Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment

Abstract

Rational development of targeted therapies has revolutionized metastatic breast cancer outcomes, although resistance to treatment remains a major challenge. Advances in molecular profiling and imaging technologies have provided evidence for the impact of clonal diversity in cancer treatment resistance, through the outgrowth of resistant clones. In this Review, we focus on the genomic processes that drive tumoral heterogeneity and the mechanisms of resistance underlying metastatic breast cancer treatment and discuss implications for future treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrative representation of the clonal evolution of BC.
Fig. 2: Models of tumor evolution.
Fig. 3: Gompertzian tumor growth curves.
Fig. 4: Effects of targeted therapy and treatment schedules on ITH.

Similar content being viewed by others

References

  1. Caswell-Jin, J. L. et al. Change in survival in metastatic breast cancer with treatment advances: meta-analysis and systematic review. JNCI Cancer Spectr. 2, pky062 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 21, 519–530 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Sledge, G. W. Jr. et al. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy—MONARCH 2: a randomized clinical trial. JAMA Oncol. 6, 116-124 (2019).

  4. Im, S. A. et al. Overall survival with ribociclib plus endocrine therapy in breast cancer. N. Engl. J. Med. 381, 307–316 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. O’Leary, B. et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. 8, 1390–1403 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  7. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tellez-Gabriel, M., Ory, B., Lamoureux, F., Heymann, M. F. & Heymann, D. Tumour heterogeneity: the key advantages of single-cell analysis. Int. J. Mol. Sci. 17, 12 (2016).

    Article  CAS  Google Scholar 

  14. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  18. International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  Google Scholar 

  19. Bertucci, F. et al. Genomic characterization of metastatic breast cancers. Nature 569, 560–564 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, D. et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 8, 14944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell. 32, 169–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Mattos-Arruda, L. et al. The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep. 27, 2690–2708 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Refsland, E. W. & Harris, R. S. The APOBEC3 family of retroelement restriction factors. Curr. Top. Microbiol. Immunol. 371, 1–27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Henderson, S., Chakravarthy, A., Su, X., Boshoff, C. & Fenton, T. R. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 7, 1833–1841 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Kingston, B. et al. Abstract GS3-07: The genomic landscape of breast cancer based on ctDNA analysis: data from the plasmaMATCH trial. Cancer Res. https://doi.org/10.1158/1538-7445.SABCS19-GS3-07 (2020).

  29. Angus, L. et al. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat. Genet. 51, 1450–1458 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peiris-Pages, M., Martinez-Outschoorn, U. E., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer stem cell metabolism. Breast Cancer Res. 18, 55 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA 108, 7950–7955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fonseca, N. A., Cruz, A. F., Moura, V., Simoes, S. & Moreira, J. N. The cancer stem cell phenotype as a determinant factor of the heterotypic nature of breast tumors. Crit. Rev. Oncol. Hematol. 113, 111–121 (2017).

    Article  PubMed  Google Scholar 

  34. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Bareche, Y. et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J. Natl Cancer Inst. 112, 708–719 (2019).

  36. Glajcar, A. et al. The relationship between breast cancer molecular subtypes and mast cell populations in tumor microenvironment. Virchows Arch. 470, 505–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Curigliano, G. C. S. et al. Abstract OT1-03-1: Phase 1/1b study of novel oral selective estrogen receptor degrader (SERD) LSZ102 in combination with alpelisib (BYL719) in estrogen receptor-positive (ER+), human epidermal growth factor receptor-2–negative (HER2) advanced breast cancer (ABC) with progression on endocrine therapy (ET). Cancer Res. https://doi.org/10.1158/1538-7445.SABCS18-OT1-03-01 (2019).

  38. Chung, W. et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8, 15081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ullah, I. et al. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J. Clin. Invest. 128, 1355–1370 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hoadley, K. A. et al. Tumor evolution in two patients with basal-like breast cancer: a retrospective genomics study of multiple metastases. PLoS Med. 13, e1002174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lluch, A. et al. Dynamic clonal remodelling in breast cancer metastases is associated with subtype conversion. Eur. J. Cancer 120, 54–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Howlader, N. et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl Cancer Inst. 106, dju055 (2014).

  45. Hua, H., Zhang, H., Kong, Q. & Jiang, Y. Mechanisms for estrogen receptor expression in human cancer. Exp. Hematol. Oncol. 7, 24 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bedard, P. L., Freedman, O. C., Howell, A. & Clemons, M. Overcoming endocrine resistance in breast cancer: are signal transduction inhibitors the answer? Breast Cancer Res. Treat. 108, 307–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Jeselsohn, R. et al. Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell 33, 173–186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeselsohn, R. et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res. 20, 1757–1767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lefebvre, C. et al. Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med. 13, e1002201 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang, P. et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin. Cancer Res. 22, 1130–1137 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Zundelevich, A. et al. ESR1 mutations are frequent in newly diagnosed metastatic and loco-regional recurrence of endocrine-treated breast cancer and carry worse prognosis. Breast Cancer Res. 22, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bidard, F. C. et al. Prognostic impact of ESR1 mutations in ER+HER2 MBC patients with prior treatment with first-line AI and palbociclib: an exploratory analysis of the PADA-1 trial. J. Clin. Oncol. 38, 1010 (2020).

  54. Schiavon, G. et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med. 7, 313ra182 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fribbens, C. et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J. Clin. Oncol. 34, 2961–2968 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Turner, N. C. et al. ESR1 mutations and overall survival on fulvestrant versus exemestane in advanced hormone receptor-positive breast cancer: a combined analysis of the phase III SoFEA and EFECT trials. Clin. Cancer Res. 26, 5172–5177 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Robertson, J. F. et al. A randomized, window of opportunity study comparing the effects of the novel oral SERD AZD9496 with fulvestrant in patients with ER+HER2 primary breast cancer. Clin. Cancer Res. 26, 4242–4249 (2020).

  58. Nardone, A. et al. The oral selective oestrogen receptor degrader (SERD) AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance. Br. J. Cancer 120, 331–339 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Toy, W. et al. Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov. 7, 277–287 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Gyanchandani, R. et al. Detection of ESR1 mutations in circulating cell-free DNA from patients with metastatic breast cancer treated with palbociclib and letrozole. Oncotarget. 8, 66901–66911 (2017).

    Article  PubMed  Google Scholar 

  61. Matthew, P. et al. Acquired genomic alterations in circulating tumor DNA from patients receiving abemaciclib alone or in combination with endocrine therapy. J. Clin. Oncol. 15, 3519 (2020).

    Google Scholar 

  62. Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34, 427–438 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Turner, N. C. et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial. Lancet Oncol. 21, 1296–1308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dupont Jensen, J. et al. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin. Cancer Res. 17, 667–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Sabine, V. S. et al. Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J. Clin. Oncol. 32, 2951–2958 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Bleeker, F. E. et al. AKT1E17K in human solid tumours. Oncogene 27, 5648–5650 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Saal, L. H. et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 65, 2554–2559 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Zardavas, D. et al. Tumor PIK3CA genotype and prognosis in early-stage breast cancer: a pooled analysis of individual patient data. J. Clin. Oncol. 36, 981–990 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Papaxoinis, G. et al. Significance of PIK3CA mutations in patients with early breast cancer treated with adjuvant chemotherapy: a Hellenic Cooperative Oncology Group (HeCOG) study. PLoS ONE 10, e0140293 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Smyth, L. M. et al. Characteristics and outcome of AKT1E17K-mutant breast cancer defined through AACR Project GENIE, a clinicogenomic registry. Cancer Discov. 10, 526–535 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Andre, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Bose, R. et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3, 224–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Anonymous. mSWI/SNF component ARID1A mediates breast cancer treatment response. Cancer Discov. 10, 339 (2020).

  75. Nagarajan, S. et al. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat. Genet. 52, 187–197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Elbauomy Elsheikh, S. et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 9, R23 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chen, R. et al. Although cMYC contributes to tamoxifen resistance, it improves cisplatin sensitivity in ER-positive breast cancer. Int. J. Oncol. 56, 932–944 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Paoletti, C. et al. Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells documents heterogeneous resistance mechanisms. Cancer Res. 78, 1110–1122 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. VanArsdale, T., Boshoff, C., Arndt, K. T. & Abraham, R. T. Molecular pathways: targeting the cyclin D–CDK4/6 axis for cancer treatment. Clin. Cancer Res. 21, 2905–2910 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Herrera-Abreu, M. T. et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 76, 2301–2313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taylor-Harding, B. et al. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS. Oncotarget. 6, 696–714 (2015).

    Article  PubMed  Google Scholar 

  82. Bollard, J. et al. Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut 66, 1286–1296 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Condorelli, R. et al. Polyclonal RB1 mutations and acquired resistance to CDK4/6 inhibitors in patients with metastatic breast cancer. Ann. Oncol. 29, 640–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Gong, X. et al. Aurora A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 9, 248–263 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Turner, N. C. et al. Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor-positive metastatic breast cancer. J. Clin. Oncol. 37, 1169–1178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang, C. et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 36, 2255–2264 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Li, Z. et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the Hippo pathway. Cancer Cell 34, 893–905 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Costa, C. et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov. 10, 72–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Formisano, L. et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat. Commun. 10, 1373 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Pearson, A. et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 6, 838–851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. DeKoven, M. et al. Treatment pattern by hormone receptors and HER2 status in patients with metastatic breast cancer in the UK, Germany, France, Spain and Italy (EU-5): results from a physician survey. J. Comp. Eff. Res. 1, 453–463 (2012).

    Article  PubMed  Google Scholar 

  92. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Li, X. et al. Discovery and development of pyrotinib: a novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci. 110, 51–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Gebhart, G. et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann. Oncol. 27, 619–624 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Hurvitz, S. A. et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine and pertuzumab in HER2-positive breast cancer: final outcome results from the phase III KRISTINE study. J. Clin. Oncol. 37, 2206–2216 (2019).

  96. Perez, E. A. et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J. Clin. Oncol. 35, 141–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Christgen, M. et al. ERBB2 mutation frequency in lobular breast cancer with pleomorphic histology or high-risk characteristics by molecular expression profiling. Genes Chromosomes Cancer 58, 175–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Fornier, M. N. et al. Serum HER2 extracellular domain in metastatic breast cancer patients treated with weekly trastuzumab and paclitaxel: association with HER2 status by immunohistochemistry and fluorescence in situ hybridization and with response rate. Ann. Oncol. 16, 234–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, Q. et al. PI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers. Oncogene 35, 3607–3612 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Kong, X. et al. Mechanism of trastuzumab resistance caused by HER-2 mutation in breast carcinomas. Cancer Manag. Res. 11, 5971–5982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gonzalez-Angulo, A. M. et al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol. Cancer Ther. 10, 1093–1101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Andre, F. et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 15, 580–591 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Andre, F. et al. Molecular alterations and everolimus efficacy in human epidermal growth factor receptor 2-overexpressing metastatic breast cancers: combined exploratory biomarker analysis from BOLERO-1 and BOLERO-3. J. Clin. Oncol. 34, 2115–2124 (2016).

    Article  PubMed  Google Scholar 

  106. Baselga, J. et al. Biomarker analyses in CLEOPATRA: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J. Clin. Oncol. 32, 3753–3761 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Dieras, V. et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 18, 732–742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baselga, J. et al. Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of trastuzumab emtansine in HER2-positive metastatic breast cancer. Clin. Cancer Res. 22, 3755–3763 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Omarini, C. et al. Clinical and molecular predictors of long-term response in HER2 positive metastatic breast cancer patients. Cancer Biol. Ther. 19, 879–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goel, S. et al. Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 inhibitors. Cancer Cell 29, 255–269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Choi, Y. J. et al. The requirement for cyclin D function in tumor maintenance. Cancer Cell 22, 438–451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Finn, R. S. et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11, R77 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Mittendorf, E. A. et al. A novel interaction between HER2/neu and cyclin E in breast cancer. Oncogene 29, 3896–3907 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Villagrasa, P. et al. PATRICIA: a phase II study of palbociclib and trastuzumab with or without letrozole in previously treated, postmenopausal patients with HER2-positive metastatic breast cancer. J. Clin. Oncol. 33, TPS642 (2015).

    Article  Google Scholar 

  116. Giuliano, M. et al. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy. Clin. Cancer Res. 21, 3995–4003 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tolaney, S. M. et al. Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): a randomised, open-label, phase 2 trial. Lancet Oncol. 21, 763–775 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Metzger, O. M. S. et al. Abstract OT3-02-07: PATINA: a randomized, open label, phase III trial to evaluate the efficacy and safety of palbociclib + anti-HER2 therapy + endocrine therapy (ET) vs. anti-HER2 therapy + ET after induction treatment for hormone receptor positive (HR+)/HER2-positive metastatic breast cancer (MBC). Cancer Res. https://doi.org/10.1158/1538-7445.SABCS18-OT3-02-07 (2019).

  119. Masuda, S. et al. Intratumoral estrogen receptor heterogeneity of expression in human epidermal growth factor receptor 2-positive breast cancer as evaluated by a brightfield multiplex assay. J. Histochem. Cytochem. 67, 563–574 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Foldi, J. M. S. et al. Pathologic complete response (pCR) rates after neoadjuvant pertuzumab (P) and trastuzumab (H) administered concomitantly with weekly paclitaxel (T) and 5-fluorouracil/epirubicin/cyclophosphamide (FEC) chemotherapy for clinical stage I–III HER2-positive breast cancer. J. Clin. Oncol. 35, 577 (2017).

  121. Dent, R. et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res. 13, 4429–4434 (2007).

    Article  PubMed  Google Scholar 

  122. Brown, M., Tsodikov, A., Bauer, K. R., Parise, C. A. & Caggiano, V. The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California Cancer Registry, 1999–2004. Cancer 112, 737–747 (2008).

    Article  PubMed  Google Scholar 

  123. Romagnoli, G. et al. Morphological evaluation of tumor-infiltrating lymphocytes (TILs) to investigate invasive breast cancer immunogenicity, reveal lymphocytic networks and help relapse prediction: a retrospective study. Int. J. Mol. Sci. 18, 1936 (2017).

  124. Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E. & Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13, 674–690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marra, A., Trapani, D., Viale, G., Criscitiello, C. & Curigliano, G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 6, 54 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rugo, H. S. et al. Performance of PD-L1 immunohistochemistry assays in unresectable locally advanced or metastatic triple-negative breast cancer: post hoc analysis of IMpassion130. Ann. Oncol. 30, v858–v859 (2019).

  127. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Vlastos, G. & Verkooijen, H. M. Minimally invasive approaches for diagnosis and treatment of early-stage breast cancer. Oncologist. 12, 1–10 (2007).

    Article  PubMed  Google Scholar 

  129. Warrick, J. I. et al. Intratumoral heterogeneity of bladder cancer by molecular subtypes and histologic variants. Eur. Urol. 75, 18–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Cortes, J. M., de Petris, G. & Lopez, J. I. Detection of intratumor heterogeneity in modern pathology: a multisite tumor sampling perspective. Front. Med. 4, 25 (2017).

    Article  Google Scholar 

  131. Lopez, J. I. & Cortes, J. M. Multisite tumor sampling: a new tumor selection method to enhance intratumor heterogeneity detection. Hum. Pathol. 64, 1–6 (2017).

    Article  PubMed  Google Scholar 

  132. Litchfield, K. et al. Representative sequencing: unbiased sampling of solid tumor tissue. Cell Rep. 31, 107550 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Elloumi, F. et al. Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples. BMC Med. Genomics 4, 54 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lu, C. et al. Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers. Lab. Invest. 98, 1438–1448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Steiner, D. F. et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am. J. Surg. Pathol. 42, 1636–1646 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40, 244–252 (2016).

  137. Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Palmirotta, R. et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther. Adv. Med. Oncol. 10, 1758835918794630 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kwan, T. T. et al. A digital RNA signature of circulating tumor cells predicting early therapeutic response in localized and metastatic breast cancer. Cancer Discov. 8, 1286–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Norton, L. & Simon, R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317 (1977).

    CAS  PubMed  Google Scholar 

  142. Norton, L. A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988).

    CAS  PubMed  Google Scholar 

  143. Hussain, M. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N. Engl. J. Med. 378, 2465–2474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7, 302ra133 (2015).

    Article  PubMed  Google Scholar 

  145. Coombes, R. C. et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin. Cancer Res. 25, 4255–4263 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Parsons, H. A. et al. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin. Cancer Res. 26, 2556–2564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Olson, M. E., Harris, R. S. & Harki, D. A. APOBEC enzymes as targets for virus and cancer therapy. Cell Chem. Biol. 25, 36–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li, X. et al. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med. 83, 35–43 (2017).

    Article  PubMed  Google Scholar 

  150. Sherbet, G. V., Woo, W. L. & Dlay, S. Application of artificial intelligence-based technology in cancer management: a commentary on the deployment of artificial neural networks. Anticancer Res. 38, 6607–6613 (2018).

    Article  PubMed  Google Scholar 

  151. Bartsch, G. Jr. et al. Use of artificial intelligence and machine learning algorithms with gene expression profiling to predict recurrent nonmuscle invasive urothelial carcinoma of the bladder. J. Urol. 195, 493–498 (2016).

    Article  PubMed  Google Scholar 

  152. Marcoux, J. et al. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Sci. 24, 1210–1223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tamura, K. et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol. 20, 816–826 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 382, 610–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Anonymous. Trastuzumab deruxtecan is effective in HER2-low breast cancer. Cancer Discov. 10, 488 (2020).

  156. Greenberg, P. A. et al. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J. Clin. Oncol. 14, 2197–2205 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Weinstein, I. B. Addiction to oncogenes—the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Hammond, M. E. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bonneterre, J. et al. Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the tamoxifen or arimidex randomized group efficacy and tolerability study. J. Clin. Oncol. 18, 3748–3757 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Mouridsen, H. et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J. Clin. Oncol. 19, 2596–2606 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Paridaens, R. J. et al. Phase III study comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: the European Organisation for Research and Treatment of Cancer Breast Cancer Cooperative Group. J. Clin. Oncol. 26, 4883–4890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Borner, M. et al. First isolated locoregional recurrence following mastectomy for breast cancer: results of a phase III multicenter study comparing systemic treatment with observation after excision and radiation. Swiss Group for Clinical Cancer Research. J. Clin. Oncol. 12, 2071–2077 (1994).

    Article  CAS  PubMed  Google Scholar 

  163. Di Leo, A. et al. Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J. Clin. Oncol. 28, 4594–4600 (2010).

    Article  PubMed  CAS  Google Scholar 

  164. Turner, N. C. et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 373, 209–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Goetz, M. P. et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J. Clin. Oncol. 35, 3638–3646 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Tripathy, D. et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 19, 904–915 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Beaver, J. A. & Park, B. H. The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future Oncol. 8, 651–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Bardia, A. et al. Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J. Clin. Oncol. 35, 2141–2148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Adams, S. et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann. Oncol. 30, 397–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Schmid, P. et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 21, 44–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Murthy, R. K. et al. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med. 382, 597–609 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Martin, M. et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1688–1700 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Martin, M. et al. A phase two randomised trial of neratinib monotherapy versus lapatinib plus capecitabine combination therapy in patients with HER2+ advanced breast cancer. Eur. J. Cancer 49, 3763–3772 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Robson, M. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377, 523–533 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Turner.

Ethics declarations

Competing interests

N.C.T. has received advisory board honoraria from AstraZeneca, Bristol-Myers Squibb, Lilly, Merck, Sharpe and Dohme, Novartis, Pfizer, Roche/Genentech, GlaxoSmithKline, Zentalis pharmaceuticals, Repare Therapeutics and Arvinas and research funding from AstraZeneca, BioRad, Pfizer, Roche/Genentech, Merck, Sharpe and Dohme, and Guardant Health.

Additional information

Peer review information Nature Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha, N., Turner, N.C. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment. Nat Cancer 2, 680–692 (2021). https://doi.org/10.1038/s43018-021-00229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-021-00229-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer