniques pair MAGE with other tools.
Fig. 7: Retrons allow recombineering without exogenously delivered DNA.

Similar content being viewed by others

References

  1. Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1, 784–791 (1983).

    Google Scholar 

  2. Ye, B. et al. Unmarked genetic manipulation in Bacillus subtilis by natural co-transformation. J. Biotechnol. 284, 57–62 (2018).

    Google Scholar 

  3. Chandrasegaran, S. & Carroll, D. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 428, 963–989 (2016).

    Google Scholar 

  4. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Google Scholar 

  5. Gersbach, C. A. Genome engineering: the next genomic revolution. Nat. Methods 11, 1009–1011 (2014).

    Google Scholar 

  6. Gaj, T., Gersbach, C. A. & Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Google Scholar 

  7. Kim, H. & Kim, J.-S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    Google Scholar 

  8. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    ADS  Google Scholar 

  9. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    ADS  Google Scholar 

  10. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    ADS  Google Scholar 

  11. Jakočiūnas, T. et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28, 213–222 (2015).

    Google Scholar 

  12. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Google Scholar 

  13. Inui, M. et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4, 5396 (2014).

    Google Scholar 

  14. Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).

    ADS  Google Scholar 

  15. Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR–Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).

    Google Scholar 

  16. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    ADS  Google Scholar 

  17. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    ADS  Google Scholar 

  18. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    ADS  Google Scholar 

  19. Smith, C. J. et al. Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Res. 48, 5183–5195 (2020).

    Google Scholar 

  20. Reis, A. C. et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat. Biotechnol. 37, 1294–1301 (2019).

    Google Scholar 

  21. Zeng, Y. et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol. Ther. 26, 2631–2637 (2018).

    Google Scholar 

  22. Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535–541 (2020).

    Google Scholar 

  23. Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl Acad. Sci. USA 98, 6742–6746 (2001). This article was the first to thoroughly examine the possibility of recombineering with ssDNA as a template.

    ADS  Google Scholar 

  24. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 5978–5983 (2000).

    ADS  Google Scholar 

  25. Mosberg, J. A., Lajoie, M. J. & Church, G. M. λ red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).

    Google Scholar 

  26. Murphy, K. C. Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180, 2063–2071 (1998).

    Google Scholar 

  27. Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Google Scholar 

  28. Little, J. W. An exonuclease induced by bacteriophage λ. II. Nature of the enzymatic reaction. J. Biol. Chem. 242, 679–686 (1967).

    Google Scholar 

  29. Caldwell, B. J. et al. Crystal structure of the Redβ C-terminal domain in complex with λ exonuclease reveals an unexpected homology with λ Orf and an interaction with Escherichia coli single stranded DNA binding protein. Nucleic Acids Res. 47, 1950–1963 (2019).

    Google Scholar 

  30. Li, Z., Karakousis, G., Chiu, S. K., Reddy, G. & Radding, C. M. The β protein of phage λ promotes strand exchange. J. Mol. Biol. 276, 733–744 (1998).

    Google Scholar 

  31. Murphy, K. C. λ Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J. Bacteriol. 173, 5808–5821 (1991).

    Google Scholar 

  32. Barbieri, E. M., Muir, P., Akhuetie-Oni, B. O., Yellman, C. M. & Isaacs, F. J. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes. Cell 171, 1453–1467.e13 (2017). This article describes eMAGE, the first instance of MAGE in a eukaryotic cell, leveraging co-selection to improve the ARF.

    Google Scholar 

  33. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009). This is the original article describing MAGE as a method for multiplex genome editing.

    ADS  Google Scholar 

  34. Isaacs, F. J. et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353 (2011).

    ADS  Google Scholar 

  35. Carr, P. A. et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res. 40, e132 (2012).

    Google Scholar 

  36. Nyerges, Á. et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc. Natl Acad. Sci. USA 113, 2502–2507 (2016). This work first describes the transient suppression of MMR by expression of a dominant negative MutL.

    ADS  Google Scholar 

  37. Amiram, M. et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33, 1272–1279 (2015).

    Google Scholar 

  38. Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013). This landmark article is the first to report a fully recoded organism, in this case an E. coli strain with 321 TAG stop codon reassignments, produced with MAGE.

    ADS  Google Scholar 

  39. Napolitano, M. G. et al. Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli. Proc. Natl Acad. Sci. USA 113, E5588–5597 (2016).

    Google Scholar 

  40. Swaminathan, S. et al. Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29, 14–21 (2001).

    Google Scholar 

  41. Thomason, L. C., Costantino, N., Shaw, D. V. & Court, D. L. Multicopy plasmid modification with phage λ Red recombineering. Plasmid 58, 148–158 (2007).

    Google Scholar 

  42. Oppenheim, A. B., Rattray, A. J., Bubunenko, M., Thomason, L. C. & Court, D. L. In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides. Virology 319, 185–189 (2004).

    Google Scholar 

  43. Hueso-Gil, A., Nyerges, Á., Pál, C., Calles, B. & de Lorenzo, V. Multiple-site diversification of regulatory sequences enables interspecies operability of genetic devices. ACS Synth. Biol. 9, 104–114 (2020).

    Google Scholar 

  44. Court, D. L., Sawitzke, J. A. & Thomason, L. C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    Google Scholar 

  45. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Google Scholar 

  46. Costantino, N. & Court, D. L. Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc. Natl Acad. Sci. USA 100, 15748–15753 (2003). This is the first article to describe evasion of mismatch repair as an effective strategy to improve the ARF.

    ADS  Google Scholar 

  47. Au, K. G., Welsh, K. & Modrich, P. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267, 12142–12148 (1992).

    Google Scholar 

  48. Burdett, V., Baitinger, C., Viswanathan, M., Lovett, S. T. & Modrich, P. In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc. Natl Acad. Sci. USA 98, 6765–6770 (2001).

    ADS  Google Scholar 

  49. Schaaper, R. M. & Dunn, R. L. Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc. Natl Acad. Sci. USA 84, 6220–6224 (1987).

    ADS  Google Scholar 

  50. Iyer, R. R., Pluciennik, A., Burdett, V. & Modrich, P. L. DNA mismatch repair: functions and mechanisms. Chem. Rev. 106, 302–323 (2006).

    Google Scholar 

  51. Wang, H. H., Xu, G., Vonner, A. J. & Church, G. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res. 39, 7336–7347 (2011).

    Google Scholar 

  52. Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253 (1991).

    Google Scholar 

  53. Sawitzke, J. A. et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J. Mol. Biol. 407, 45–59 (2011).

    Google Scholar 

  54. van Pijkeren, J.-P. & Britton, R. A. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res. 40, e76 (2012). This work is one of the first and best instances of the screening of a small group of SSAPs to permit high-frequency MAGE in a non-E. coli bacterium, here L. lactis and Lactobacillus reuteri.

    Google Scholar 

  55. Binder, S., Siedler, S., Marienhagen, J., Bott, M. & Eggeling, L. Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res. 41, 6360–6369 (2013).

    Google Scholar 

  56. Penewit, K. et al. Efficient and scalable precision genome editing in Staphylococcus aureus through conditional recombineering and CRISPR/Cas9-mediated counterselection. mBio 9, e00067 (2018).

    Google Scholar 

  57. van Ravesteyn, T. W. et al. LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells. Proc. Natl Acad. Sci. USA 113, 4122–4127 (2016).

    ADS  Google Scholar 

  58. Matic, I., Babic, A. & Radman, M. 2-Aminopurine allows interspecies recombination by a reversible inactivation of the Escherichia coli mismatch repair system. J. Bacteriol. 185, 1459–1461 (2003).

    Google Scholar 

  59. Pitsikas, P., Patapas, J. M. & Cupples, C. G. Mechanism of 2-aminopurine-stimulated mutagenesis in Escherichia coli. Mutat. Res. 550, 25–32 (2004).

    Google Scholar 

  60. Ang, J. et al. Mutagen synergy: hypermutability generated by specific pairs of base analogs. J. Bacteriol. 198, 2776–2783 (2016).

    Google Scholar 

  61. Nyerges, Á. et al. Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Res. 42, e62 (2014).

    Google Scholar 

  62. Hong, E. S., Yeung, A., Funchain, P., Slupska, M. M. & Miller, J. H. Mutants with temperature-sensitive defects in the Escherichia coli mismatch repair system: sensitivity to mispairs generated in vivo. J. Bacteriol. 187, 840–846 (2005).

    Google Scholar 

  63. Lennen, R. M. et al. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. Nucleic Acids Res. 44, e36 (2016).

    Google Scholar 

  64. Yang, H., Wolff, E., Kim, M., Diep, A. & Miller, J. H. Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol. Microbiol. 53, 283–295 (2004).

    Google Scholar 

  65. Aronshtam, A. & Marinus, M. G. Dominant negative mutator mutations in the mutL gene of Escherichia coli. Nucleic Acids Res. 24, 2498–2504 (1996).

    Google Scholar 

  66. Ricaurte, D. E. et al. A standardized workflow for surveying recombinases expands bacterial genome-editing capabilities. Microb. Biotechnol. 11, 176–188 (2018).

    Google Scholar 

  67. Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020). This work describes SEER, a method for adapting MAGE to new bacterial species, and the improvement of ARF to ultra-high frequency in E. coli and C. freundii.

    Google Scholar 

  68. Filsinger, G. et al. Characterizing the portability of RecT-mediated oligonucleotide recombination. Nat. Chem. Biol. https://doi.org/10.1038/s41589-020-00710-5 (2021). This work describes a molecular basis for the host tropism displayed by SSAPs, namely their interaction with the host SSB.

    Article  Google Scholar 

  69. Aparicio, T., Nyerges, A., Martínez-García, E. & de Lorenzo, V. High-efficiency multi-site genomic editing of Pseudomonas putida through thermoinducible ssDNA recombineering. iScience 23, 100946 (2020).

    ADS  Google Scholar 

  70. Storici, F., Lewis, L. K. & Resnick, M. A. In vivo site-directed mutagenesis using oligonucleotides. Nat. Biotechnol. 19, 773–776 (2001).

    Google Scholar 

  71. DiCarlo, J. E. et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth. Biol. 2, 741–749 (2013). This article is the first to explore recombineering in eukaryotes, focusing on Rad51 expression and MMR avoidance.

    Google Scholar 

  72. Wang, H. H. et al. Genome-scale promoter engineering by co-selection MAGE. Nat. Methods 9, 591–593 (2012).

    Google Scholar 

  73. Lee, M. et al. Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J. Biol. Chem. 289, 15064–15079 (2014).

    Google Scholar 

  74. Arbel, M., Bronstein, A., Sau, S., Liefshitz, B. & Kupiec, M. Access to PCNA by Srs2 and Elg1 controls the choice between alternative repair pathways in Saccharomyces cerevisiae. mBio 11, e00705–e00720 (2020).

    Google Scholar 

  75. Liang, Z., Metzner, E. & Isaacs, F. J. Advanced eMAGE for highly efficient combinatorial editing of a stable genome. Preprint at bioRxiv https://doi.org/10.1101/2020.08.30.256743 (2020).

    Article  Google Scholar 

  76. Iyer, L. M., Koonin, E. V. & Aravind, L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52. BMC Genom. 3, 8 (2002).

    Google Scholar 

  77. van Kessel, J. C. & Hatfull, G. F. Recombineering in Mycobacterium tuberculosis. Nat. Methods 4, 147–152 (2007).

    Google Scholar 

  78. Aparicio, T., Jensen, S. I., Nielsen, A. T., de Lorenzo, V. & Martínez-García, E. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol. J. 11, 1309–1319 (2016).

    Google Scholar 

  79. Lee, H. H., Ostrov, N., Gold, M. A. & Church, G. M. Recombineering in Vibrio natriegens. Preprint at bioRxiv https://doi.org/10.1101/130088 (2017).

    Article  Google Scholar 

  80. Wu, D. Y., Ugozzoli, L., Pal, B. K. & Wallace, R. B. Allele-specific enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl Acad. Sci. USA 86, 2757–2760 (1989).

    ADS  Google Scholar 

  81. Johnson, K. A. The kinetic and chemical mechanism of high-fidelity DNA polymerases. Biochim. Biophys. Acta 1804, 1041–1048 (2010).

    Google Scholar 

  82. Lefever, S. et al. Cost-effective and robust genotyping using double-mismatch allele-specific quantitative PCR. Sci. Rep. 9, 2150 (2019).

    ADS  Google Scholar 

  83. Imyanitov, E. N. et al. Improved reliability of allele-specific PCR. BioTechniques 33, 484–490 (2002).

    Google Scholar 

  84. Słomka, M., Sobalska-Kwapis, M., Wachulec, M., Bartosz, G. & Strapagiel, D. High resolution melting (HRM) for high-throughput genotyping-limitations and caveats in practical case studies. Int. J. Mol. Sci. 18, 2316 (2017).

    Google Scholar 

  85. Murphy, K. C. et al. ORBIT: a new paradigm for genetic engineering of mycobacterial chromosomes. mBio 9, e01467-18 (2018). This inventive article describes the pairing of recombineering with site-specific recombinases to ease genomic deletions and fusions in mycobacteria.

    Google Scholar 

  86. Nyerges, Á. et al. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proc. Natl Acad. Sci. USA 115, E5726–E5735 (2018). This article describes DIvERGE, an important technique for diversification of targeted genomic loci.

    Google Scholar 

  87. Bonde, M. T. et al. Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. ACS Synth. Biol. 4, 17–22 (2015).

    Google Scholar 

  88. Wang, H. H. & Church, G. M. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Meth. Enzymol. 498, 409–426 (2011).

    Google Scholar 

  89. Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).

    ADS  Google Scholar 

  90. Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    ADS  Google Scholar 

  91. Sandberg, T. E. et al. Evolution of Escherichia coli to 42 °C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31, 2647–2662 (2014).

    Google Scholar 

  92. Wannier, T. M. et al. Adaptive evolution of genomically recoded Escherichia coli. Proc. Natl Acad. Sci. USA 115, 3090–3095 (2018).

    Google Scholar 

  93. Pattanayak, V., Guilinger, J. P. & Liu, D. R. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Meth. Enzymol. 546, 47–78 (2014).

    Google Scholar 

  94. Rees, H. A. & Liu, D. R. Publisher correction: base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 801 (2018).

    Google Scholar 

  95. Mougiakos, I., Bosma, E. F., de Vos, W. M., van Kranenburg, R. & van der Oost, J. Next generation prokaryotic engineering: the CRISPR–Cas toolkit. Trends Biotechnol. 34, 575–587 (2016).

    Google Scholar 

  96. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Google Scholar 

  97. Oh, J.-H. & van Pijkeren, J.-P. CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131 (2014).

    Google Scholar 

  98. Higgins, S. A., Ounkap, S. & Savage, D. F. Rapid and programmable protein mutagenesis using plasmid recombineering. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.7b00112 (2017).

    Article  Google Scholar 

  99. Ronda, C., Pedersen, L. E., Sommer, M. O. A. & Nielsen, A. T. CRMAGE: CRISPR optimized MAGE recombineering. Sci. Rep. 6, 19452 (2016).

    ADS  Google Scholar 

  100. Oesterle, S., Gerngross, D., Schmitt, S., Roberts, T. M. & Panke, S. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli. Sci. Rep. 7, 12327 (2017).

    ADS  Google Scholar 

  101. Umenhoffer, K. et al. Genome-wide abolishment of mobile genetic elements using genome shuffling and CRISPR/Cas-assisted MAGE allows the efficient stabilization of a bacterial chassis. ACS Synth. Biol. 6, 1471–1483 (2017).

    Google Scholar 

  102. Ding, T. et al. Reversed paired-gRNA plasmid cloning strategy for efficient genome editing in Escherichia coli. Microb. Cell Fact. 19, 63 (2020).

    Google Scholar 

  103. Farasat, I. et al. Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol. Syst. Biol. 10, 731 (2014).

    Google Scholar 

  104. Kunjapur, A. M., Tarasova, Y. & Prather, K. L. J. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J. Am. Chem. Soc. 136, 11644–11654 (2014).

    Google Scholar 

  105. Pósfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006).

    ADS  Google Scholar 

  106. Grodberg, J. & Dunn, J. J. ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170, 1245–1253 (1988).

    Google Scholar 

  107. Studier, F. W., Daegelen, P., Lenski, R. E., Maslov, S. & Kim, J. F. Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J. Mol. Biol. 394, 653–680 (2009).

    Google Scholar 

  108. Borja, G. M. et al. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode. Microb. Cell Fact. 11, 132 (2012).

    Google Scholar 

  109. Derman, A. I., Prinz, W. A., Belin, D. & Beckwith, J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747 (1993).

    ADS  Google Scholar 

  110. Bessette, P. H., Aslund, F., Beckwith, J. & Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl Acad. Sci. USA 96, 13703–13708 (1999).

    ADS  Google Scholar 

  111. Lobstein, J. et al. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11, 56 (2012).

    Google Scholar 

  112. Yates, L. E. et al. Glyco-recoded Escherichia coli: recombineering-based genome editing of native polysaccharide biosynthesis gene clusters. Metab. Eng. 53, 59–68 (2019).

    Google Scholar 

  113. Kelsic, E. D. et al. RNA structural determinants of optimal codons revealed by MAGE-Seq. Cell Syst. 3, 563–571.e6 (2016).

    Google Scholar 

  114. Scangarella-Oman, N. E. et al. In vitro activity and microbiological efficacy of gepotidacin from a phase 2, randomized, multicenter, dose-ranging study in patients with acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 64, e01302–e01319 (2020).

    Google Scholar 

  115. Garst, A. D. et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35, 48–55 (2017).

    Google Scholar 

  116. Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).

    ADS  Google Scholar 

  117. Wang, H. H. et al. Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth. Biol. 1, 43–52 (2012).

    Google Scholar 

  118. Brockman, I. M. & Prather, K. L. J. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28, 104–113 (2015).

    Google Scholar 

  119. Durante-Rodríguez, G., de Lorenzo, V. & Nikel, P. I. A post-translational metabolic switch enables complete decoupling of bacterial growth from biopolymer production in engineered Escherichia coli. ACS Synth. Biol. 7, 2686–2697 (2018).

    Google Scholar 

  120. Pines, G., Freed, E. F., Winkler, J. D. & Gill, R. T. Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth. Biol. 4, 1176–1185 (2015).

    Google Scholar 

  121. Choudhury, A. et al. CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli. Mol. Syst. Biol. 16, e9265 (2020).

    Google Scholar 

  122. Bao, Z., Cobb, R. E. & Zhao, H. Accelerated genome engineering through multiplexing. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 5–21 (2016).

    Google Scholar 

  123. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    ADS  Google Scholar 

  124. Ostrov, N. et al. Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822 (2016).

    ADS  Google Scholar 

  125. Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR–Cas9 system. Appl. Environ. Microbiol. 81, 2506–2514 (2015).

    Google Scholar 

  126. Piñero Lambea, C. et al. Mycoplasma pneumoniae genome editing based on oligo recombineering and Cas9-mediated counterselection. ACS Synth. Biol. https://doi.org/10.1021/acssynbio.0c00022 (2020).

    Article  Google Scholar 

  127. Cui, L. & Bikard, D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 44, 4243–4251 (2016).

    Google Scholar 

  128. Pyne, M. E., Moo-Young, M., Chung, D. A. & Chou, C. P. Coupling the CRISPR/Cas9 system with λ Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81, 5103–5114 (2015).

    Google Scholar 

  129. Li, Y. et al. Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab. Eng. 31, 13–21 (2015).

    Google Scholar 

  130. van Kessel, J. C. & Hatfull, G. F. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol. Microbiol. 67, 1094–1107 (2008).

    Google Scholar 

  131. Aldovini, A., Husson, R. N. & Young, R. A. The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175, 7282–7289 (1993).

    Google Scholar 

  132. Kalpana, G. V., Bloom, B. R. & Jacobs, W. R. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl Acad. Sci. USA 88, 5433–5437 (1991).

    ADS  Google Scholar 

  133. Wang, K. et al. Defining synonymous codon compression schemes by genome recoding. Nature 539, 59–64 (2016).

    ADS  Google Scholar 

  134. Chin, J. W. Reprogramming the genetic code. Science 336, 428–429 (2012).

    ADS  Google Scholar 

  135. Lampson, B. C., Inouye, M. & Inouye, S. Retrons, msDNA, and the bacterial genome. Cytogenet. Genome Res. 110, 491–499 (2005).

    Google Scholar 

  136. Simon, A. J., Ellington, A. D. & Finkelstein, I. J. Retrons and their applications in genome engineering. Nucleic Acids Res. 47, 11007–11019 (2019).

    Google Scholar 

  137. Yee, T., Furuichi, T., Inouye, S. & Inouye, M. Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell 38, 203–209 (1984).

    Google Scholar 

  138. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell https://doi.org/10.1016/j.cell.2020.09.065 (2020).

    Article  Google Scholar 

  139. Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    Google Scholar 

  140. Simon, A. J., Morrow, B. R. & Ellington, A. D. Retroelement-based genome editing and evolution. ACS Synth. Biol. 7, 2600–2611 (2018).

    Google Scholar 

  141. Farzadfard, F., Gharaei, N., Citorik, R. J. & Lu, T. K. Efficient retroelement-mediated DNA writing in bacteria. Preprint at bioRxiv https://doi.org/10.1101/2020.02.21.958983 (2020).

    Article  Google Scholar 

  142. Schubert, M. G. et al. High throughput functional variant screens via in-vivo production of single-stranded DNA. Preprint at bioRxiv https://doi.org/10.1101/2020.03.05.975441 (2020).

    Article  Google Scholar 

  143. Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9, 2301–2316 (2014).

    Google Scholar 

  144. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Google Scholar 

  145. Holo, H. & Nes, I. F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55, 3119–3123 (1989).

    Google Scholar 

  146. Shepard, B. D. & Gilmore, M. S. Electroporation and efficient transformation of Enterococcus faecalis grown in high concentrations of glycine. Methods Mol. Biol. 47, 217–226 (1995).

    Google Scholar 

  147. Dower, W. J., Miller, J. F. & Ragsdale, C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127–6145 (1988).

    Google Scholar 

  148. Okamoto, A., Kosugi, A., Koizumi, Y., Yanagida, F. & Udaka, S. High efficiency transformation of Bacillus brevis by electroporation. Biosci. Biotechnol. Biochem. 61, 202–203 (1997).

    Google Scholar 

  149. Wards, B. J. & Collins, D. M. Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol. Lett. 145, 101–105 (1996).

    Google Scholar 

  150. Tu, Q. et al. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci. Rep. 6, 24648 (2016).

    ADS  Google Scholar 

  151. McIntyre, D. A. & Harlander, S. K. Genetic transformation of intact Lactococcus lactis subsp. lactis by high-voltage electroporation. Appl. Environ. Microbiol. 55, 604–610 (1989).

    Google Scholar 

  152. Salis, H. M. The ribosome binding site calculator. Meth. Enzymol. 498, 19–42 (2011).

    Google Scholar 

  153. Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31, 368–383 (2019).

    Google Scholar 

  154. Miller, D. L., Pislaru, S. V. & Greenleaf, J. E. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat. Cell Mol. Genet. 27, 115–134 (2002).

    Google Scholar 

  155. Gao, F. & Zhang, C.-T. Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinform. 9, 79 (2008).

    Google Scholar 

  156. Sernova, N. V. & Gelfand, M. S. Identification of replication origins in prokaryotic genomes. Brief. Bioinform. 9, 376–391 (2008).

    Google Scholar 

  157. Bonde, M. T. et al. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering. Nucleic Acids Res. 42, W408–W415 (2014).

    Google Scholar 

  158. Quintin, M. et al. Merlin: computer-aided oligonucleotide design for large scale genome engineering with MAGE. ACS Synth. Biol. 5, 452–458 (2016).

    Google Scholar 

  159. Hecker, K. H. & Rill, R. L. Error analysis of chemically synthesized polynucleotides. Biotechniques 24, 256–260 (1998).

    Google Scholar 

  160. Temsamani, J., Kubert, M. & Agrawal, S. Sequence identity of the n-1 product of a synthetic oligonucleotide. Nucleic Acids Res. 23, 1841–1844 (1995).

    Google Scholar 

  161. Schmidt, T. L. et al. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015).

    ADS  Google Scholar 

  162. Nordström, K. & Dasgupta, S. Copy-number control of the Escherichia coli chromosome: a plasmidologist’s view. EMBO Rep. 7, 484–489 (2006).

    Google Scholar 

  163. Reynolds, T. S. & Gill, R. T. Quantifying impact of chromosome copy number on recombination in Escherichia coli. ACS Synth. Biol. 4, 776–780 (2015).

    Google Scholar 

  164. Boyle, N. R., Reynolds, T. S., Evans, R., Lynch, M. & Gill, R. T. Recombineering to homogeneity: extension of multiplex recombineering to large-scale genome editing. Biotechnol. J. 8, 515–522 (2013).

    Google Scholar 

  165. Parekh-Olmedo, H., Drury, M. & Kmiec, E. B. Targeted nucleotide exchange in Saccharomyces cerevisiae directed by short oligonucleotides containing locked nucleic acids. Chem. Biol. 9, 1073–1084 (2002).

    Google Scholar 

  166. Moore, J. A. et al. Automated electrotransformation of Escherichia coli on a digital microfluidic platform using bioactivated magnetic beads. Biomicrofluidics 11, 014110 (2017).

    Google Scholar 

  167. Madison, A. C. et al. Scalable device for automated microbial electroporation in a digital microfluidic platform. ACS Synth. Biol. 6, 1701–1709 (2017).

    Google Scholar 

  168. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    ADS  Google Scholar 

  169. Jasin, M. & Schimmel, P. Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments. J. Bacteriol. 159, 783–786 (1984).

    Google Scholar 

  170. Liang, L. et al. CRISPR EnAbled Trackable genome Engineering for isopropanol production in Escherichia coli. Metab. Eng. 41, 1–10 (2017).

    Google Scholar 

  171. Szili, P. et al. Rapid evolution of reduced susceptibility against a balanced dual-targeting antibiotic through stepping-stone mutations. Antimicrob. Agents Chemother. 63, e00207-19 (2019).

    Google Scholar 

  172. Zhang, J., Jensen, M. K. & Keasling, J. D. Development of biosensors and their application in metabolic engineering. Curr. Opin. Chem. Biol. 28, 1–8 (2015).

    Google Scholar 

  173. Glasgow, A. A. et al. Computational design of a modular protein sense-response system. Science 366, 1024–1028 (2019).

    ADS  Google Scholar 

  174. Hoffmann, S. A., Wohltat, C., Müller, K. M. & Arndt, K. M. A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter. PLoS ONE 12, e0181923 (2017).

    Google Scholar 

  175. Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A. S. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36, 614–623 (2018).

    Google Scholar 

  176. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods 16, 687–694 (2019).

    Google Scholar 

  177. Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M. & Church, G. M. Low-N protein engineering with data-efficient deep learning. Preprint at bioRxiv https://doi.org/10.1101/2020.01.23.917682 (2020).

    Article  Google Scholar 

  178. Beckman, R. A., Mildvan, A. S. & Loeb, L. A. On the fidelity of DNA replication: manganese mutagenesis in vitro. Biochemistry 24, 5810–5817 (1985).

    Google Scholar 

  179. Skandalis, A., Encell, L. P. & Loeb, L. A. Creating novel enzymes by applied molecular evolution. Chem. Biol. 4, 889–898 (1997).

    Google Scholar 

  180. Badran, A. H. et al. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533, 58–63 (2016).

    ADS  Google Scholar 

  181. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    ADS  Google Scholar 

  182. Reetz, M. T., Prasad, S., Carballeira, J. D., Gumulya, Y. & Bocola, M. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. J. Am. Chem. Soc. 132, 9144–9152 (2010).

    Google Scholar 

  183. Martínez-García, E., Aparicio, T., Goñi-Moreno, A., Fraile, S. & de Lorenzo, V. SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res. 43, D1183–D1189 (2015).

    Google Scholar 

  184. van Pijkeren, J.-P., Neoh, K. M., Sirias, D., Findley, A. S. & Britton, R. A. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered 3, 209–217 (2012).

    Google Scholar 

  185. Chang, Y., Wang, Q., Su, T. & Qi, Q. The efficiency for recombineering is dependent on the source of the phage recombinase function unit. Preprint at bioRxiv https://doi.org/10.1101/745448 (2019).

    Article  Google Scholar 

  186. Aparicio, T. et al. Mismatch repair hierarchy of Pseudomonas putida revealed by mutagenic ssDNA recombineering of the pyrF gene. Environ. Microbiol. 22, 45–58 (2020).

    Google Scholar 

  187. Corts, A. D., Thomason, L. C., Gill, R. T. & Gralnick, J. A. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides. Sci. Rep. 9, 1–10 (2019).

    Google Scholar 

  188. Bryan, A. & Swanson, M. S. Oligonucleotides stimulate genomic alterations of Legionella pneumophila. Mol. Microbiol. 80, 231–247 (2011).

    Google Scholar 

  189. Swingle, B., Bao, Z., Markel, E., Chambers, A. & Cartinhour, S. Recombineering using RecTE from Pseudomonas syringae. Appl. Environ. Microbiol. 76, 4960–4968 (2010).

    Google Scholar 

  190. Tucker, A. T. et al. Defining gene–phenotype relationships in Acinetobacter baumannii through one-step chromosomal gene inactivation. mBio 5, e01313–01314 (2014).

    Google Scholar 

  191. Sun, Z. et al. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl. Microbiol. Biotechnol. 99, 5151–5162 (2015).

    Google Scholar 

  192. Wang, X. et al. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc. Natl Acad. Sci. USA 115, E4255–E4263 (2018).

    Google Scholar 

  193. Dong, H., Tao, W., Gong, F., Li, Y. & Zhang, Y. A functional recT gene for recombineering of Clostridium. J. Biotechnol. 173, 65–67 (2014).

    Google Scholar 

  194. Huang, H., Song, X. & Yang, S. Development of a RecE/T-assisted CRISPR–Cas9 toolbox for Lactobacillus. Biotechnol. J. 14, e1800690 (2019).

    Google Scholar 

  195. Xin, Y., Guo, T., Mu, Y. & Kong, J. Identification and functional analysis of potential prophage-derived recombinases for genome editing in Lactobacillus casei. FEMS Microbiol. Lett. 364, fnx243 (2017).

    Google Scholar 

  196. Yang, P., Wang, J. & Qi, Q. Prophage recombinases-mediated genome engineering in Lactobacillus plantarum. Microb. Cell Fact. 14, 154 (2015).

    Google Scholar 

  197. Yin, J. et al. A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Res. 43, e36 (2015).

    Google Scholar 

  198. Wu, Y. et al. RecET recombination system driving chromosomal target gene replacement in Zymomonas mobilis. Electron. J. Biotechnol. 30, 118–124 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors thank J. Aach for helpful insights. Funding for this research was provided by the US Department of Energy (DOE) under grant DE-FG02-02ER63445 (G.M.C). The authors acknowledge support from the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under a Chemistry–Biology Interface Training Grant that supported M.A.J. (Award Number T32GM133395). The study was supported by the following research grants: European Research Council (ERC) H2020-ERC-2014-CoG 648364 — Resistance Evolution (C.P.); ‘Célzott Lendület’ Programme of the Hungarian Academy of Sciences LP-2017–10/2017 (C.P.); ‘Élvonal’ KKP 126506 (C.P.); and GINOP-2.3.2–15–2016–00014 (EVOMER, to C.P.). P.N.C. was supported by Physical and Engineering Biology training grant 5T32EB019941-05. A.N. was supported by an EMBO LTF 160-2019 Long-Term fellowship. A.D.E. and K.J. acknowledge funding from the Air Force Office of Scientific Research (FA9550-14-1-0089) and the Welch Foundation (F-1654).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.M.W., P.N.C. and F.J.I.); Experimentation (T.M.W., P.N.C., F.J.I. and C.P.); Results (T.M.W.); Applications (T.M.W., A.D.E., K.J., M.A.J., A.M.K., A.N. and M.G.S.); Reproducibility and data deposition (T.M.W.); Limitations and optimizations (T.M.W. and A.N.); Outlook (T.M.W., G.T.F. and G.M.C.). Overview of the Primer (T.M.W. and G.T.F.).

Corresponding author

Correspondence to Timothy M. Wannier.

Ethics declarations

Competing interests

T.M.W, G.T.F. and G.M.C. are inventors on a patent application related to serial enrichment for efficient recombineering (SEER) and new single-stranded DNA-annealing protein (SSAP) discovery. A.N. and C.P. are inventors on a patent related to directed evolution with random genomic mutations (DIvERGE) (US10669537B2: Mutagenizing Intracellular Nucleic Acids). F.J.I. and G.M.C. are inventors on a MAGE patent, which has been licensed. F.J.I. is an inventor on a patent application related to eukaryotic MAGE. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks N. Claassens, A. Garst, M. Lluch Senar, J. Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Nucleotide Archive (ENA): https://www.ebi.ac.uk/ena/browser

GitHub: https://github.com

National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA): https://www.ncbi.nlm.nih.gov/sra

Glossary

Homologous recombination

A type of genetic recombination by which nucleotide sequences are exchanged between molecules that share similar or identical sequences.

DNA double-strand breaks

(DSBs). Simultaneous breaks in both strands of a DNA helix.

Non-homologous end-joining

(NHEJ). The repair of double-strand DNA breaks by direct ligation of cut DNA ends without a homologous template.

Short guide RNAs

(gRNAs). Molecules that bind to and then guide Cas9 or a similar protein to a targeted genomic locus by nucleotide base pairing.

Homology-directed repair

(HDR). The repair of double-strand DNA breaks using a homologous template.

Combinatorial genetic diversity

A population of cells that has been diversified through genetic engineering to include individual cells that each contain multiple modifications to their genome. These modifications are randomly introduced from a pool of potential modifications, creating combinatorial diversity in the population.

Base editing

A method that fuses a Cas9 nickase to a deaminase domain. The Cas9 is directed by a guide RNA to a target site on the genome, whereupon the deaminase will edit within a window of DNA bases.

Prime editing

A method whereby a Cas9 nickase is fused to a reverse transcriptase and a guide RNA is fused to a repair template. The Cas9 nickase nicks the target DNA strand, is then resected by host proteins and the reverse-transcribed DNA is used as a repair template, conveying the specified modification.

Cas9 nickase

A Cas9 variant that has been partially deactivated so that it cuts one strand of a double-stranded helix, creating a ‘nick’ instead of a double-strand break.

Reverse transcriptase

An enzyme that transcribes RNA into cDNA.

Single-nucleotide polymorphisms

Any number of substitutions of single nucleotides at specific genomic locations.

Reverse genetics

Classical genetics is the prediction of allelic determinants of phenotypic variation by genetic analysis. Reverse genetics is the creation of genetic variation and subsequent phenotypic characterization of these known allelic variants.

Single-stranded DNA-annealing protein

(SSAP). A protein that speeds the specific annealing of two strands of single-stranded DNA (ssDNA), sometimes also interacting with proteins coating ssDNA to allow annealing to proceed.

Multiplex automated genome engineering

(MAGE). An umbrella term referring to techniques that involve single-stranded DNA-mediated recombineering at multiple sites.

ssDNA recombineering

Recombineering using single-stranded DNA (ssDNA) as the carrier of genetic information.

Whole-genome recoding

The replacement of a codon with one or multiple alternative codons systematically throughout a genome.

Bacterial artificial chromosome

A large circular DNA element distinct from the bacterial chromosome that replicates from a plasmid origin.

Allelic recombination frequency

(ARF). The fraction of a cell population that successfully inherits a specified modification after a genetic editing technique such as multiplex automated genome engineering is carried out.

Single-stranded DNA-binding protein

(SSB). An essential protein that binds to single-stranded DNA, protecting it and coordinating chromosome replication, and that is preserved throughout all domains of life.

Serial enrichment for efficient recombineering

(SEER). A method for screening a large library of single-stranded DNA-annealing proteins to identify variants that perform efficiently in a given host.

Single-stranded DNA annealing

The annealing of two strands of single-stranded DNA by base pairing.

Co-selection MAGE

A multiplex genome engineering technique in which a target modification that does not confer a selective phenotype is made in close proximity to one that does, allowing enrichment of both modifications in comparison with an unselected population.

Origin of replication

The site at which proteins involved in genome replication begin the synthesis of a new genomic copy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wannier, T.M., Ciaccia, P.N., Ellington, A.D. et al. Recombineering and MAGE. Nat Rev Methods Primers 1, 7 (2021). https://doi.org/10.1038/s43586-020-00006-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-020-00006-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing