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Observational constraint on a feedback
from supercooled clouds reduces
projected warming uncertainty
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The increase of carbon-dioxide-doubling-induced warming (climate sensitivity) in the latest climate
models is primarily attributed to a larger extratropical cloud feedback. This is thought to be partly
drivenby agreater ratio of supercooled liquid-phase clouds to all clouds, termed liquid phase ratio.We
use an instrument simulator approach to show that this ratio has increased in the latest climatemodels
and is overestimated rather than underestimated as previously thought. In our analysis of multiple
models, a greater ratio corresponds to stronger negative cloud feedback, in contradiction with single-
model-based studies. We trace this unexpected result to a cloud feedback involving a shift from
supercooled to warm clouds as climate warms, which corresponds to greater cloud amount and
optical depth and weakens the extratropical cloud feedback. Better constraining this ratio in climate
models – and thus this supercooled cloud feedback – impacts their climate sensitivities by up to 1 ˚C
and reduces inter-model spread.

Cloud phase modulates reflected sunlight and affects projected
warming
In response to climate warming, statistically more liquid phase clouds and
fewer ice clouds are likely. For the same mass of condensate, liquid phase
clouds are more reflective than ice clouds, and they tend to precipitate less
efficiently. Since a warmer climate favors more liquid phase clouds, this
implies that warming will lead to clouds with greater optical depth1–3 and
spatial coverage1–3. As a result, the solar radiation reflected back to space
would be greater, weakening the initial warming, a negative cloud feedback
commonly referred to as the “cloud phase feedback”3–5. Although this
feedback has not been explicitly characterized in climatemodels to date, it is
hypothesized to substantially affect the strength of the negative cloud optical
depth feedback and that of the negative cloud amount feedback to a lesser
degree4,5 – two feedbacks that are well documented in Earth SystemModels
(ESM). The magnitude of these two modeled feedbacks, while largely
unconstrained by observations, ismaximum in the extratropics, particularly
over the Southern Ocean6–9. This is because mixed-phase temperatures, i.e.,
temperatures at which both liquid and ice can exist (0 ˚C> T≳−40 ˚C), are

omnipresent in the troposphere at these latitudes. In addition to its con-
nection to precipitation processes1,10, the optical depth feedback seems to
depend on the presence of supercooled liquid relative to total cloud water at
mixed-phase temperatures. The overall weakening of this negative feedback
in the extratropics in present generation Coupled Model Intercomparison
Project phase 6 (CMIP6)models relative to the previousCMIP5models has
contributed to increased CMIP6 equilibrium climate sensitivity9 (ECS)
estimates (including their upper range)9, making them substantially larger
than values derived from independent lines of evidence11,12.

Given the crucial role of supercooled clouds in projected warming,
recent efforts have been devoted to evaluating cloud phase in ESMs and
studying the relationship between Liquid Phase Ratio (LPR) and cloud
feedback. Some studies have reported a link between increased liquid water
mass relative to all condensed water (LPRmass) in the current climate and
reduced negative optical depth feedback in individual ESMs13–15. Yet none
have established a clear systematic relationship between current climate
LPRmass and cloud optical depth feedback in CMIP models, nor have they
explored a link with the cloud amount feedback. Additionally, it is unclear
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whether the LPRmass of CMIP6models has increased compared to previous
CMIP models and how it compares to observations. In this study, we
address these research gaps by evaluating simulated LPR across CMIP
generations using an instrument simulator andby analyzinghowchanges in
LPR from CMIP5 to CMIP6 affect the weakening of the negative cloud
feedback in the extratropics.

Constraining simulated cloud phase using observations
Earth systemmodels (ESMs) use variousmethods to partition liquid and ice
phases in clouds, from a simple temperature-based dependence16,17 to more
sophisticated microphysical schemes18,19. For example, the temperature at
which clouds are 50% liquid, 50% ice (i.e., LPRmass = 0.5; denotedT50/50; see
Methods) – a metric often used to assess the fraction of supercooled clouds
in ESMs – ranges from −1.6 to −32 ˚C (Fig. 1a). The lower T50/50 is in a
model, the more supercooled clouds there will be relative to all clouds, and
therefore, the larger its mean LPRmass. Several studies have consistently

reported that older CMIP3 and CMIP5 models underestimate supercooled
liquid clouds (too small LPRmass) compared to satellite observations7,20–26,
which has led to considerable attention being paid to increasing LPRmass in
the CMIP6 generation9,13,27–29.

Here we analyze for the first time global-scale outputs of a subset of
CMIP models across three CMIP generations: ten CMIP6 models and
their CMIP5 counterparts from the same modeling centers as well as
seven CMIP3 models. A lack of required model outputs precludes us
from studying all CMIP models. Yet, our model sample includes outputs
from 10modeling centers, which represent 8 of the 10main ESM families –
as classified by their model genealogy code following Kuma et al.30 – that
participated in both CMIP5 and CMIP6. These 8 families account for
about 95% of the total number of CMIP5 (60) and CMIP6 (101) models30

(Methods). Our results confirm that CMIP6 models simulate
greater LPRmass than their predecessors, although the spread remains
large (Fig. 1a).

Fig. 1 | Diversity of relationships between temperature and liquid phase ratio
(LPR) across models and observations depending on the observing platform,
region, and cloud phase definitions. a Global mean of simulated mass LPR
(LPRmass), computed as the ratio of the liquid water content to total water content in
cloud, for seven CMIP3 (pink), ten CMIP5 (purple), and ten CMIP6 (red) models
from the same modeling centers (see Supplementary Table 1–3). The dashed lines
and shading represent the multimodel mean and spread (i.e., minimum and max-
imum), respectively. b Observed frequency, mass or hybrid LPR from different
instruments and platforms: satellites in shading of black, fixed ground-based

instruments in red and in situ aircraft measurements in blue (see Supplementary
Table 4 and Supplementary Note 1). For clarity, no observations are shown at
temperatures greater than 0 ˚C. In contrast with the models, it is not consistent to
compare these observations among themselves (Supplementary Note 1). The insets
show the temperature at which liquid clouds transition to ice clouds for all different
models and observational datasets, expressed as the temperature at which clouds are
50% liquid and 50% ice (LPR = 0.5, noted T50/50). Note that for the CMIP3 models,
only the T50/50 values are available from the literature (Supplementary Table 3),
which are extrapolated to a narrow band along the 50/50 isoline.
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Results
Given the underestimate of LPRmass reported in the literature7,20–26, one
might reason that this increase of LPRmass in the models represents an
improvement over the previous generations and surmise that their general
increase in climate sensitivities is largely a consequence of that5,15. However,
most CMIP5-based studies evaluated model LPRmass directly against
observations7,20,23–25, which is not an optimal strategy for two important
reasons. First, the definitions of cloud and LPRvary across observations and
models, as discussed further below. Second, satellite instrument limitations
require careful consideration when comparing to model outputs, though
efforts were made to mitigate these discrepancies in previous work. In
addition, the observed relationship between LPRand temperature can differ
substantially depending on the instrument, platform (e.g., aircraft, ground-
based or satellite), geographic region, cloud and LPRdefinitions, and type of
clouds sampled, which has been shown in previous literature21,31–33 and is
further exemplified in Fig. 1b. We note that, for the same reasons, it is not
consistent to compare all these observational datasets to each other. For
example, in situ aircraft measurements of mid-latitude and high-latitude
clouds can indicate very little supercooled cloud at temperatures below−9
˚C. This result contrasts with the larger LPRs from similar measurements
targeting Arctic mixed-phase clouds (MPCs), which typically include both
supercooled liquid and ice particles, or midlatitude ground-based remote-
sensing observations. In polar regions, however, ground-based observations
record a larger proportion of ice-dominated clouds – yet with large varia-
bility attributable to cloud phase definition – than at mid-latitudes. Overall,
the global-scale satellite datasets report the greatest LPRs of all platforms,
including Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tions (CALIPSO)-based datasets, which arguably correspond to the most
reliable and complete global-scale cloud phase observations34–36. To com-
plicate matters further, while the simulated LPRs are almost exclusively
computed from mass concentrations of ice and liquid cloud water
(LPRmass), observational analyses may use either LPRmass

37,38, frequency of
occurrence31,39–41 (LPRfreq), or a hybrid combination of frequency and
volume of liquid and ice clouds42 (LPRhybrid).

A more observationally consistent framework for model
evaluation
One way to account for observational limitations and enforce consistent
cloud definitions, resolutions, and LPR methodology is to employ an
instrument simulator. An instrument simulatormimics what a satellite-borne
instrument would observe flying over an ESM atmosphere21,43 and its outputs
can be compared directly to the observations that have been processed to be
consistent with that specific instrument simulator. Consequently, one can
evaluate the instrument simulator LPRfreq against the corresponding observed
LPRfreq, defined as the ratio of liquid phase cloud fraction to the liquid plus ice
cloud fraction. As a valuable extension beyond previous CMIP submissions,
CALIPSO lidar simulator cloud phase outputs were requested for CMIP6 and
10 models provided them for the experiments that are relevant to this study.
Here we take advantage of the resulting opportunity to evaluate cloud phase
more consistently in these 10 models and constrain their LPRfreq against the
compatible CALIPSO dataset31,35 using the simulator approach (Methods),
which has not been done in with previous multimodel analyses. Using the
lidar simulator increases diagnosed liquid-cloud occurrences and therefore
shifts LPRfreq to cooler temperatures compared to LPRmass (Fig. 2), primarily
because liquid droplets dominate the lidar signal21. Results indicate that 7 out
of 10 CMIP6 models (Supplementary Table 1 and Supplementary Fig. 1)
largely overestimate LPRfreq (Fig. 2), with their mean T50/50 being 5.8 ˚C less
than in CALIPSO observations. Assuming that the effect of the lidar simu-
lator found in the CMIP6 models is consistent across all CMIP generations
(Methods), we infer a correspondingly smaller overestimate of LPRfreq in
CMIP3 and CMIP5 models (Fig. 2).

Do CMIP models produce too many supercooled clouds or too
few ice clouds?
Overall, the five models with prescribed temperature-dependent phase
partitioning drive the multimodel bias while the five models with more
complex microphysics are closer to the range of observational uncertainty,
yet slightly biased in the opposite direction (Fig. 3a-b, SupplementaryFig. 1).
This LPRfreq overestimate ismostly attributable to low- andmid-level clouds

Fig. 2 | Relationship between temperature and LPR in three generations of CMIP
models against satellite observations. Global mean of mass (as in Fig. 1a; dashed)
and frequency (solid) LPR in CMIPmodels (red, purple and pink for ten CMIP6 and
CMIP5 and seven CMIP3 models, respectively) against observed CALIPSO-
GOCCP frequency LPR (as in Fig. 1b; Cesana et al.,31; solid grey). The simulated
frequency LPRs are derived using a lidar simulator that uses cloud and cloud phase
definitions and resolutions consistent with the observations as opposed to the mass
LPRs, which are computed directly from the native climate model outputs (i.e.,

without a lidar simulator) and cannot be compared directly to the observations.Note
that CMIP5 and CMIP3 multimodel frequency LPR datapoints are derived from
mass LPR assuming a lidar effect similar to that in CMIP6 models. As in Fig. 1, the
liquid-to-ice transition temperature (T50/50) is embedded for all curves with simu-
lator (solid) and without simulator (dashed). The cooler this temperature is, the
more supercooled clouds persist at cold temperatures. All CMIP model generations
overestimate the amount of supercooled clouds at cool temperatures beyond the
observational uncertainty (Supplementary Note 2).
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(at heights <7 km) in the extratropics and to high-level clouds (at heights ≥
7 km) in the tropics (Fig. 3c-f, Supplementary Fig. 2). In the mixed-phase
temperature range, CMIP6 models apparently simulate too many relative
occurrences of liquid-dominated clouds (LPRfreq > 0.9) between−25 and 0
˚C, too few ice-dominated clouds (LPRfreq <0.1) between−35 and−20 ˚C,
and too many “mixed-phase” clouds (0.1 ≤ LPRfreq ≤ 0.9; Fig. 3a, b, Sup-
plementary Fig. 1) at temperatures below −15 ˚C. In addition to these
results, Figs. 3d and f help us conclude that the overestimate of liquid-
bearing clouds is the main cause of the LPRfreq bias in the extratropics. We
interpret the increase in supercooled clouds in CMIP6 models (Fig. 1a,
Supplementary Fig. 2) as partly attributable to an increase of low-level cloud
fraction44 to address the long-standing lackof low-level clouds in the tropics,
subtropics and at midlatitudes35,45 but also as a consequence of modeling
centers reducing “apparent” phase biases of CMIP5 models highlighted by
the aforementioned studies7,20,23–25. Consistent with that hypothesis, when
compared directly to our observed CALIPSO LPRfreq – that is, without a
simulator, as done in many previous studies7,20,23–25 – the CMIP6 LPRmass

comes close to the range of observational uncertainty whereas that of
CMIP5 and CMIP3 models is largely an underestimate at all temperatures.
That underestimation is even greater against a CALIPSO LPRhybrid

estimate42 (T50/50 =−23.3 ˚C) often used in past studies to constrain cloud
phase partitioning in ESMs7,46–48. We however note that although LPRfreq

has increased in most models, generating larger negative (lower) T50/50, it
has also decreased or remained unchanged in a few models (Fig. 4, Sup-
plementary Table 1-2).

Although the overestimate of supercooled clouds causes most of the
LPRfreq bias, we expect that the underestimate of ice-dominated clouds
(LPRfreq <0.1), the other contributor to the bias, could bemitigated to at least
some degree by accounting for large hydrometeors (classified as precipita-
tion) based on previous findings49. Currently, most modeling centers (eight
CMIP6models out of the ten used in Fig. 2) have opted toneglect their effect
on radiation49, which means that they are not accounted for in simulated
Earth’s energy budget and, because they are radiatively inactive, any
instrument simulator is therefore consistently blind to them by convention.
Making radiation schemes and any simulator instrument aware of pre-
cipitation may substantially affect LPRmass, LPRfreq and cloud feedback

50,51.
By increasing the amount of ice-dominated clouds, including precipitation
can pushT50/50 toward higher temperatures, by 3 to 12 ˚Cdepending on the
ESM50 (Supplementary Fig. 3). We posit that models’ cloud phase repre-
sentation should be evaluated using a consistent evaluation framework, via

Fig. 3 | Cloud phase evaluation of CMIP6 models against satellite observations.
Global frequency of occurrences (%) of liquid phase ratio (LPRfreq) as a function of
the temperature (°C) for a CALIPSO-GOCCP observations (2007-2016 Nighttime
v2.9) and b the multimodel mean bias (model minus observations) of ten CMIP6
models using the lidar simulator. The black and red lines correspond to the mean
frequency LPRfreq as shown in Fig. 2 for CALIPSO-GOCCP observations and the
models, respectively. The dash-dotted and dotted red lines and the blue dash line
correspond to temperature-dependent (n = 5) and complex-microphysics (n = 5)
model means (Supplementary Table 1) and GISS-ModelE3 mean (n = 6),

respectively. Zonal profiles of liquid (middle) and ice (bottom) cloud fractions for
c, e CALIPSO-GOCCP and d, f the multimodel mean bias. The 0,−20 and−40 ˚C
isotherms are represented in c–f. The T50/50 height transition for the multimodel
mean is shown in solid purple in d and f, as well as its equivalent with observationally
constrained liquid in dotted red and ice in dotted blue (effectively using observed
liquid or ice cloud fraction instead of the simulated one). These isocontours show
that most of the LPRfreq positive bias is driven by excessive liquid cloud fraction in
the extratropics and excessive ice cloud fraction between roughly 20˚S and N.
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comparison of cloud frequencies estimated from the lidar simulator to their
equivalent observed quantities. Additionally, rather than relying solely on
LPRfreq, liquid and ice cloud fractions should be also analyzed separately.
Finally, the radiative effect of precipitation particles should be included in
ESMs’ radiation schemes to further improve consistency with observations
from a microphysics and radiative perspective.

Impact of modifying LPR on climate projections
While the overall consequences of this evolving increase in supercooled
cloudsoverCMIPgenerations are varied, there is nodoubt that the increases

affect the response of simulated clouds to climate warming (i.e., cloud
feedback). Past studies6,7,9,15 have suggested a link between LPRmass or liquid
water content (LWC) and weakened negative cloud feedback in some
individual models, but to our knowledge none have demonstrated it sys-
tematically across many CMIP models. To establish that connection here,
we useT50/50 derived fromLPRmass – a proxy for the amount of supercooled
clouds – and the shortwave (SW) cloud optical depth feedback (Methods).
We also focus our analysis over the extratropics (55˚ to 75˚ latitude in both
hemispheres), where the change between CMIP6 and CMIP5 cloud feed-
back is large (Supplementary Fig. 4) and the impact of cloud phase changes

Fig. 4 | Relationship between liquid-to-ice transition temperature (T50/50) and
SW cloud feedback over the extratropics defined as 55˚S to 75˚S and 55˚N
to 75˚N. a The difference in optical depth feedback9 from all clouds (W m−2 K−1)
between the CMIP6 and CMIP5 versions of each modeling center (n = 10) as a
function of the corresponding difference in T50/50 (˚C; from LPRmass, i.e., without
lidar simulator). b Same as a but for the amount feedback. c Same as a but for the total
cloud feedback. Negative ΔT50/50 and positive Δfeedback correspond to increased

LPRmass (likely more supercooled clouds) and increased cloud feedback (stronger
positive or weaker negative) in CMIP6 models compared to their CMIP5 counter-
parts. d Actual total cloud feedback of GISS-ModelE3 as a function of actual T50/50

(from LPRmass, i.e., without lidar simulator) for the six different model configura-
tions as well as the mean of the two coolest and warmest T50/50 configurations. The
shading corresponds to the global cloud feedback. All correlations except that shown
in panel a are statistically significant (with probability p < 0.05).
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on cloud feedback is maximum6–9. To better isolate this impact, we further
characterize the change in cloud feedback as a function of the change inT50/
50 between CMIP6 and CMIP5 climate models from each modeling center
(Fig. 4; CMIP6minus CMIP5, Methods). Our results reveal that increasing
LPRmass in any climate model (lower T50/50, going to the left on Fig. 4a) is
somewhat correlated with increased optical depth feedback (weaker nega-
tive or stronger positive, going up on Fig. 4a; linear correlation coefficient
r =−0.29). Although that relationship is not statistically significant and is
driven by only a fewmodels, it becomes strongerwhenonly low-level clouds
are considered (Supplementary Fig. 5, r =−0.51), yet still not statistically
significant. Such results also suggest that the relationship between present-
day LPRmass and the so-called negative cloud phase feedback

52, an increase
of liquid clouds at the expense of ice clouds in a warmer climate, 52is only
happening in somemodels. In these models, the greater LPRmass (i.e., more
liquid cloudswith respect to all clouds), theweaker the negative cloud phase
feedback and its contribution to the optical depth feedback, because fewer
ice clouds are in effect being replaced by liquid clouds in a warmer climate.
More surprisingly, greater LPRmass (lowerT50/50, going to the left on Fig. 4b)
also corresponds to a decrease of the cloud amount feedback (less positive or
more negative, going down on Fig. 4b) – further elucidated in the next

paragraph – at a rate that more than offsets the optical depth feedback
increase (Fig. 4b). This dominance of the cloud amount feedback change
over the optical depth feedback change explains why the extratropical SW
cloud feedback change is also negatively correlated with greater
LPRmass (Fig. 4c).

Yet the extratropical CMIP6 cloud amount feedback is larger than in
CMIP5 models, despite their overall increased LPRmass. This counter-
intuitive result suggests that other changes between CMIP5 and 6 model
versionshave contributed to increasing the cloud amount feedback,which is
consistent with the large positive intercept of the correlation line between
Δcloud amount feedback and Δ T50/50 (Fig. 4c). Part of this change is likely
attributable to substantial developments in boundary layer and cloud
parameterizations to reduce low cloud biases, which, in turnmodified cloud
sensitivities to climate change9,53. Ultimately, this increase has masked the
negative contribution of greater LPRmass to the cloud amount feedback.

To further investigate these unexpected results and better isolate the
effect of LPR on cloud feedback, we analyze outputs from six configurations
of the NASA Goddard Institute for Space Studies ModelE3 (GISS-
ModelE350). The GISS-ModelE3 model is well-suited for this analysis
because it employs a state-of-the-art treatment of stratiform cloud

Fig. 5 | Sensitivity of liquid and ice cloud fraction and water content profiles to
warming in GISS-ModelE3 and CMIP6 models over the extratropics defined as
55˚S to 75˚S and 55˚N to 75˚N.Vertical temperature profiles (in ˚C) of future a ice
and b liquid cloud fraction changes (a, b; CF in %) in response to a uniform 4 K
surface temperature increase (AMIP4K – AMIP) as simulated by the six GISS-
ModelE3 configurations (blue line) and by CanESM5, CESM2, CNRM-CM6-1,

GFDL-CM4, IPSL-CM6A-LR and MRI-ESM2 using a lidar simulator over the
extratropics. c, d Same as a, b but for their raw water content (gkg−1). Note that we
use the only six CMIP6 models that provided the AMIP4K simulator outputs in
a and b, but we also show the full ten-model sample in c and d (dotted red line), for
which the results are very similar to the 6-model sample (red line). The shading
corresponds to plus or minus one standard deviation.
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microphysics (including prognostic precipitation, which is included in
radiation and instrument simulators; Methods) which leads to realistic
supercooled andmixed-phase clouds50 (Fig. 3b). It also provides a variety of
possibleT50/50 andLPRfreq distributions

50 (SupplementaryFig. 3). Finally, its
cloud phase changes in response to warming shows the same shift from
supercooled to warm clouds and little to no changes in ice clouds as in the
CMIP6 multimodel mean (Fig. 5).

Using these six configurations of the same model with diverse tuning
strategies, we find that greater GISS-ModelE3 LPRmass in present-day cli-
mate generates greater amount and liquid water content from all clouds
in response to warming and, in turn, a stronger negative cloud amount
feedback – consistent with CMIP models (Fig. 4) – and optical depth
feedback (Supplementary Fig. 6). Some part of the supercooled liquid cloud
population, which can produce both liquid and frozen precipitation, are
replaced by warm liquid clouds in response to warming (Fig. 5), which
can only produce liquid precipitation. Warm liquid clouds form
precipitation less readily than their supercooled counterparts54, leaving
more atmospheric moisture and thus greater cloud amount and water
content compared to present-day climate (Fig. 5). Such an increase in liquid
cloud amount and optical depth generates more SW reflection in a warmer
climate, thereby producing a negative cloud feedback, as illustrated in
Fig. 6. In the literature, a similarmechanismhas beendocumented involving
ice clouds being replaced by warm liquid clouds, sometimes referred to
as cloud lifetime feedback1. Here we find evidence in GISS-ModelE3 and
in CMIP6 models that the change in cloud amount and water content
mostly results from a shift of supercooled clouds to warm clouds rather
than of ice clouds to supercooled or warm clouds (Fig. 5). This finding
profoundly advances understanding of the cloud phase feedback, whichwas
previously hypothesized to be mostly driven by ice-containing clouds
being effectively replaced by warm clouds in response to global warming.
Thus, adding supercooled clouds in the present-day climate, which is
equivalent to increasing LPR, strengthens the increase of liquid cloud
amount and liquid water content in response to warming (Fig. 5 and Sup-
plementary Fig. 7, mostly from warm liquid clouds) and its associated
negative feedback (Fig. 4 and Supplementary Fig. 8). This supercooled cloud
feedback and the fact that LPR (via supercooled cloud amount) increased
between CMIP5 and CMIP6models likely explains the correlation between
increased LPRmass and stronger negative cloud amount feedback in CMIP
models (Fig. 4).

We note that precipitation efficiency changes between CMIP genera-
tions could also influence this feedback2 although we do not know to what
extent: a greater precipitation efficiency in CMIP6models would weaken it
whereas a reduction would strengthen it. However, in order to achieve
greater amount of liquid clouds in the present-day climate, one may spec-
ulate that some modeling centers have lowered the precipitation efficiency
in their CMIP6 models, which is consistent with the surface precipitation
rate per amount of low-cloud cover in CMIP6 models being smaller than
that of CMIP5 (not shown).

InGISS-ModelE3 the negative optical depth feedback averaged over all
clouds strengthens as present-dayLPRmass increases (SupplementaryFig. 6),
while it can go either way in CMIP models5,13–15 (Fig. 4). Conventional
wisdom tells us that the increase in extratropical cloud optical depth in
response to warming is mainly controlled by two mechanisms in climate
models: a cloud phase shift of ice to warm liquid clouds, and a shift of the
moist adiabat to higher temperatures, which allows greater LWC to be
sustained55, mostly at supercooled temperatures, and is often referred to as
an “adiabat feedback”. Neither of these can be computed at this time,
making it difficult to quantify their contribution to cloud optical depth
changes5,13–15. However, here we reveal a shift from supercooled to warm
clouds, a largely overlooked mechanism (Fig. 6) that has never been char-
acterized before. This shift contributes greatly to strengthening not only the
negative cloud amount feedback, but also the negative optical depth feed-
back, because warm clouds are less precipitation-efficient than supercooled
clouds and therefore sustain greater water content. Furthermore, we find
that the ice to liquid phase shift is very small in the six configurations of
GISS-ModelE3 and the multimodel mean of the CMIP6 ESMs (Fig. 5), in
agreement with observations (Supplementary Fig. 9), but contradicting
previous understanding based on studies using a single ESM.

As a result, the extratropical SW cloud feedback of the two GISS-
ModelE3 configurations with thewarmest transition from liquid to ice (T50/
50 =−9.1 ˚C: fewer supercooled clouds and smaller LPRmass) is one third
larger (i.e., less negative) compared to that of the two configurationswith the
coolest transition (−15 ˚C: more supercooled clouds and greater LPRmass;
Fig. 4d). All else being equal, such a difference in T50/50 (from LPRmass) is of
the same order of magnitude as the CMIP6 model negative bias (ΔT50/
50 =−5.8 ˚C, fromLPRfreq) and could generate a similar feedback change in
some CMIP6 models, should their LPRmass be decreased to correct LPRfreq

bias and match the observational constraint.
Predicting the overall effect of recalibratingCMIP6 supercooled clouds

on cloud feedback is difficult because, going fromCMIP5 toCMIP6,myriad
changes were implemented in model parametrizations that affected cloud
feedbacks. However, we postulate that reducing LPRmass to correct this
LPRfreq bias would generate a strengthening of the positive cloud amount
feedback averaged over all clouds. This more positive cloud feedback could
be slightly compensated by a stronger negative optical depth feedback in
some models but would most likely be enhanced by a weakening of the
negative optical depth feedback, given ourfindings based onGISS-ModelE3
andCMIP6models (Fig. 5). Ultimately, this correctionwould result in a less
negative or more positive extratropical SW cloud feedback (Methods),
according to our sample ofCMIPmodels, which is representative of an even
larger sample of them in terms of feedback signs and changes (Supple-
mentary Fig. 4).We furtherutilize the relationshipbetweenCMIP6ECSand
the lidar simulatorT50/50 to assess the effect of correctingT50/50 on simulated
ECS, based on our observational constraint and using a direct constraint
approach53,56. Doing so may affect the ECS by at least 0.5 ˚C in half of the
models used in this study (from−0.6 ˚C to+1 ˚C; Supplementary Table 5).

Fig. 6 | Illustration representing the supercooled cloud feedback. Response of
present-day liquid cloud (left) towarming (right) CMIP6models.Wenote that other
feedbacksmay occur and are not represented here. Instead, we focus on the so-called
supercooled cloud feedback, which occurs in parts of supercooled clouds. These

clouds become less precipitation-efficient warm clouds in response to warming,
which contributes to increasing the overall liquid cloud amount and optical thick-
ness in the future climate, and therefore their reflection, constituting a negative
feedback.
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More importantly, it consistently decreases the multimodel ECS standard
deviation in both the CMIP6models andGISS-ModelE3 configurations (by
up to more than a factor of 2), using both the aforementioned direct con-
straint and a more traditional “emergent constraint” approach53,57,58

(Methods, Fig. 7). Although this effect is model dependent, such results
further illustrate that better constraining the cloud phase representation in
CMIP6 models would result in reduced ECS inter-model spread, by
bringing some convergence to one part of the cloud feedback uncertainty.

Conclusions
Compared to early climate models, the representation of cloud phase has
greatly improved18,59, partly driven by increased understanding of mixed-
phase cloud processes and by the availability of more accurate and com-
prehensive cloud phase observations60. In the present study, we analyze how

well three CMIP generations of climate models represent the cloud phase
using a simulator approach and then we investigate how changes in cloud
phase between CMIP generations have affected extratropical cloud feed-
back. We find three notable results, the first two of which contradict pre-
vious understanding:
(1) The average liquid phase ratio is overestimated in all CMIP genera-

tions, based on a consistent comparison to observations using a
simulator approach, and even more so in the latest generation
(CMIP6). Compared to CALIPSO observations, the CMIP6 liquid-to-
ice transition temperatureT50/50 is too low in7outof 10models, andby
5.8 ˚C in the multimodel mean, which is 3.3 ˚C worse than the earlier
models of CMIP5. This unexpected result may have been induced by
past inconsistent evaluations of ESM cloud phase against
observations7,20,23–25, which suggested a LPR underestimate of CMIP5

Fig. 7 | Effect of constraining T50/50 on ECS from CMIP6 models and GISS-
ModelE3 configurations. a effect of correcting the lidar T50/50 bias to match the
observational constraint in CMIP6 models, in which the arrows indicate the cor-
rection and the open circles the corrected values. GISS-ModelE3 Phys (the config-
uration with the most realistic cloud phase partitioning50) is also used in this CMIP6
regression. b same as a using the emergent constraint method. c and d, same as a and

b, respectively, but for GISS-ModelE3. Three GISS-ModelE3 configurations are not
corrected in c because they fall within the observational uncertainty range (Tun1,
Tun5 and Phys, Supplementary Table 6). The black and grey solid circles correspond
to the original and constrained mean ECS, respectively, within plus or minus one
standard deviation (height of error bar).
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and CMIP3models and very likely prompted a strong LPR increase in
CMIP6 model development.

(2) Although other cloud feedback processes can impact extratropical
cloud feedback in CMIP models1,10,53, our results indicate that cloud
phase partitioning changes can substantially modify this feedback. In
particular, the surprising correlation between reduced LPR and
increased cloud feedback in CMIP models is mainly explained by the
weakening of the negative “supercooled cloud feedback”, an undocu-
mented feedback that emerges from a shift of supercooled clouds to
warm liquid clouds, as revealed by our GISS-ModelE3 and CMIP6
analysis. Although we do not have the data to verify that this shift
happens in all CMIP6models, we doprovide evidence for the existence
of a supercooled cloud feedback within a solid framework. As done in
previous cloud phase studies1,3,15, we first demonstrate it using a
relevant ESM (as explained further below) in conjunction with an
explanation of the mechanism: in response to warming, part of the
supercooled liquid cloud population in effect become less readily
precipitating warm liquid clouds (Fig. 5). We then show further
evidence from both CMIP models and observations (Fig. 5, Supple-
mentary Figs. 7 and 9, and SupplementaryNote 3), which also suggests
that liquid clouds tend to be more frequent and – in somemodels – to
have a larger optical depth in a warmer climate, resulting in a negative
cloud feedback.

(3) Constraining T50/50 in climate models strongly impacts their ECS (by
up to1 ˚C)andmay substantially reduce theECSuncertainty inour10-
model CMIP6 and 6-configuration GISS-ModelE3 ensembles (Fig. 7,
by up to a factor of 2), using two different methods. Such a result
provides evidence that improving observational constraints on model
LPR would reduce the uncertainty in climate projections. For that
purpose, meaningful cloud phase evaluation requires a methodologi-
cally sound framework, such as comparison of cloud frequencies from
a lidar simulator to lidar-observed quantities. Furthermore, precipita-
tion (especially ice phase) should be included in radiative transfer as
well as in in lidar simulator calculations owing to its contribution to
LPRfreq. Finally, rather than relying solely on LPRfreq (or T50/50), it is
also recommended that liquid and ice cloud fractions also be separately
evaluated.

Methods
Computation of LPR and temperature at which clouds are 50%
liquid, 50% ice, T50/50
Definitions of different LPRs. Throughout the manuscript, we compute the
liquid phase ratio, which ranges between 0 and 1, as the ratio of the liquid
cloud water or fraction to the sum of the liquid and ice cloud water or
fraction in each longitude, latitude and altitude gridbox and for each time
step. Thus, LPR = 1 or 0 correspond to gridboxes that are purely liquid or ice
clouds, respectively, and a mixture of both cloud phases for values in
between. For the LPRmass, directly computed from model’s raw outputs
without using a satellite simulator, we use profiles of ice and liquid water
contents (referred to as “cli” and “clw”) monthly files downloaded from the
earth system grid federation (ESGF) website, which hosts the official CMIP
archive, for present-day Atmospheric model intercomparison project
(AMIP) simulations, which correspond to sea surface temperature (SST)
prescribed runs. For the CALIPSO simulator outputs, we use profiles of the
lidar simulator liquid and ice cloud fraction monthly files (referred to as
“clcalipsoliq” and “clcalipsoice”) for the same AMIP simulations, which
includes day and nighttime data. In both cases, we use the last eight years of
the AMIP simulations to get a similar annual variability as in the observa-
tions – and because it partially overlaps with the observational record for
CMIP6 models – and we exclude gridboxes that are not sampled by the
satellite (latitudes poleward of 82˚ N and S).

Computation of LPR-temperature relationship. To compute the LPR-
temperature relationships, we derive LPR profiles as a function of the
temperature, for 3 ˚C bins from −93 ˚C to 21 ˚C rather than altitude or
pressure grids. For the raw model outputs, we directly use the temperature

profiles that are available on the same pressure levels as the liquid and ice
cloud water contents, or we linearly interpolate them if on different levels.
For the CALIPSO simulator variables, which are given on the satellite
altitude levels, we convert the temperature from pressure levels to the
satellite altitude levels and then derive LPR profiles as a function of the
temperature using 3 ˚Cbin increments. In somemodels, theremight beLPR
greater than 0 at temperatures below−40 ˚Cbecause we usemonthlymean
profiles of temperatures (and water content or cloud fraction), which are
averaged over smaller time scales, where temperatures can sometimes be
greater than−40 ˚Cand coincide with the presence of liquid clouds. For the
observations, the liquid and ice temperature profiles for the same 3 ˚C bins
are available inmonthlymeanfiles for the2007−2016periodon theGeneral
Circulation Models (GCM)-Oriented CALIPSO Cloud Product
(CALIPSO-GOCCP) website (v2.9). We then interpolate all the model files
onto the same 2.5˚ × 2.5˚longitude-latitude grid as the observations and
further average them along each dimension to obtain 38-interval tem-
perature-LPR arrays. Finally, we select the two data points on either side of
LPR= 0.5 and interpolate them linearly at LPR = 0.5 to derive the corre-
sponding temperature, termed T50/50.

Definition of the liquid-to-ice transition T50/50. In this study, we
employ T50/50 because it conveniently characterizes the transition between
liquid- and ice-dominated clouds, it has been widely used to assess the
fraction of supercooled clouds in the literature, and it can be utilized to
comparemodels with observations using the lidar simulator. To address the
fact that T50/50 only represents the transition temperature between liquid-
and ice-dominated clouds and may not capture the full variability of LPR
over a large range of temperature, we have designed an additional metric
defined as 1 minus the mean of the LPR between −40 and 0 ˚C. We have
reproduced our computations for Fig. 4 and have found similar results and
conclusions (not shown). We show an example in Supplementary Fig. 6
usingGISS-ModelE3. Thus, we have usedT50/50 in themeanmanuscript for
simplicity.

Choice of CMIP models
Our choice ofmodels is constrained by the availability ofmodel outputs that
are needed for our computations, as is often the case in multimodel com-
parison exercises. For all our results but Fig. 5, we used ESMs from the 10
modeling centers that provided ice and liquid water content, liquid and ice
CALIPSO-simulator profiles, temperatures and geopotential heights for the
AMIP experiment, as well as the necessary outputs to compute cloud
feedbacks (described in the “Cloud feedback computations” section below)
for both their CMIP5 and CMIP6 model versions. This number is mostly
constrained by the CALIPSO-simulator outputs availability. While it may
seem small, it is on the higher end of the spectrum when it comes to
multimodel evaluation analyses, judging from recent simulator-oriented
studies44,53,61,62. Furthermore, there are 10 main ESM families that have
participated in bothCMIP5 andCMIP6 according to the classification used
by Kuma et al.30 (their Fig. 1 and Supplementary Table 1), which is based on
model genealogy code. Our sample of 10models includes outputs from 8 of
these 10 main ESM30, which account for about 95% of the total number of
CMIP5 and CMIP6 models (161). And finally, as mentioned in the main
manuscript, various ways of simulating cloud phase are represented in our
subset of models, from a simple temperature-based dependence16,17 tomore
sophisticated microphysical schemes18,19.

Simulator approach and comparison with CALIPSO-GOCCP
To ensure a fair evaluation that accounts for the CALIPSO lidar limitations
and uses similar cloud and cloud phase definitions and resolutions as in the
observations, we use the CALIPSO-like outputs from CMIP6 models,
obtained through the use of a CALIPSO lidar simulator21, to compare with
the General Circulation Model-Oriented CALIPSO Cloud Product
(CALIPSO-GOCCP31,35, v2.9). The lidar simulator computes lidar atte-
nuated backscatter profiles using temperature, pressure, and water content
and effective radius of cloud particles63. A stochastic subcolumn generator is
also used to characterize subgrid-scale variability and accounts for the
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model-specific overlap assumptions64. Then, liquid- and ice-dominated
cloudy subgrid-pixels are distinguished using a method consistent with the
observations. It is important to keep inmind that this cloudphasediagnostic
characterizes the frequency of occurrence of liquid and ice clouds, which is
very different from their mass, partly explaining why the LPRmass and
LPRfreq are different, in addition to using different sampling and cloud
definitions. Note that we exclude latitudes poleward of 82˚ N and S to be
consistent with observations.

CALIPSO-GOCCP cloud phase
In this study, we use CALIPSO-GOCCP31,35 (2007-2016, v2.9) for multiple
reasons. First, CALIPSO-GOCCP is the only dataset that has a simulator
counterpart available in themodelswe selected togetherwith corresponding
profiles of temperature and water phase in the “raw” model output (i.e.,
without simulator): ta, cli and clw. This makes it the best choice for con-
sistent comparisons of model and observations (i.e., using same cloud and
cloudphase definitions, sampling, and resolutions) and to assess the effect of
the simulator on the rawoutput. Second,CALIPSO-GOCCP is arguably the
most accurate global-scale cloudphasedataset available (e.g.,Cesana et al.31).
CALIPSO-GOCCP documents cloud properties every 333m along-track-
resolution near-nadir lidar profiles for 480m height intervals. Instead of
relying on temperature, the cloud phase is diagnosed based on cloud
properties (including particle shape, as described next) and for multiple
levels, in contrast with passive sensors. More specifically, liquid- and ice-
dominated clouds are distinguished using the polarization state of the laser
signal, which changes when backscattered by a non-spherical crystal con-
trary to spherical droplets. Additionally, undefined-phase clouds are diag-
nosed below highly reflective layers when the distinction between the two
water phases is hampered by multiple scattering and noise. We focus on
nighttime observations to reduce the influence of noise, induced by solar
photons, on the cloud phase diagnostic. The effect of using nighttime
observations instead of day and nighttime observations on the cloud frac-
tion is marginal (less than +/− 1.2% in zonal cloud profiles, not shown)
compared to the large model-to-observations biases (on the order of +/−
10%35). To estimate the potential effect of using only nighttime observations
on cloud phase diagnostics, we have run a GISS-ModelE3 simulation using
nighttime only (based on solar illumination) and compared the results with
the regular simulation using day and nighttime. We have found no sig-
nificant differences between the two simulations in the GCM diagnostics
related to cloudphase,whichwe evaluatewith observations in the study (not
shown). We note that in situ and ground-based remote-sensing datasets,
while very useful, are also not representative of global scale observations,
which make them less relevant for global or even semi-global scale studies.
Finally, CALIPSO-GOCCP v3.1.2, which is the same as v2.9 but with the
addition of opacity diagnostics, is used in Supplementary Fig. 9e.

Lidar simulator effect: Estimating LPRfreq from LPRmass in
CMIP5 and CMIP3 models
The CALIPSO simulator cloud phase outputs were not requested for
CMIP5 and did not exist when CMIP3 was undertaken. As a result, only a
few CMIP5 models implemented and used the CALIPSO simulator cloud
phasemodule in theirmodels, but nonemade their results publicly available.
To address this shortcoming, we assume that the effect of the CALIPSO
simulator onCMIP6 rawLPR (LPRmass) is similar acrossCMIPgenerations,
whenapplied tomultimodelmeans.Wecompute thedifferencebetween the
multimodel CMIP6 LPRmass and CALIPSO-simulator LPRfreq curves (i.e.,
the difference between the dashed and solid red lines in Fig. 2) at all tem-
peratures, which corresponds to a “lidar effect” that effectively transforms
LPRmass into LPRfreq.We then subtract this lidar effect from themultimodel
CMIP5 LPRmass (i.e., the solid purple line in Fig. 2) at all temperatures to
obtain LPRfreq. Similarly, we compute the lidar effect using T50/50. Based on
ten CMIP6 models, we find a lidar effect of −8.9 ˚C at T50/50.

To assess the validity of our assumption, i.e., the effect of the lidar
simulator is similar across CMIP generations, we compare this effect in a
sample of four CMIP6 models (CESM2, CanESM5, CNRM-CM6-1 and

IPSL-CM6A-LR) and theirCMIP5 equivalents (CAM5,Can4,CNRM5and
IPSL5B,not shown),whichwere obtainedby the lead authorGCduringpast
research. The lidar effect in CMIP5models (−6.8 ˚C) is only 1.1 ˚Cwarmer
than the effect using the same four CMIP6 models (−7.9 ˚C), which con-
firms that our assumption is reasonable. Assuming that the lidar effect is
greater in all nineCMIP5models by 1.1 ˚C(e.g.,−7.8 ˚C insteadof−8.9 ˚C)
wouldnotqualitatively changeour results. TheCMIP5modelswould still be
less biased than the CMIP6 models compared to CALIPSO-GOCCP. We
note that even if this assumption was wrong, it would not affect the main
conclusions of this study in any capacity since we only use it to evaluate
CMIP5 and CMIP3 models in Fig. 2 for reference purposes. Because liquid
and ice water contents were not requested for CMIP3, we lack information
regarding LPRmass dependency on temperature for the CMIP3 models.
Therefore, we only apply this method to their T50/50, which were either
obtained fromthe literature directly or computedbasedon their cloudphase
parameterization descriptions in the literature (Supplementary Table 3).

Cloud feedback computations
The radiative response of clouds to climate warming, referred to as cloud
feedback, used in this study is the sameas inZelinka et al.9. In that study, they
characterize the atmospheric contributions to cloud feedbacks by using
model outputs from the CMIP database in which the atmospheric CO2
levels were quadrupled (4xCO2 simulation) compared to a pre-industrial
atmosphere (piControl simulation). Then, the cloud feedback is computed
using radiative kernels that quantify the sensitivity of top-of-the-
atmosphere radiation to small perturbations and is then adjusted for non-
cloud influences65. Finally, the SW component is further decomposed into
the amount, scattering and absorption sub-components using the approx-
imate partial radiative perturbation (APRP) technique66. Because the
absorption component is very small compared to the scattering, we treat the
scattering component as the sum of the scattering and absorption compo-
nents. This feedback is very similar to the broadly used optical depth
feedback (Zelinka et al.67, their Supplementary Fig. 1), which is the term we
use to refer to our scattering feedback throughout the manuscript. More
details are provided by Zelinka et al.9.We use the 4xCO2-derived feedbacks
rather than that from a uniform SST warming of 4 K not only because the
required model outputs are available but also because the future SST
warming pattern that corresponds to 4xCO2-derived feedback is in prin-
ciple more physically plausible. A recent study pointed out that on average,
feedbacks computed via both routes are very similar and show equivalent
spread68.

For GISS-ModelE3, we quantify cloud feedbacks using simulations
lacking a coupled ocean model as opposed to fully coupled simulations in
CMIP6 models68. Additionally, we apply the cloud radiative kernel
method69, which is more computationally efficient, allows a finer decom-
position of the feedback components and produces values that are very
similar to the radiative kernelmethod in terms ofmagnitude and sign in the
extratropics (Zelinka et al.70, their Fig. 5 and Zelinka et al.67). We do not use
this cloud radiative kernelmethodwithCMIP6 andCMIP5models because
the necessary variables are missing for most CMIP6 models. The resulting
cloud feedback is decomposed into amount, altitude, optical depth, and
residual contributions. The amount, altitude and optical depth contribu-
tions quantify the feedback generated by changes in cloud fraction, altitude
and optical depth, respectively, while keeping the other two parameters
constant in the cloud top pressure and optical depth ISCCP bin space. We
characterize the atmospheric contributions to cloud feedbacks by pre-
scribing the SST in the control simulation, based on monthly observations,
and by applying a uniformwarming of 4 K in the perturbed simulation. See
Zelinka et al.70 and Cesana et al.50 for more details.

Finally, we focus on SW feedbacks in this study because changes in
cloud phase have a strong impact on SW radiation and because most of the
intermodel spread inCMIPcloud feedback comes fromthe SWcomponent,
as explained in the abstract and introduction, and shown inprevious studies.
Changes in cloud phase may also affect LW radiation – although we do not
find consistent correlations between LW feedback and T50/50 changes in
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CMIP models and GISS-ModelE3 (not shown) – and other feedbacks,
which we do not investigate here.

ChangesbetweenCMIPmodelswithinmodelingcenters (used in
Fig. 4a–c and Supplementary Fig. 10)
We focus our analysis over the extratropics (55˚S/N to 75˚S/N), where the
changebetweenCMIP6andCMIP5 cloud feedback is large (Supplementary
Fig. 4) and the impact of cloud phase changes on cloud feedback, particu-
larly its optical depth component, is maximum6–9. Yet we do not find
meaningful correlation between T50/50 and the optical depth feedback from
low-level or all clouds (Supplementary Fig. 11) in part because of differences
of cloud properties other than phase in the ESMmean states that impact the
optical depth feedback. Such differences are greater between ESMs from
different modeling centers, which use various parameterizations, radiative
schemes, dynamical cores and resolutions, than among CMIP versions
within the samemodeling centers, for which changes aremore incremental.
To better isolate the impact of the cloud phase on the simulated optical
depth feedback, we therefore characterize the change in optical depth
feedback from all clouds as a function of the change in T50/50 between
CMIP6andCMIP5climatemodels fromeachmodeling center (Fig. 4a). For
that,wepickedCMIP5andCMIP6models fromthe samemodeling centers,
as listed in Supplementary Tables 1 and 2, and computed differences
betweenCMIP6andCMIP5cloud feedbackandT50/50. TheT50/50 valuesare
computed as explained above and the cloud feedbacks are fully described by
Zelinka et al.9. We use the same method for Fig. 4b, c and Supplemen-
tary Fig. 10.

Choice of NASA GISS-ModelE3 outputs
As done in previous studies1,3,15, we use a specific yet relevant ESM in
conjunction with providing a physical explanation and further evidence
from the multimodel analysis to further dissect the relationship between
cloudphase and cloud feedback.We analyze outputs of six configurations of
the NASA GISS-ModelE3 ESM (including four configurations similar to
that used by Cesana et al.50, Tun1-3 and Phys, and two additional config-
urations designated Tun 4 and Tun 5), in which only cloud-related para-
meters are varied and not parameterization physics. They represent
“equally-likely” physics representations that were primarily obtained by
applying machine learning methods to roughly 40 uncertain cloud-related
parameters to optimize agreement with satellite observables. The primary
structural difference between the Phys configuration and the Tun1-5 con-
figurations is an alternative formulation for convective entrainment. GISS-
ModelE3 is a relevant choice for three main reasons. First, it simulates
complexmicrophysical processes necessary to produce realistic supercooled
and mixed-phase clouds (including prognostic precipitation) that are in
surprisingly good agreementwith observations, bothon a global scale and at
the process level50,71. Second, it offers a variety of possibleT50/50 values – and
therefore LPR distributions – from its six configurations that use different
sets of cloud-related tuning parameters (Supplementary Fig. 3). Third, the
liquid and ice cloud fraction changes in response towarmingare very similar
to the CMIP6 multimodel mean (Fig. 5).

In GISS-ModelE3, the stratiform cloud microphysics treatment is
based on a modified two-moment microphysics scheme with prognostic
precipitation18, in which cloud water and ice, rain, and snow mixing ratios
and number concentrations are prognostic variables. Rain and snow both
require other hydrometeors to already exist, unlike cloud droplets, which
form via aerosol activation, and cloud ice, which can form from aerosol and
cloud droplet freezing, homogeneously and heterogeneously. Typically,
snow and rain hydrometeors are larger and fall faster than cloud particles.
Finally, the cumulus category realized for a given environment is a function
of dynamically determined entrainment and its cloud phase is based on a
temperature threshold. Compared to the original scheme18, the GISS-
ModelE3 configuration used here includes the following updates pertinent
to our findings: depositional growth of stratiform snow is included; the
Bergeron process is simulated through the different saturation vapor pres-
sures over ice and water as in nature, rather than using the Bergeron

enhancement of the original two-moment microphysics scheme, which
transfers water directly from cloud droplets to cloud ice; at supercooled
temperatures warmer than homogeneous freezing of liquid drops, hetero-
geneous ice nucleation occurs only in the immersion mode, using the
temperature dependence of Demott et al.72. The cloud phase treatment in
themoist convection scheme–described indetail inCesana et al.50– is based
on a temperature threshold varying from 251 K to 261 K depending on the
configuration. We note that the moist convection cloud phase has a rela-
tively small impact on the overall cloud phase representation in GISS-
ModelE3.

Each configuration of GISS-ModelE3 uses a different combination of
tuning parameters and therefore it is difficult to pinpoint with precision
what causes changes in the LPR and whether these changes affect cloud
feedback. To better isolate the impact of LPRon cloud feedback, we perform
two sensitivity testswherewe reduceand increase LPR in theGISS-ModelE3
configurations with the greatest (Tun2) and smallest (Tun1) LPR, respec-
tively, by tweaking a single tuning parameter. This parameter increases the
speed of a few microphysical processes such as autoconversion, immersion
freezing and accretion, which only affect the liquid cloud amount (Sup-
plementary Fig. 7). We then compare the initial tuning configurations of
GISS-ModelE3 with their modified counterparts, Tun2 LPR- (smaller LPR,
fewer liquid clouds thanTun2) andTun1LPR+ (greater LPR, greater liquid
clouds than Tun1), to estimate the impact of LPR changes on liquid and ice
cloud fraction and cloud fraction changes as well as cloud feedback.We find
that greater LPR in present-day climate by virtue of increasing liquid cloud
fraction generates greater cloud amount (Supplementary Fig. 7) and water
content increase in response towarming and, in turn, amore negative cloud
amount and optical depth feedback (Supplementary Fig. 8). This increase is
contributed almost exclusively by liquid clouds while ice clouds are fairly
insensitive to changes in LPRfreq (Supplementary Fig. 7). In addition, we
note that the amount and change of ice clouds is fairly small compared to
that of liquid clouds, below 2 km, suggesting that cloud phase feedback is
probably also small.

Cloud feedback estimates resulting from the LPR observational
constraint
Here we analyze the possible outcomes of re-tuning T50/50 to smaller or
greater temperatures in CMIP6 models to match our observational con-
straint. Collectively, CMIP6 models underestimate T50/50 by 5.8 ˚C. On the
one hand, increasing T50/50 to greater temperatures (thereby reducing
supercooled clouds) would strengthen the magnitude of the multimodel
meannegative low-level cloud optical depth feedback over these latitudes by
−0.06 Wm−2K−1 based on the slope of the linear fit (Fig. 4a, −0.01 Wm−2

K−1 per K), making it marginally more negative than that of CMIP5models
(−0.15 Wm−2 K−1; Supplementary Table 2). On the other hand, the cloud
amount feedback from all clouds would increase by 0.12Wm−2K−1, at a rate
that is larger than the cloudoptical depth feedbackdecrease from low clouds
across CMIPmodels (Fig. 4b,+0.02Wm−2K−1 per K). Retuning the CMIP
models tomatch our observational constraint would result in a total change
over the extratropics of 0.13 Wm−2K−1 (Fig. 4c, −0.023 Wm−2K−1 per K),
further exacerbating the difference between CMIP6 and CMIP5 models
However, re-tuning the LPR of individual models could result in larger
changes because their T50/50 biases can be larger, and the outcome of a re-
tuning is different depending on the model. It is important to note that in
GISS-ModelE3, the mean global net feedback of the two coolest T50/50
configurations is half that of the two warmest configurations, for a T50/50
difference of 6 ˚C, which corresponds to the magnitude of a typical bias in
CMIP6models (Supplementary Table 1). Consequently, one could expect a
similar impact of cloud phase changes on cloud feedback in CMIP6models,
should their T50/50 be retuned.

Effect of constraining T50/50 on ECS from CMIP6 models and
GISS-ModelE3
Although the effect of constraining T50/50 on cloud feedback and ECS is
surelymodel dependent, we aim to provide an example of possible outcome
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in terms of ECS uncertainty, should the T50/50 from models be modified to
match the observational constraint, all else being equal. Given the strong
relationship between T50/50, the extratropical SW cloud feedback (e.g.,
Fig. 4), the global SW cloud feedback and ECS shown in this study (e.g.,
Supplementary Fig. 10), we linearly regress lidar T50/50 with CMIP6 ECS,
yielding a linear correlation factor (r) of 0.51. We find a slope of 0.07 ˚C of
ECS per ˚C of T50/50. We then use this slope to compute the effect of
correcting T50/50 biases on ECS in the 10 CMIP6 models of the study, by
multiplying this slope by the corrected bias (Supplementary Table 5; model
minus the closest value of the observational range) and adding it to the
original ECS; we also include GISS-ModelE3 Phys in the computation,
which is the configuration that best matches the observed cloud phase
partitioning50). This method can be described as a direct constraint
approach andhas beenused in previously53,56.Doing so slightly increases the
mean ECS from 4.1 ˚C to 4.4 ˚C but more importantly, it also reduces the
multimodel ECS standard deviation (SD) by 15%, from 1.19 ˚C to 1.01 ˚C,
confirming that better constraining the cloud phase representation in
CMIP6 models will result in reduced ECS inter-model spread (Fig. 7, top
row). To roughly account for uncertainty in the relationship between lidar
T50/50 and CMIP6 ECS, we reproduce this computation using a slope that is
twice and half of 0.07 ˚C/˚C, which results in a reduction of the ECS SD by
10% and 12%, respectively, instead of 15%. An alternative method often
used in the literature to constrain models, referred to as an “emergent
constraint53,57,58”, consists in using the observational range of a quantity that
is well correlated with ECS – for physically understood reasons – to predict
ECS. The uncertainty is calculated as a function of the observational range
and a 10–90% confidence interval of the slope of the ECS-T50/50 line. With
thismethod, wefind anECS ranging from4.02 ˚C to 4.99 ˚Cwith amean of
4.4 ˚C, effectively reducing the uncertainty by 57% (Fig. 7, second row).

Applying the same methods to GISS-ModelE3, we find consistent
results. By correcting T50/50 of GISS-ModelE3 configurations that are out-
side of the observational range with the slope of the linear regression
between ECS and T50/50 (r = 0.87, p < 0.05; Supplementary Table 6), we
obtain a larger ECS (3.83 ˚C compared to 3.68 ˚C) and a 33% smaller
uncertainty (Fig. 7, third row). However, because the spread ofT50/50 for the
GISS-ModelE3 configurations is about the same as the observational range
and its values do not encompass the observational range, using the 10–90%
confidence interval of the slope of the ECS-T50/50 line would result in a
similar or even greater uncertainty. Instead, we exclude the GISS-ModelE3
configurations that are outside of the observed T50/50 range, in which case,
we obtain a mean ECS of 3.97 ˚C, ranging from 3.77 ˚C to 4.17 ˚C, which
corresponds to a reduction of the ECS spread by 46% (Fig. 7, fourth row).

We note that the GISS-ModelE3 ECS values were computed through
the regression method of Gregory et al.73, using 20-year runs with a slab-
oceanmodel inwhich carbondioxidewasquadrupled in theperturbed runs.

Data availability
The CALIPSO-GOCCP observations (Cesana et al.31) can be downloaded
from the CFMIP-Obs website (http://climserv.ipsl.polytechnique.fr/cfmip-
obs/Calipso_goccp.html). The CMIP ESM outputs were downloaded from
the ESGF website (https://esgf-node.llnl.gov/). The CMIP cloud feedbacks
used in Fig. 4 (Zelinka, 2021) are available at https://doi.org/10.5281/
zenodo.5206851. Climate model data to reproduce Figs. 1a and 2, as well as
some data that is not publicly available, such as some observational datasets
used in Fig. 1b, some climate model outputs (CNRM-CM6 and IPSL-
CM6A-LR), which were specifically processed for this study to produce
Fig. 5, as well as the GISS-ModelE3 data used in Figs. 4d and 5, can be
downloaded here: https://zenodo.org/records/10767855.

Code availability
The codes used to produce the figures can be made available by contacting
the corresponding author.
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