Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pleiotropic functions of reactive oxygen species in cancer

Abstract

Cellular redox homeostasis is an essential, dynamic process that ensures the balance between reducing and oxidizing reactions within cells and thus has implications across all areas of biology. Changes in levels of reactive oxygen species can disrupt redox homeostasis, leading to oxidative or reductive stress that contributes to the pathogenesis of many malignancies, including cancer. From transformation and tumor initiation to metastatic dissemination, increasing reactive oxygen species in cancer cells can paradoxically promote or suppress the tumorigenic process, depending on the extent of redox stress, its spatiotemporal characteristics and the tumor microenvironment. Here we review how redox regulation influences tumorigenesis, highlighting therapeutic opportunities enabled by redox-related alterations in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular sources of ROS and toxicity to macromolecules.
Fig. 2: Tumor redox metabolism and targeted ROS-harnessing therapies.
Fig. 3: Impact of ROS on key features of tumorigenesis.
Fig. 4: Interaction between KEAP1/NRF2 and BACH1 transcription factors and downstream effects in cancer.
Fig. 5: Harnessing ROS biology for personalized cancer treatment.

Similar content being viewed by others

References

  1. Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P. & Fenn, W. O. Oxygen poisoning and x-irradiation: a mechanism in common. Science 119, 623–626 (1954).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Michaelis, L. Fundamentals of oxidation and respiration. Am. Sci. 34, 573–596 (1946).

    CAS  PubMed  Google Scholar 

  3. Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Martinez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Harris, I. S. & DeNicola, G. M. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 30, 440–451 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Pillai, R., Hayashi, M., Zavitsanou, A. M. & Papagiannakopoulos, T. NRF2: KEAPing tumors protected. Cancer Discov. 12, 625–643 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, W. L. & Papagiannakopoulos, T. The pleiotropic role of the KEAP1/NRF2 pathway in cancer. Annu. Rev. Cancer Biol. 4, 413–435 (2020).

    Article  Google Scholar 

  8. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Sheng, Y. et al. Superoxide dismutases and superoxide reductases. Chem. Rev. 114, 3854–3918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zito, E. ERO1: a protein disulfide oxidase and H2O2 producer. Free Radic. Biol. Med. 83, 299–304 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Winterbourn, C. C. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82-83, 969–974 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Visnes, T. et al. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Res. 48, 12234–12251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, H., Su, X. & He, B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem. Biol. 7, 947–960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartman, C. R. et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature 614, 349–357 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sullivan, L. B. et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51, 236–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cordes, T. et al. Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. Mol. Metab. 32, 122–135 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Ooi, A. et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20, 511–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the HIF/PHD pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20, 524–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bollong, M. J. et al. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature 562, 600–604 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dai, D. F. et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119, 2789–2797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goh, J. et al. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 11, 191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, L. & Tew, K. D. Reductive stress in cancer. Adv. Cancer Res. 152, 383–413 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Ge, M., Papagiannakopoulos, T. & Bar-Peled, L. Reductive stress in cancer: coming out of the shadows. Trends Cancer https://doi.org/10.1016/j.trecan.2023.10.002 (2023).

  28. Kennedy, L., Sandhu, J. K., Harper, M. E. & Cuperlovic-Culf, M. Role of glutathione in cancer: from mechanisms to therapies. Biomolecules 10, 1429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi, B. H. & Coloff, J. L. The diverse functions of non-essential amino acids in cancer. Cancers 11, 675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cullen, K. J. et al. Glutathione S-transferase π amplification is associated with cisplatin resistance in head and neck squamous cell carcinoma cell lines and primary tumors. Cancer Res. 63, 8097–8102 (2003).

    CAS  PubMed  Google Scholar 

  31. Joly, J. H., Delfarah, A., Phung, P. S., Parrish, S. & Graham, N. A. A synthetic lethal drug combination mimics glucose deprivation–induced cancer cell death in the presence of glucose. J. Biol. Chem. 295, 1350–1365 (2020).

    Article  PubMed  Google Scholar 

  32. Zhong, W. et al. Extracellular redox state shift: a novel approach to target prostate cancer invasion. Free Radical Biol. Med. 117, 99–109 (2018).

    Article  ADS  CAS  Google Scholar 

  33. Lim, J. K. et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl Acad. Sci. USA 116, 9433–9442 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, D.-H. et al. Nuclear factor erythroid-derived 2-like 2-induced reductive stress favors self-renewal of breast cancer stem-like cells via the FoxO3a-Bmi-1 axis. Antioxid. Redox Signal. 32, 1313–1329 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y. et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature 599, 136–140 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Liu, Y. et al. Autoregulatory control of mitochondrial glutathione homeostasis. Science 382, 820–828 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Holmgren, A. & Lu, J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem. Biophys. Res. Commun. 396, 120–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Harris, I. S. et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27, 211–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Wood, Z. A., Schroder, E., Robin Harris, J. & Poole, L. B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Neumann, C. A. et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561–565 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Biteau, B., Labarre, J. & Toledano, M. B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Y. et al. Upregulation of antioxidant capacity and nucleotide precursor availability suffices for oncogenic transformation. Cell Metab. 33, 94–109 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22, 66–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Sharma, P. K., Bhardwaj, R., Dwarakanath, B. S. & Varshney, R. Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non-coordinated expression of antioxidant enzymes. Cancer Lett. 295, 154–166 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Ding, H. et al. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. Sci. Adv. 7, eabk1023 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dore, M. P., Davoli, A., Longo, N., Marras, G. & Pes, G. M. Glucose-6-phosphate dehydrogenase deficiency and risk of colorectal cancer in Northern Sardinia: a retrospective observational study. Medicine 95, e5254 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Langbein, S. et al. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br. J. Cancer 94, 578–585 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Basta, P. V. et al. Genetic variation in transaldolase 1 and risk of squamous cell carcinoma of the head and neck. Cancer Detect. Prev. 32, 200–208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. McBrayer, S. K. et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell 175, 101–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peralta, D. et al. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Yun, J. et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350, 1391–1396 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ye, J. et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4, 1406–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Padanad, M. S. et al. Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep. 16, 1614–1628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 22, 427–432 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, D. et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 8, 1930–1942 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Poss, K. D. & Tonegawa, S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc. Natl Acad. Sci. USA 94, 10925–10930 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yachie, A. et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest. 103, 129–135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ingold, I. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172, 409–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Tomasetti, M., Littarru, G. P., Stocker, R. & Alleva, R. Coenzyme Q10 enrichment decreases oxidative DNA damage in human lymphocytes. Free Radic. Biol. Med. 27, 1027–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Schmelzer, C. & Doring, F. Micronutrient special issue: coenzyme Q(10) requirements for DNA damage prevention. Mutat. Res. 733, 61–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Xu, Z. et al. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Sci. Rep. 7, 8253 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  70. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brigelius-Flohe, R. & Traber, M. G. Vitamin E: function and metabolism. FASEB J. 13, 1145–1155 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Banh, R. S. et al. The polar oxy-metabolome reveals the 4-hydroxymandelate CoQ10 synthesis pathway. Nature 597, 420–425 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kraft, V. A. N. et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci. 6, 41–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Soula, M. et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bailey, J. et al. A novel role for endothelial tetrahydrobiopterin in mitochondrial redox balance. Free Radic. Biol. Med. 104, 214–225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fan, J., Li, L., Small, D. & Rassool, F. Cells expressing FLT3/ITD mutations exhibit elevated repair errors generated through alternative NHEJ pathways: implications for genomic instability and therapy. Blood 116, 5298–5305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stanicka, J., Russell, E. G., Woolley, J. F. & Cotter, T. G. NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells. J. Biol. Chem. 290, 9348–9361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21, 7435–7451 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Zhu, G. et al. Mutant p53 in cancer progression and targeted therapies. Front. Oncol. 10, 595187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hussain, S. P. et al. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 64, 2350–2356 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Kang, M. et al. The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ. 20, 117–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Cheung, E. C. et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell 37, 168–182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sayin, V. I. et al. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 6, 221ra215 (2014).

    Article  Google Scholar 

  85. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, S.-R. et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem. 277, 20336–20342 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Cao, J. et al. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J. 28, 1505–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chan, D. W. et al. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29, 1742–1750 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Lander, H. M. et al. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J. Biol. Chem. 272, 4323–4326 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Takata, T., Tsuchiya, Y. & Watanabe, Y. 90-kDa ribosomal S6 kinase 1 is inhibited by S-glutathionylation of its active-site cysteine residue during oxidative stress. FEBS Lett. 587, 1681–1686 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Morgan, M. J. & Liu, Z. G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Pham, C. G. et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Djavaheri-Mergny, M., Javelaud, D., Wietzerbin, J. & Besancon, F. NF-kappaB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFα-treated Ewing sarcoma cells. FEBS Lett. 578, 111–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Dang, D. T. et al. Glutathione S-transferase pi1 promotes tumorigenicity in HCT116 human colon cancer cells. Cancer Res. 65, 9485–9494 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Schreiber, J. et al. Coordinated binding of NF-κB family members in the response of human cells to lipopolysaccharide. Proc. Natl Acad. Sci. USA 103, 5899–5904 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paulsen, C. E. et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57–64 (2012).

    Article  CAS  Google Scholar 

  97. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chio, I. I. C. et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166, 963–976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bettinger, J. Q., Welle, K. A., Hryhorenko, J. R. & Ghaemmaghami, S. Quantitative analysis of in vivo methionine oxidation of the human proteome. J. Proteome Res. 19, 624–633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Itoh, K. et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76–86 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oyake, T. et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol. Cell. Biol. 16, 6083–6095 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sun, J. et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 21, 5216–5224 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ogawa, K. et al. Heme mediates derepression of MAF recognition element through direct binding to transcription repressor Bach1. EMBO J. 20, 2835–2843 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cebula, M., Schmidt, E. E. & Arnér, E. S. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid. Redox Signal. 23, 823–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sasaki, H. et al. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J. Biol. Chem. 277, 44765–44771 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. McGrath-Morrow, S. et al. Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L565–L573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. DeNicola, G. M. et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 47, 1475–1481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lignitto, L. et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178, 316–3298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun, J. et al. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc. Natl Acad. Sci. USA 101, 1461–1466 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  ADS  Google Scholar 

  111. Hamada, S., Taguchi, K., Masamune, A., Yamamoto, M. & Shimosegawa, T. Nrf2 promotes mutant K-ras/p53-driven pancreatic carcinogenesis. Carcinogenesis 38, 661–670 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Igarashi, K., Nishizawa, H., Saiki, Y. & Matsumoto, M. The transcription factor BACH1 at the crossroads of cancer biology: from epithelial-mesenchymal transition to ferroptosis. J. Biol. Chem. 297, 101032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Liang, Y. et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J. Biol. Chem. 287, 33533–33544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, J. et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 568, 254–258 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Voltan, R. et al. Redox signaling and oxidative stress: cross talk with TNF-related apoptosis inducing ligand activity. Int. J. Biochem. Cell Biol. 81, 364–374 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Takahashi, N. et al. 3D culture models with CRISPR screens reveal hyperactive NRF2 as a prerequisite for spheroid formation via regulation of proliferation and ferroptosis. Mol. Cell 80, 828–844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rankin, E. B. & Giaccia, A. J. Hypoxic control of metastasis. Science 352, 175–180 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Orr, A. L. et al. Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol. 11, 834–836 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, M. et al. Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1α and vascular endothelial growth factor. Oncogene 24, 8154–8166 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Liu, L. Z. et al. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic. Biol. Med. 41, 1521–1533 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Gao, P. et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12, 230–238 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. West, X. Z. et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467, 972–976 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ramundo, V., Giribaldi, G. & Aldieri, E. Transforming growth factor-β and oxidative stress in cancer: a crosstalk in driving tumor transformation. Cancers (Basel) 13, 3093 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Romani, P. et al. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat. Cell Biol. 24, 168–180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Le Gal, K. et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7, 308re308 (2015).

    Google Scholar 

  132. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. He, D. et al. Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis. Mol. Cell 82, 3045–3060 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chan, J. S. K. et al. Cancer-associated fibroblasts enact field cancerization by promoting extratumoral oxidative stress. Cell Death Dis. 8, e2562 (2018).

    Article  Google Scholar 

  137. Ghosh, S. et al. Reactive oxygen species in the tumor niche triggers altered activation of macrophages and immunosuppression: role of fluoxetine. Cell Signal. 27, 1398–1412 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Hamilton, M. J. et al. Macrophages are more potent immune suppressors ex vivo than immature myeloid-derived suppressor cells induced by metastatic murine mammary carcinomas. J. Immunol. 192, 512–522 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. OuYang, L.-Y. et al. Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J. Transl. Med. 13, 1–12 (2015).

    Article  Google Scholar 

  140. Steinert, E. M., Vasan, K. & Chandel, N. S. Mitochondrial metabolism regulation of T cell-mediated immunity. Annu. Rev. Immunol. 39, 395–416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rutault, K., Alderman, C., Chain, B. M. & Katz, D. R. Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic. Biol. Med. 26, 232–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Guo, Z. et al. DCAF1 regulates Treg senescence via the ROS axis during immunological aging. J. Clin. Invest. 130, 5893–5908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ligeon, L.-A. et al. Oxidation inhibits autophagy protein deconjugation from phagosomes to sustain MHC class II restricted antigen presentation. Nat. Commun. 12, 1–13 (2021).

    Article  ADS  Google Scholar 

  145. Yuna, J., Lee, B., Joo, M. & Hong, C. Nrf2 expression is upregulated in tumor infiltrating T cells and induces T cell anergy. J. Immunol. https://doi.org/10.4049/jimmunol.196.Supp.143.15 (2016).

  146. Saddawi-Konefka, R. et al. Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep. 16, 2348–2358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hayashi, M. et al. Microenvironmental activation of Nrf2 restricts the progression of Nrf2-activated malignant tumors. Cancer Res. 80, 3331–3344 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Beury, D. W. et al. Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J. Immunol. 196, 3470–3478 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Satoh, H. et al. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31, 1833–1843 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Zavitsanou, A. M. et al. KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance. Cell Rep. 42, 113295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ricciuti, B. et al. Diminished efficacy of programmed death-(ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status. J. Thorac. Oncol. 17, 399–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Viel, A. et al. A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer. eBioMedicine 20, 39–49 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Schaue, D. & McBride, W. H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 12, 527–540 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhang, Z., Liu, X., Chen, D. & Yu, J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct. Target Ther. 7, 258 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Lei, G. et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30, 146–162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Binkley, M. S. et al. KEAP1/NFE2L2 mutations predict lung cancer radiation resistance that can be targeted by glutaminase inhibition. Cancer Discov. 10, 1826–1841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Villablanca, J. G. et al. A phase I new approaches to neuroblastoma therapy study of buthionine sulfoximine and melphalan with autologous stem cells for recurrent/refractory high‐risk neuroblastoma. Pediatric Blood Cancer 63, 1349–1356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tagde, A., Singh, H., Kang, M. & Reynolds, C. The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma. Blood Cancer J. 4, e229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, L. et al. An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell 173, 1413–1425 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Cramer, S. L. et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Schulte, M. L. et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24, 194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Galan-Cobo, A. et al. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 79, 3251–3267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xia, M., Li, X., Diao, Y., Du, B. & Li, Y. Targeted inhibition of glutamine metabolism enhances the antitumor effect of selumetinib in KRAS-mutant NSCLC. Translat. Oncol. 14, 100920 (2021).

    Article  CAS  Google Scholar 

  166. Fox, D. B. et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat. Metab. 2, 318–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mukhopadhyay, S. et al. Undermining glutaminolysis bolsters chemotherapy while NRF2 promotes chemoresistance in KRAS-driven pancreatic cancers. Cancer Res. 80, 1630 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sayin, V. I. et al. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. eLife 6, e28083 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Jin, H. et al. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. eLife 9, e56749 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yokoyama, Y. & Wild, R. Broad acting glutamine antagonism remodels the tumor microenvironment, induces distinctive immune modulation, and synergizes with immune checkpoint blockade. In Proc. Annual Meeting of the American Association for Cancer Research. 5607 (AACR, 2020).

  171. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  172. Encarnacion-Rosado, J. et al. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. Nat. Cancer https://doi.org/10.1038/s43018-023-00647-3 (2023).

  173. Pillai, R. et al. Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546750 (2023).

  174. Johnson, M. L. et al. Phase 1 and phase 2a, first-in-human (FIH) study, of DRP-104, a broad glutamine antagonist, in adult patients with advanced solid tumors. J. Clin. Oncol. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS3149 (2021).

  175. Gromer, S., Arscott, L. D., Williams, C. H., Schirmer, R. H. & Becker, K. Human placenta thioredoxin reductase: isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J. Biol. Chem. 273, 20096–20101 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Stafford, W. C. et al. Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci. Transl. Med. 10, eaaf7444 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Yan, X. et al. Inhibition of thioredoxin/thioredoxin reductase induces synthetic lethality in lung cancers with compromised glutathione homeostasis. Cancer Res. 79, 125–132 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Kang, Y. P. et al. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. eLife 8, e45572 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cronin, S. J. F. et al. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 563, 564–568 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  182. Romero, R. et al. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. Nat. Cancer 1, 589–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Manford, A. G. et al. A cellular mechanism to detect and alleviate reductive stress. Cell 183, 46–61 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Weiss-Sadan, T. et al. NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metab. 35, 487–503 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bar-Peled, L. et al. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696–709 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cook, N. R., Lee, I.-M., Manson, J. E., Buring, J. E. & Hennekens, C. H. Effects of β-carotene supplementation on cancer incidence by baseline characteristics in the Physicians’ Health Study (United States). Cancer Causes Control 11, 617–626 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. Rayman, M. P. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc. Nutr. Soc. 64, 527–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Lippman, S. M. et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301, 39–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Lonn, E. et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293, 1338–1347 (2005).

    Article  PubMed  Google Scholar 

  190. Ngo, B., Van Riper, J. M., Cantley, L. C. & Yun, J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer 19, 271–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Maddocks, O. D. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  192. Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  193. Tajan, M. et al. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat. Commun. 12, 1–16 (2021).

    Article  Google Scholar 

  194. LeBoeuf, S. E. et al. Activation of oxidative stress response in cancer generates a druggable dependency on exogenous non-essential amino acids. Cell Metab. 31, 339–350 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Yoon, S. J. et al. Comprehensive metabolic tracing reveals the origin and catabolism of cysteine in mammalian tissues and tumors. Cancer Res. 83, 1426–1442 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhang, J. et al. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway. Cell 186, 2361–2379 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Kaludercic, N., Deshwal, S. & Di Lisa, F. Reactive oxygen species and redox compartmentalization. Front. Physiol. 5, 285 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. McClean, C. & Davison, G. W. Circadian clocks, redox homeostasis, and exercise: time to connect the dots? Antioxidants 11, 256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Xu, H. N., Nioka, S., Glickson, J. D., Chance, B. & Li, L. Z. Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J. Biomed. Opt. 15, 036010 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  200. Li, L. Z. et al. Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential. Proc. Natl Acad. Sci. USA 106, 6608–6613 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mendiola, A. S. et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 21, 513–524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, J. et al. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 29, 1604764 (2017).

    Article  Google Scholar 

  203. Keshari, K. R. et al. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc. Natl Acad. Sci. USA 108, 18606–18611 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  204. Granlund, K. L. et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab. 31, 105–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Wang, L. et al. Spatially resolved isotope tracing reveals tissue metabolic activity. Nat. Methods 19, 223–230 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Xie, C., Zhen, X., Lyu, Y. & Pu, K. Nanoparticle regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging. Adv. Mater. 29, 1703693 (2017).

    Article  Google Scholar 

  207. Fujikawa, Y. et al. Mouse redox histology using genetically encoded probes. Sci. Signal. 9, rs1 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Pillai, J. P. Bossowski, M. A. Cross, W. Wu, M. Mancini and C. Wiel for critical reading of this review. T.P. is supported by National Institutes of Health (NIH) grants (R37CA222504 and R01CA227649), an American Cancer Society Research Scholar Grant (RSG-17-200-01–TBE) and the Emerald Foundation Young Investigator Award. V.I.S. is supported by the Swedish Research Council (2018-02318 and 2022-00971), the Swedish Society for Medical Research (S18-034) and the Swedish Cancer Society (20-1278). K.W. is supported by NIH training grants (T32GM136573 and T32GM136542), NIH grant (F30CA275258) and a Ruth L. Kirschstein Individual Predoctoral NRSA fellowship (F30CA275258). A.E.E.Z. is supported by the AG fund (FB20-55).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Volkan I. Sayin or Thales Papagiannakopoulos.

Ethics declarations

Competing interests

V.I.S. consults for Pretzel Therapeutics. T.P. reports grants from Dracen Pharmaceuticals, grants from Kymera Therapeutics, grants from Bristol Myers Squibb, grants from Agios Pharmaceuticals, personal fees from Vividion Therapeutics, personal fees from Tohoku University and personal fees from Faeth Therapeutics outside the submitted work. In addition, T.P. has a patent for US-20210361603-A1 pending and a patent for US-20210085763-A1 pending. K.W. and A.E.E.Z. declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Navdeep Chandel and Isaac Harris for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., El Zowalaty, A.E., Sayin, V.I. et al. The pleiotropic functions of reactive oxygen species in cancer. Nat Cancer 5, 384–399 (2024). https://doi.org/10.1038/s43018-024-00738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-024-00738-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer