Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical and translational advances in ovarian cancer therapy

Abstract

Ovarian cancer is an aggressive disease that is frequently detected at advanced stages and is initially very responsive to platinum-based chemotherapy. However, the majority of patients relapse following initial surgery and chemotherapy, highlighting the urgent need to develop new therapeutic strategies. In this Review, we outline the main therapeutic principles behind the management of newly diagnosed and recurrent epithelial ovarian cancer and discuss the current landscape of targeted and immune-based approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Established and investigative approaches against relevant therapeutic targets in the various histologic subtypes of OC.
Fig. 2: Pathophysiology of the immunosuppressive TME of OC.
Fig. 3: Rational PARPi–DNA-damage response combinations against OC.

Similar content being viewed by others

Data availability

All data discussed in the text are available through the referenced articles.

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Dalmartello, M. et al. European cancer mortality predictions for the year 2022 with focus on ovarian cancer. Ann. Oncol. 33, 330–339 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  5. Gershenson, D. M. et al. The genomic landscape of low-grade serous ovarian/peritoneal carcinoma and its impact on clinical outcomes. Gynecol. Oncol. 165, 560–567 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Hollis, R. L. et al. Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome. Nat. Commun. 11, 4995 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Konstantinopoulos, P. A., Ceccaldi, R., Shapiro, G. I. & D’Andrea, A. D. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 5, 1137–1154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morice, P., Gouy, S. & Leary, A. Mucinous ovarian carcinoma. N. Engl. J. Med. 380, 1256–1266 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Parra-Herran, C. et al. p53, mismatch repair protein, and POLE abnormalities in ovarian clear cell carcinoma: an outcome-based clinicopathologic analysis. Am. J. Surg. Pathol. 43, 1591–1599 (2019).

    Article  PubMed  Google Scholar 

  11. Norquist, B. M. et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2, 482–490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Armstrong, D. K. et al. NCCN Guidelines® Insights: ovarian cancer, version 3.2022. J. Natl Compr. Canc. Netw. 20, 972–980 (2022).

    Article  PubMed  Google Scholar 

  13. Konstantinopoulos, P. A. et al. Germline and somatic tumor testing in epithelial ovarian cancer: ASCO guideline. J. Clin. Oncol. 38, 1222–1245 (2020).

    Article  PubMed  Google Scholar 

  14. Hollis, R. L. et al. Ovarian carcinosarcoma is a distinct form of ovarian cancer with poorer survival compared to tubo–ovarian high-grade serous carcinoma. Br. J. Cancer 127, 1034–1042 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gotoh, O. et al. Clinically relevant molecular subtypes and genomic alteration-independent differentiation in gynecologic carcinosarcoma. Nat. Commun. 10, 4965 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koh, H. H., Park, E. & Kim, H. S. Mesonephric-like adenocarcinoma of the ovary: clinicopathological and molecular characteristics. Diagnostics 12, 326 (2022).

  17. Goff, B. Symptoms associated with ovarian cancer. Clin. Obstet. Gynecol. 55, 36–42 (2012).

    Article  PubMed  Google Scholar 

  18. Prat, J. & Oncology, F. C. O. G. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int. J. Gynaecol. Obstet. 124, 1–5 (2014).

    Article  PubMed  Google Scholar 

  19. Coleridge, S. L., Bryant, A., Kehoe, S. & Morrison, J. Neoadjuvant chemotherapy before surgery versus surgery followed by chemotherapy for initial treatment in advanced ovarian epithelial cancer. Cochrane Database Syst. Rev. 7, CD005343 (2021).

    PubMed  Google Scholar 

  20. Vergote, I., Amant, F. & Leunen, K. Neoadjuvant chemotherapy in advanced ovarian cancer: what kind of evidence is needed to convince US gynaecological oncologists. Gynecol. Oncol. 119, 1–2 (2010).

    Article  PubMed  Google Scholar 

  21. Wright, A. A. et al. Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of Gynecologic Oncology and American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 34, 3460–3473 (2016).

    Article  PubMed  Google Scholar 

  22. Clamp, A. R. et al. Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal cancer treatment (ICON8): overall survival results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 23, 919–930 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. du Bois, A. et al. Phase III trial of carboplatin plus paclitaxel with or without gemcitabine in first-line treatment of epithelial ovarian cancer. J. Clin. Oncol. 28, 4162–4169 (2010).

    Article  PubMed  Google Scholar 

  24. McGuire, W. P. et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N. Engl. J. Med. 334, 1–6 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Ozols, R. F. et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol. 21, 3194–3200 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Chan, J. K. et al. Weekly vs. every-3-week paclitaxel and carboplatin for ovarian cancer. N. Engl. J. Med. 374, 738–748 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pignata, S. et al. Carboplatin plus paclitaxel once a week versus every 3 weeks in patients with advanced ovarian cancer (MITO-7): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 15, 396–405 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Katsumata, N. et al. Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (JGOG 3016): a randomised, controlled, open-label trial. Lancet Oncol. 14, 1020–1026 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Armstrong, D. K. et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 354, 34–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. van Driel, W. J., Koole, S. N. & Sonke, G. S. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N. Engl. J. Med. 378, 1363–1364 (2018).

    PubMed  Google Scholar 

  31. Bell, J. et al. Randomized phase III trial of three versus six cycles of adjuvant carboplatin and paclitaxel in early stage epithelial ovarian carcinoma: a Gynecologic Oncology Group study. Gynecol. Oncol. 102, 432–439 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Chan, J. K. et al. The potential benefit of 6 vs. 3 cycles of chemotherapy in subsets of women with early-stage high-risk epithelial ovarian cancer: an exploratory analysis of a Gynecologic Oncology Group study. Gynecol. Oncol. 116, 301–306 (2010).

    Article  PubMed  Google Scholar 

  33. Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med. 365, 2473–2483 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Oza, A. M. et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. Lancet Oncol. 16, 928–936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tewari, K. S. et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J. Clin. Oncol. 37, 2317–2328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banerjee, S. et al. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 22, 1721–1731 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. DiSilvestro, P. et al. Overall survival with maintenance olaparib at a 7-year follow-up in patients with newly diagnosed advanced ovarian cancer and a BRCA mutation: the SOLO1/GOG 3004 trial. J. Clin. Oncol. 41, 609–617 (2022).

  38. Gonzalez-Martin, A. et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 381, 2391–2402 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Ray-Coquard, I. L. et al. Final Overall Survival (OS) Results from the Phase III PAOLA-1/ENGOT-ov25 Trial Evaluating Maintenance Olaparib (Ola) Plus Bevacizumab (Bev) in Patients (Pts) with Newly Diagnosed Advanced Ovarian Cancer (AOC) (ESMO, 2022).

  40. Ray-Coquard, I. et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl. J. Med. 381, 2416–2428 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Gershenson, D. M. et al. Hormonal maintenance therapy for women with low-grade serous cancer of the ovary or peritoneum. J. Clin. Oncol. 35, 1103–1111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Markman, M. et al. Duration of response to second-line, platinum-based chemotherapy for ovarian cancer: implications for patient management and clinical trial design. J. Clin. Oncol. 22, 3120–3125 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Vergote, I. et al. Clinical research in ovarian cancer: consensus recommendations from the Gynecologic Cancer InterGroup. Lancet Oncol. 23, e374–e384 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Krause, D. & Richardson, D. L. Is there a role for secondary debulking in ovarian cancer? A review of the current literature. Curr. Opin. Obstet. Gynecol. 35, 1–5 (2022).

    Article  PubMed  Google Scholar 

  45. Aghajanian, C. et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 30, 2039–2045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coleman, R. L. et al. Bevacizumab and paclitaxel–carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 18, 779–791 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pujade-Lauraine, E. et al. Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J. Clin. Oncol. 28, 3323–3329 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Coleman, R. L. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 1949–1961 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mirza, M. R. et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375, 2154–2164 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Poveda, A. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 22, 620–631 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Pujade-Lauraine, E. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1274–1284 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Matulonis, U. A. The rapid evolution of PARP inhibitor therapy for advanced ovarian cancer: lessons being learned and new questions emerging from phase 3 trial long-term outcome data. Gynecol. Oncol. 167, 401–403 (2022).

  53. Tew, W. P., Lacchetti, C., Kohn, E. C. & PARP Inhibitors in the Management of Ovarian Cancer Guideline Expert Panel. Poly(ADP-ribose) polymerase inhibitors in the management of ovarian cancer: ASCO Guideline Rapid Recommendation Update. J. Clin. Oncol. 40, 3878–3881 (2022).

  54. Kwan, T. T. et al. Preexisting TP53-variant clonal hematopoiesis and risk of secondary myeloid neoplasms in patients with high-grade ovarian cancer treated with rucaparib. JAMA Oncol. 7, 1772–1781 (2021).

    Article  PubMed  Google Scholar 

  55. Matulonis, U. et al. Long-term safety and secondary efficacy endpoints in the ENGOT-OV16/NOVA phase III trial of niraparib in recurrent ovarian cancer. Gynecol. Oncol. 162, S24–S25 (2021).

    Article  Google Scholar 

  56. O’Malley, D. M. et al. Clinical and molecular characteristics of ARIEL3 patients who derived exceptional benefit from rucaparib maintenance treatment for high-grade ovarian carcinoma. Gynecol. Oncol. 167, 404–413 (2022).

    Article  PubMed  Google Scholar 

  57. Poveda, A. M. et al. Bevacizumab combined with weekly paclitaxel, pegylated liposomal doxorubicin, or topotecan in platinum-resistant recurrent ovarian cancer: analysis by chemotherapy cohort of the randomized phase III AURELIA trial. J. Clin. Oncol. 33, 3836–3838 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Pujade-Lauraine, E. et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J. Clin. Oncol. 32, 1302–1308 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Matulonis, U. A. et al. Efficacy and Safety of Mirvetuximab Soravtansine in Patients with Platinum-Resistant Ovarian Cancer with High Folate Receptor Alpha Expression: Results from the SORAYA Study (SGO, 2022).

  60. Matulonis, U. A. et al. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor α expression: results from the SORAYA study. J. Clin. Oncol. 41, 2436–2445 (2023).

  61. Buechel, M. et al. Treatment of patients with recurrent epithelial ovarian cancer for whom platinum is still an option. Ann. Oncol. 30, 721–732 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Castells, M. C. et al. Hypersensitivity reactions to chemotherapy: outcomes and safety of rapid desensitization in 413 cases. J. Allergy Clin. Immunol. 122, 574–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Oza, A. M. et al. Overall Survival Results from ARIEL4: A Phase III Study Assessing Rucaparib vs Chemotherapy in Patients with Advanced, Relapsed Ovarian Carcinoma and a Deleterious BRCA1/2 Mutation (ESMO, 2022).

  64. Leath III, C. et al. Overall Survival by Number of Prior Lines of Chemotherapy in Patients with BRCA-Mutated Platinum-Sensitive Relapsed Ovarian Cancer Receiving Olaparib Treatment or Non-Platinum Chemotherapy in SOLO3 (IGCS, 2022).

  65. Disis, M. L. et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol. 5, 393–401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Matulonis, U. A. et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann. Oncol. 30, 1080–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Hamanishi, J. et al. Nivolumab versus gemcitabine or pegylated liposomal doxorubicin for patients with platinum-resistant ovarian cancer: open-label, randomized trial in Japan (NINJA). J. Clin. Oncol. 39, 3671–3681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Konstantinopoulos, P. A. & Cannistra, S. A. Immune checkpoint inhibitors in ovarian cancer: can we bridge the gap between imagynation and reality? J. Clin. Oncol. 39, 1833–1838 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Monk, B. J. et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol. 22, 1275–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Moore, K. N. et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-controlled randomized phase III trial (IMagyn050/GOG 3015/ENGOT-OV39). J. Clin. Oncol. 39, 1842–1855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pujade-Lauraine, E. et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 22, 1034–1046 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Sia, T. Y. et al. Treatment of ovarian clear cell carcinoma with immune checkpoint blockade: a case series. Int. J. Gynecol. Cancer 32, 1017–1024 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

  76. Datta, M., Coussens, L. M., Nishikawa, H., Hodi, F. S. & Jain, R. K. Reprogramming the tumor microenvironment to improve immunotherapy: emerging strategies and combination therapies. Am. Soc. Clin. Oncol. Educ. Book 39, 165–174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kandalaft, L. E., Odunsi, K. & Coukos, G. Immune therapy opportunities in ovarian cancer. Am. Soc. Clin. Oncol. Educ. Book 40, 1–13 (2020).

    PubMed  Google Scholar 

  79. Sarivalasis, A., Morotti, M., Mulvey, A., Imbimbo, M. & Coukos, G. Cell therapies in ovarian cancer. Ther. Adv. Med. Oncol. 13, 17588359211008399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yan, W., Hu, H. & Tang, B. Advances of chimeric antigen receptor T cell therapy in ovarian cancer. OncoTargets Ther. 12, 8015–8022 (2019).

    Article  CAS  Google Scholar 

  81. Odunsi, K. et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res. 63, 6076–6083 (2003).

    CAS  PubMed  Google Scholar 

  82. Chen, J. et al. Anti-mesothelin CAR-T immunotherapy in patients with ovarian cancer. Cancer Immunol. Immunother. 72, 409–425 (2022).

  83. Kershaw, M. H. et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 12, 6106–6115 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xie, G. et al. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine 59, 102975 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cohen, C. A., Shea, A. A., Heffron, C. L., Schmelz, E. M. & Roberts, P. C. Interleukin-12 immunomodulation delays the onset of lethal peritoneal disease of ovarian cancer. J. Interferon Cytokine Res. 36, 62–73 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thaker, P. H. et al. A phase I trial of intraperitoneal GEN-1, an IL-12 plasmid formulated with PEG–PEI–cholesterol lipopolymer, administered with pegylated liposomal doxorubicin in patients with recurrent or persistent epithelial ovarian, fallopian tube or primary peritoneal cancers: an NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 147, 283–290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Thaker, P. H. et al. GEN-1 in combination with neoadjuvant chemotherapy for patients with advanced epithelial ovarian cancer: a phase I dose-escalation study. Clin. Cancer Res. 27, 5536–5545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lopes, J. E. et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J. Immunother. Cancer 8, e000673 (2020).

  89. Lopes, J. E. et al. The combination of a mouse ortholog of ALKS 4230, a selective agonist of the intermediate affinity IL-2 receptor, and the angiogenesis inhibitor lucitanib enhances antitumor activity. Cancer Res. 80, 2202 (2020).

    Article  Google Scholar 

  90. Vaishampayan, U. N. et al. Nemvaleukin alfa monotherapy and in combination with pembrolizumab in patients (pts) with advanced solid tumors: ARTISTRY-1. J. Clin. Oncol. 40, 2500 (2022).

    Article  Google Scholar 

  91. Brewer, M. et al. Front-line chemo-immunotherapy with carboplatin–paclitaxel using oregovomab indirect immunization in advanced ovarian cancer: a randomized phase II study. Gynecol. Oncol. 156, 523–529 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Sabbatini, P. et al. Abagovomab as maintenance therapy in patients with epithelial ovarian cancer: a phase III trial of the AGO OVAR, COGI, GINECO, and GEICO—the MIMOSA study. J. Clin. Oncol. 31, 1554–1561 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Y., Zhang, L., Zhao, Y., Wang, S. & Feng, L. Efficacy and safety of gemogenovatucel-T (Vigil) immunotherapy for advanced ovarian carcinoma: a systematic review and meta-analysis of randomized controlled trials. Front. Oncol. 12, 945867 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rocconi, R. P. et al. Gemogenovatucel-T (Vigil) immunotherapy as maintenance in frontline stage III/IV ovarian cancer (VITAL): a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Oncol. 21, 1661–1672 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Rocconi, R. P. et al. Gemogenovatucel-T (Vigil) immunotherapy demonstrates clinical benefit in homologous recombination proficient (HRP) ovarian cancer. Gynecol. Oncol. 161, 676–680 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mouw, K. W., Goldberg, M. S., Konstantinopoulos, P. A. & D’Andrea, A. D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 7, 675–693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Drew, Y. et al. Phase II Study of Olaparib 1 Durvalumab (MEDIOLA): Updated Results in Germline BRCA-Mutated Platinum-Sensitive Relapsed (PSR) Ovarian Cancer (OC) (ESMO, 2019).

  99. Drew, Y. et al. Phase II Study of Olaparib (O) plus Durvalumab (D) and Bevacizumab (B) (MEDIOLA): Initial Results in Patients (pts) with Non-Germline BRCA-Mutated (Non-gBRCAm) Platinum Sensitive Relapsed (PSR) Ovarian Cancer (OC) (ESMO, 2020).

  100. Konstantinopoulos, P. A. et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 5, 1141–1149 (2019).

  101. Wang, Q. et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat. Commun. 13, 3022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mehta, A. K. et al. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat. Cancer 2, 66–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Zsiros, E. et al. Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: a phase 2 nonrandomized clinical trial. JAMA Oncol. 7, 78–85 (2021).

    Article  PubMed  Google Scholar 

  104. Zamarin, D. et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer: an NRG oncology study. J. Clin. Oncol. 38, 1814–1823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cadoo, K. A. et al. A phase II randomized study of avelumab plus entinostat versus avelumab plus placebo in patients (pts) with advanced epithelial ovarian cancer (EOC). J. Clin. Oncol. 37, 5511 (2019).

    Article  Google Scholar 

  106. Stover, E. H., Fuh, K., Konstantinopoulos, P. A., Matulonis, U. A. & Liu, J. F. Clinical assays for assessment of homologous recombination DNA repair deficiency. Gynecol. Oncol. 159, 887–898 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Farkkila, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cong, K. et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell 81, 3227–3144 (2021).

    Article  Google Scholar 

  110. Hurley, R. M. et al. Characterization of a RAD51C-silenced high-grade serous ovarian cancer model during development of PARP inhibitor resistance. NAR Cancer 3, zcab028 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kondrashova, O. et al. Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 7, 984–998 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kondrashova, O. et al. Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma. Nat. Commun. 9, 3970 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29, 3008–3015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Konstantinopoulos, P. A. et al. EPIK-O/ENGOT-OV61: alpelisib plus olaparib vs cytotoxic chemotherapy in high-grade serous ovarian cancer (phase III study). Future Oncol. 18, 3481–3492 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Veneris, J. T., Matulonis, U. A., Liu, J. F. & Konstantinopoulos, P. A. Choosing wisely: selecting PARP inhibitor combinations to promote anti-tumor immune responses beyond BRCA mutations. Gynecol. Oncol. 156, 488–497 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Murai, J. et al. Rationale for poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition. J. Pharmacol. Exp. Ther. 349, 408–416 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ngoi, N. Y. L., Leo, E., O’Connor, M. J. & Yap, T. A. Development of next-generation poly(ADP-ribose) polymerase 1-selective inhibitors. Cancer J. 27, 521–528 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Illuzzi, G. et al. Preclinical characterization of AZD5305, a next-generation, highly selective PARP1 inhibitor and trapper. Clin. Cancer Res. 28, 4724–4736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yap, T. A. et al. Abstract CT007: PETRA: first in class, first in human trial of the next generation PARP1-selective inhibitor AZD5305 in patients (pts) with BRCA1/2, PALB2 or RAD51C/D mutations. Cancer Res. 82, CT007 (2022).

    Article  Google Scholar 

  122. Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518, 258–262 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mateos-Gomez, P. A. et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Beagan, K. et al. Drosophila DNA polymerase θ utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair. PLoS Genet. 13, e1006813 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pignata, S. et al. Chemotherapy in epithelial ovarian cancer. Cancer Letters 303, 73–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Johnson, N. et al. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc. Natl Acad. Sci. USA 110, 17041–17046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sanij, E. et al. CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nat. Commun. 11, 2641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zimmer, J. et al. Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol. Cell 61, 449–460 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lim, K. S. et al. USP1 is required for replication fork protection in BRCA1-deficient tumors. Mol. Cell 72, 925–941 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Murai, J. et al. The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol. Cell. Biol. 31, 2462–2469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Curtin, N. J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer 12, 801–817 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Flynn, R. L. & Zou, L. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem. Sci 36, 133–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Karst, A. M. et al. Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer Res. 74, 1141–1152 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Etemadmoghadam, D. et al. Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc. Natl Acad. Sci. USA 110, 19489–19494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aziz, D. et al. 19q12 amplified and non-amplified subsets of high grade serous ovarian cancer with overexpression of cyclin E1 differ in their molecular drivers and clinical outcomes. Gynecol. Oncol. 151, 327–336 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. da Costa, A., Chowdhury, D., Shapiro, G. I., D’Andrea, A. D. & Konstantinopoulos, P. A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 22, 38–58 (2022).

    Article  PubMed  Google Scholar 

  138. Au-Yeung, G., Mileshkin, L. & Bowtell, D. D. L. CCNE1 amplification as a therapeutic target. J. Clin. Oncol. 41, 1770–1773 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Lee, K. Y., Chung, K. Y. & Koo, H. S. The involvement of FANCM, FANCI, and checkpoint proteins in the interstrand DNA crosslink repair pathway is conserved in C. elegans. DNA Repair 9, 374–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Dykhuizen, E. C. et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497, 624–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Williamson, C. T. et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7, 13837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Konstantinopoulos, P. A. et al. Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21, 957–968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Konstantinopoulos, P. A. et al. A replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nat. Commun. 12, 5574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lheureux, S. et al. A randomized double-blind placebo-controlled phase II trial comparing gemcitabine monotherapy to gemcitabine in combination with adavosertib in women with recurrent, platinum resistant epithelial ovarian cancer: a trial of the Princess Margaret, California, Chicago and Mayo Phase II Consortia. J. Clin. Oncol. 37, 5518 (2019).

    Article  Google Scholar 

  145. Ray Chaudhuri, A. et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535, 382–387 (2016).

    Article  PubMed  Google Scholar 

  146. Murai, J. et al. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget 7, 76534–76550 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. D’Andrea, A. D. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair 71, 172–176 (2018).

    Article  PubMed  Google Scholar 

  148. Yazinski, S. A. et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 31, 318–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tang, Z. et al. ATR inhibition induces CDK1–SPOP signaling and enhances anti-PD-L1 cytotoxicity in prostate cancer. Clin. Cancer Res. 27, 4898–4909 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sieh, W. et al. Hormone-receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study. Lancet Oncol. 14, 853–862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. George, A. et al. The role of hormonal therapy in patients with relapsed high-grade ovarian carcinoma: a retrospective series of tamoxifen and letrozole. BMC Cancer 17, 456 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Stanley, B. et al. Endocrine treatment of high grade serous ovarian carcinoma; quantification of efficacy and identification of response predictors. Gynecol. Oncol. 152, 278–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. ElNaggar, A. et al. Genomic profiling in low grade serous ovarian cancer: identification of novel markers for disease diagnosis and therapy. Gynecol. Oncol. 167, 306–313 (2022).

    Article  CAS  Google Scholar 

  154. Gershenson, D. M., Sun, C. C. & Wong, K. K. Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum. Br. J. Cancer 113, 1254–1258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Moujaber, T. et al. New therapeutic opportunities for women with low-grade serous ovarian cancer. Endocr. Relat. Cancer 29, R1–R16 (2021).

    Article  PubMed  Google Scholar 

  156. Gershenson, D. M. et al. Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): an international, randomised, open-label, multicentre, phase 2/3 trial. Lancet 399, 541–553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Monk, B. J. et al. MILO/ENGOT-ov11: binimetinib versus physician’s choice chemotherapy in recurrent or persistent low-grade serous carcinomas of the ovary, fallopian tube, or primary peritoneum. J. Clin. Oncol. 38, 3753–3762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Grisham, R. N. et al. Extreme outlier analysis identifies occult mitogen-activated protein kinase pathway mutations in patients with low-grade serous ovarian cancer. J. Clin. Oncol. 33, 4099–4105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mak, G. et al. A phase Ib dose-finding, pharmacokinetic study of the focal adhesion kinase inhibitor GSK2256098 and trametinib in patients with advanced solid tumours. Br. J. Cancer 120, 975–981 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Paradis, J. S. et al. Synthetic lethal screens reveal cotargeting FAK and MEK as a multimodal precision therapy for GNAQ-driven uveal melanoma. Clin. Cancer Res. 27, 3190–3200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Banerjee, S. et al. Phase I Study of the Combination of the Dual RAF/MEK Inhibitor VS-6766 and the FAK Inhibitor Defactinib: Results of Efficacy in Low Grade Serous Ovarian Cancer (ESMO, 2021).

  162. Banerjee, S. N. et al. ENGOT-ov60/GOG3052/RAMP 201: a phase 2 study of VS-6766 (dual RAF/MEK inhibitor) alone and in combination with defactinib (FAK inhibitor) in recurrent low-grade serous ovarian cancer (LGSOC). J. Clin. Oncol. 39, TPS5603 (2021).

    Article  Google Scholar 

  163. Solomon, B. et al. Abstract CT033: safety, pharmacokinetics, and antitumor activity findings from a phase 1b, open-label, dose-escalation and expansion study investigating RAF dimer inhibitor lifirafenib in combination with MEK inhibitor mirdametinib in patients with advanced or refractory solid tumors. Cancer Res. 83, CT033 (2023).

    Article  Google Scholar 

  164. Zoeller, J. J. et al. Navitoclax enhances the effectiveness of EGFR-targeted antibody–drug conjugates in PDX models of EGFR-expressing triple-negative breast cancer. Breast Cancer Res. 22, 132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Moore, K. N. et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann. Oncol. 32, 757–765 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Moore, K. N. et al. Phase III MIRASOL (GOG 3045/ENGOT-ov55) study: initial report of mirvetuximab soravtansine vs. investigator’s choice of chemotherapy in platinum-resistant, advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor-α expression. J. Clin. Oncol. 41, LBA5507 (2023).

    Article  Google Scholar 

  167. Conilh, L., Sadilkova, L., Viricel, W. & Dumontet, C. Payload diversification: a key step in the development of antibody–drug conjugates. J. Hematol. Oncol. 16, 3 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tolcher, A., Hamilton, E. & Coleman, R. L. The evolving landscape of antibody–drug conjugates in gynecologic cancers. Cancer Treat. Rev. 116, 102546 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Meric-Bernstam, F. et al. Efficacy and safety of trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-expressing solid tumors: DESTINY-PanTumor02 (DP-02) interim results. J. Clin. Oncol. 41, LBA3000 (2023).

    Article  Google Scholar 

  170. Aravive announces successful completion of phase 1b trial evaluating AVB-500 in platinum resistant ovarian cancer. BioSpace (23 July 2020).

  171. Shen, Y. A. et al. Inhibition of the MYC-regulated glutaminase metabolic axis is an effective synthetic lethal approach for treating chemoresistant ovarian cancers. Cancer Res. 80, 4514–4526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wu, S. et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat. Cancer 2, 189–200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Harding, J. J. et al. A phase I dose-escalation and expansion study of telaglenastat in patients with advanced or metastatic solid tumors. Clin. Cancer Res. 27, 4994–5003 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cornelison, R. et al. Targeting RNA-polymerase I in both chemosensitive and chemoresistant populations in epithelial ovarian cancer. Clin. Cancer Res. 23, 6529–6540 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gourley, C. et al. Increased incidence of visceral metastases in Scottish patients with BRCA1/2-defective ovarian cancer: an extension of the ovarian BRCAness phenotype. J. Clin. Oncol. 28, 2505–2511 (2010).

    Article  PubMed  Google Scholar 

  176. von Gruenigen, V. E. et al. The association between quality of life domains and overall survival in ovarian cancer patients during adjuvant chemotherapy: a Gynecologic Oncology Group study. Gynecol. Oncol. 124, 379–382 (2012).

    Article  Google Scholar 

  177. Carey, M. S. et al. The prognostic effects of performance status and quality of life scores on progression-free survival and overall survival in advanced ovarian cancer. Gynecol. Oncol. 108, 100–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Bhat, G., Karakasis, K. & Oza, A. M. Measuring quality of life in ovarian cancer clinical trials—can we improve objectivity and cross trial comparisons? Cancers 12, 3296 (2020).

  179. Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Monk, B. J. et al. A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA–MONO/GOG-3020/ENGOT-ov45). J. Clin. Oncol. 40, 3952–3964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Monk, B. J. et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol. 22, 1275–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Pujade-Lauraine, E. et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 22, 1034–1046 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Kurtz, J. E. et al. Phase III ATALANTE/ov29 Trial: Atezolizumab (Atz) versus Placebo with Platinum-Based Chemotherapy (Cx) Plus Bevacizumab (Bev) in Patients (Pts) with Platinum-Sensitive Relapse (PSR) of Epithelial Ovarian Cancer (OC) (ESMO, 2022).

  184. Liu, J. F. et al. Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1731–1738 (2019).

  185. Matulonis, U. A. et al. 949P Mirvetuximab Soravtansine, a Folate Receptor Alpha (FRa)-Targeting Antibody-Drug Conjugate (ADC), with Pembrolizumab in Platinum-Resistant Ovarian Cancer (PROC): Initial Results of an Expansion Cohort from FORWARD II, a Phase Ib Study (ESMO, 2018).

  186. Lee, J. M. et al. Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: a first-in-class proof-of-concept phase 2 study. Lancet Oncol. 19, 207–215 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Konstantinopoulos, P. A. et al. A phase 2 study of prexasertib (LY2606368) in platinum resistant or refractory recurrent ovarian cancer. Gynecol. Oncol. 167, 213–225 (2022).

    Article  CAS  Google Scholar 

  188. Fu, S. et al. Phase II Trial of the WEE1 Inhibitor Adavosertib in Advanced Refractory Solid Tumors with CCNE1 Amplification. (AACR, 2021).

  189. Westin, S. N. et al. EFFORT: efficacy of adavosertib in PARP resistance: a randomized two-arm non-comparative phase II study of adavosertib with or without olaparib in women with PARP-resistant ovarian cancer. J. Clin. Oncol. 39, 5505 (2021).

    Article  Google Scholar 

  190. Leijen, S. et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J. Clin. Oncol. 34, 4354–4361 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Oza, A. M. et al. An international, biomarker-directed, randomized, phase II trial of AZD1775 plus paclitaxel and carboplatin (P/C) for the treatment of women with platinum-sensitive, TP53-mutant ovarian cancer. J. Clin. Oncol. 33, 5506 (2015).

    Article  Google Scholar 

  192. Shah, P. D. et al. Combination ATR and PARP inhibitor (CAPRI): a phase 2 study of ceralasertib plus olaparib in patients with recurrent, platinum-resistant epithelial ovarian cancer. Gynecol. Oncol. 163, 246–253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wethington, S. L. et al. Combination of PARP and ATR inhibitors (olaparib and ceralasertib) shows clinical activity in acquired PARP inhibitor-resistant recurrent ovarian cancer. J. Clin. Oncol. 39, 5516 (2021).

    Article  Google Scholar 

  194. Do, K. T. et al. Phase 1 combination study of the CHK1 inhibitor prexasertib and the PARP inhibitor olaparib in high-grade serous ovarian cancer and other solid tumors. Clin. Cancer Res. 27, 4710–4716 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Hamilton, E. P. et al. 836P safety and efficacy of XMT-1536 in ovarian cancer: a subgroup analysis from the phase I expansion study of XMT-1536, a NaPi2b antibody–drug conjugate. Ann. Oncol. 31, S627–S628 (2020).

    Article  Google Scholar 

  196. Gerber, D. E. et al. Phase Ia study of anti-NaPi2b antibody–drug conjugate lifastuzumab vedotin DNIB0600A in patients with non-small cell lung cancer and platinum-resistant ovarian cancer. Clin. Cancer Res. 26, 364–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Liu, J. et al. An open-label phase I dose-escalation study of the safety and pharmacokinetics of DMUC4064A in patients with platinum-resistant ovarian cancer. Gynecol. Oncol. 163, 473–480 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Hassan, R. et al. First-in-human, multicenter, phase I dose-escalation and expansion study of anti-mesothelin antibody–drug conjugate anetumab ravtansine in advanced or metastatic solid tumors. J. Clin. Oncol. 38, 1824–1835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rottey, S. et al. Phase I/IIa trial of BMS-986148, an anti-mesothelin antibody–drug conjugate, alone or in combination with nivolumab in patients with advanced solid tumors. Clin. Cancer Res. 28, 95–105 (2022).

    Article  CAS  PubMed  Google Scholar 

  200. Hamilton, E. P. et al. Phase I, two-part, multicenter, first-in-human (FIH) study of DS-6000a in subjects with advanced renal cell carcinoma (RCC) and ovarian tumors (OVC). J. Clin. Oncol. 40, 3002 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

P.A.K. and U.A.M. acknowledge funding from a Dana-Farber–Harvard Cancer Center Ovarian Cancer SPORE grant (P50CA240243) (P.A.K. and U.A.M.), the Breast Cancer Research Fund (P.A.K. and U.A.M.), Dana-Farber–Harvard Cancer Center grant (2P30CA006516-57) (U.A.M.), R01CA258553-01A1 (P.A.K.) and DOD OCRP W81XWH2110604 (P.A.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Panagiotis A. Konstantinopoulos or Ursula A. Matulonis.

Ethics declarations

Competing interests

U.A.M. declares participation in scientific advisory boards (Allarity, NextCure, Trillium, Agenus, ImmunoGen, Novartis, Boerhinger Ingelheim, the Ovarian Cancer Research Alliance, MorphoSys, CureLab, Eisai and ProfoundBio) and participation in a data safety-monitoring board (Alkermes and Symphogen), consulting (Merck, GSK, AstraZeneca) and a speakers bureau (Med Learning Group). P.A.K. declares participation in scientific advisory boards (Alkermes, AstraZeneca, GSK, BMS, Repare, Artios, Kadmon, ImmunoGen, Bayer, Merck, Merck KGaA and Pfizer) and a scientific steering committee (AstraZeneca).

Peer review information

Nature Cancer thanks Jason Konner, Amit Oza and Clare Scott for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinopoulos, P.A., Matulonis, U.A. Clinical and translational advances in ovarian cancer therapy. Nat Cancer 4, 1239–1257 (2023). https://doi.org/10.1038/s43018-023-00617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00617-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer