Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular insights and impacts of wildfire-induced soil chemical changes

Abstract

Wildfires act as important ecosystem controls and can benefit fire-adapted biomes by promoting habitat heterogeneity, seed germination and disease control. However, the frequency of high-severity fires and the extent of total burn area have increased since the 1970s, transforming both the organic and inorganic composition of soil. In this Review, we outline the molecular-scale transformations and biogeochemical interactions of soil organic matter (SOM) and metals induced by wildfires and explore their impacts on post-fire human health and ecosystem recovery. Wildfires enhance organic matter solubility and increase the number of nitrogen-containing SOM molecules by up to 32%. Additionally, wildfires can double the concentration of toxic polycyclic aromatic hydrocarbons (PAHs) in soil and induce the formation of toxic metal species such as As(III) and Cr(VI) through redox reactions. In post-fire environments, pyrogenic organic matter is susceptible to microbial degradation and can interact with soil minerals to influence metal redox cycling. Moreover, post-fire products such as karrikins and PAHs promote and inhibit revegetation, respectively, influencing ecosystem recovery. Improved techniques to monitor changes in the soil and the surrounding ecosystem are needed to better understand and mitigate the negative effects of wildfires.

Key points

  • Wildfires increase water solubility and enrich nitrogen in soil organic matter while also generating toxic polycyclic aromatic hydrocarbons.

  • Wildfires can alter the oxidation state of metals, such as Cr, Hg and As, influencing their toxicity and mobility.

  • Laboratory measurements indicate that pyrogenic organic matter (PyOM) can be microbially degraded within weeks, suggesting that PyOM could have an important role in post-fire soil biogeochemical cycling.

  • The presence of growth-promoting organic molecules and growth-inhibiting metal and organic species in post-fire soils can determine the success of revegetation efforts.

  • Future work should include organic and inorganic speciation measures to better estimate human and ecosystem impacts from wildfires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of global burn severity.
Fig. 2: Factors affecting heat generation and transfer.
Fig. 3: The effect of temperature on chemical transformations in O2-abundant and O2-limited environments.
Fig. 4: The ecosystem impacts of wildfire products.
Fig. 5: Wildfire-induced chemical changes and their impacts.

Similar content being viewed by others

References

  1. Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article  Google Scholar 

  2. Certini, G. Fire as a soil-forming factor. AMBIO 43, 191–195 (2014).

    Article  Google Scholar 

  3. McLauchlan, K. K. et al. Fire as a fundamental ecological process: research advances and frontiers. J. Ecol. 108, 2047–2069 (2020).

    Article  Google Scholar 

  4. Pausas, J. G. & Keeley, J. E. Wildfires as an ecosystem service. Front. Ecol. Environ. 17, 289–295 (2019).

    Article  Google Scholar 

  5. van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  Google Scholar 

  6. Senande-Rivera, M., Insua-Costa, D. & Miguez-Macho, G. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 13, 1208 (2022).

    Article  CAS  Google Scholar 

  7. Martin, D. A. Linking fire and the United Nations Sustainable Development Goals. Sci. Total Environ. 662, 547–558 (2019).

    Article  CAS  Google Scholar 

  8. Yu, Y. & Ginoux, P. Enhanced dust emission following large wildfires due to vegetation disturbance. Nat. Geosci. 15, 878–884 (2022).

    Article  CAS  Google Scholar 

  9. De la Rosa, J. M. et al. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191, 24–30 (2012).

    Article  Google Scholar 

  10. Barron, S. M., Mladenov, N., Sant, K. E. & Kinoshita, A. M. Surface water quality after the Woolsey fire in Southern California. Water Air Soil Pollut. 233, 377 (2022).

    Article  CAS  Google Scholar 

  11. Giardina, C. P., Sanford, R. L. & Døckersmith, I. C. Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest. Soil Sci. Soc. Am. J. 64, 399–405 (2000).

    Article  CAS  Google Scholar 

  12. Merino, A. et al. Soil organic matter and phosphorus dynamics after low intensity prescribed burning in forests and shrubland. J. Environ. Manage. 234, 214–225 (2019).

    Article  CAS  Google Scholar 

  13. Schaller, J. et al. Fire enhances phosphorus availability in topsoils depending on binding properties. Ecology 96, 1598–1606 (2015).

    Article  Google Scholar 

  14. Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W. & Smith, S. M. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu. Rev. Plant Biol. 63, 107–130 (2012).

    Article  CAS  Google Scholar 

  15. Hickenbottom, K., Pagilla, K. & Hanigan, D. Wildfire impact on disinfection byproduct precursor loading in mountain streams and rivers. Water Res. 244, 120474 (2023).

    Article  CAS  Google Scholar 

  16. Panichev, N., Mabasa, W., Ngobeni, P., Mandiwana, K. & Panicheva, S. The oxidation of Cr(III) to Cr(VI) in the environment by atmospheric oxygen during the bush fires. J. Hazard. Mater. 153, 937–941 (2008).

    Article  CAS  Google Scholar 

  17. Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., Almendros, G. & Knicker, H. The effect of fire on soil organic matter — a review. Environ. Int. 30, 855–870 (2004).

    Article  CAS  Google Scholar 

  18. Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118 (2007).

    Article  CAS  Google Scholar 

  19. Girona-García, A. et al. Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis. Earth Sci. Rev. 217, 103611 (2021).

    Article  Google Scholar 

  20. Roshan, A. & Biswas, A. Fire-induced geochemical changes in soil: implication for the element cycling. Sci. Total Environ. 868, 161714 (2023).

    Article  CAS  Google Scholar 

  21. Shakesby, R. A. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth Sci. Rev. 105, 71–100 (2011).

    Article  Google Scholar 

  22. Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).

    Article  Google Scholar 

  23. Agbeshie, A. A., Abugre, S., Atta-Darkwa, T. & Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 33, 1419–1441 (2022).

    Article  Google Scholar 

  24. Vieira, D. C. S., Fernández, C., Vega, J. A. & Keizer, J. J. Does soil burn severity affect the post-fire runoff and interrill erosion response? A review based on meta-analysis of field rainfall simulation data. J. Hydrol. 523, 452–464 (2015).

    Article  Google Scholar 

  25. Bladon, K. D., Emelko, M. B., Silins, U. & Stone, M. Wildfire and the future of water supply. Environ. Sci. Technol. 48, 8936–8943 (2014).

    Article  CAS  Google Scholar 

  26. Kotze, D. The effects of fire on wetland structure and functioning. Afr. J. Aquat. Sci. 38, 237–247 (2013).

    Article  Google Scholar 

  27. Li, X.-Y. et al. Influences of forest fires on the permafrost environment: a review. Adv. Clim. Change Res. 12, 48–65 (2021).

    Article  Google Scholar 

  28. Galang, M. A., Markewitz, D. & Morris, L. A. Soil phosphorus transformations under forest burning and laboratory heat treatments. Geoderma 155, 401–408 (2010).

    Article  CAS  Google Scholar 

  29. Pingree, M. R. A. & Kobziar, L. N. The myth of the biological threshold: a review of biological responses to soil heating associated with wildland fire. For. Ecol. Manag. 432, 1022–1029 (2019).

    Article  Google Scholar 

  30. Doerr, S. H., Santín, C., Merino, A., Belcher, C. M. & Baxter, G. Fire as a removal mechanism of pyrogenic carbon from the environment: effects of fire and pyrogenic carbon characteristics. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00127 (2018).

  31. Doerr, S. H. et al. Effects of heating and post-heating equilibration times on soil water repellency. Soil Res. 43, 261–267 (2005).

    Article  Google Scholar 

  32. Jordanova, N., Jordanova, D., Mokreva, A., Ishlyamski, D. & Georgieva, B. Temporal changes in magnetic signal of burnt soils — a compelling three years pilot study. Sci. Total Environ. 669, 729–738 (2019).

    Article  CAS  Google Scholar 

  33. Badía, D. et al. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 601–602, 1119–1128 (2017).

    Article  Google Scholar 

  34. Honeyman, A. S., Merl, T., Spear, J. R. & Koren, K. Optode-based chemical imaging of laboratory burned soil reveals millimeter-scale heterogeneous biogeochemical responses. Environ. Res. 224, 115469 (2023).

    Article  CAS  Google Scholar 

  35. Caon, L., Vallejo, V. R., Ritsema, C. J. & Geissen, V. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth Sci. Rev. 139, 47–58 (2014).

    Article  CAS  Google Scholar 

  36. Bodi, M. B. et al. Wild land fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).

    Article  CAS  Google Scholar 

  37. Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91 (2016).

    Article  Google Scholar 

  38. Campos, I. & Abrantes, N. Forest fires as drivers of contamination of polycyclic aromatic hydrocarbons to the terrestrial and aquatic ecosystems. Curr. Opin. Environ. Sci. Health https://doi.org/10.1139/er-2022-0055 (2021).

    Article  Google Scholar 

  39. Kieta, K. A. et al. Polycyclic aromatic hydrocarbons in terrestrial and aquatic environments following wildfire: a review. Environ. Rev. 31, 141–167 (2023).

    Article  CAS  Google Scholar 

  40. Kim, K.-H., Jahan, S. A., Kabir, E. & Brown, R. J. C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80 (2013).

    Article  CAS  Google Scholar 

  41. Mastrangelo, G., Fadda, E. & Marzia, V. Polycyclic aromatic hydrocarbons and cancer in man. Environ. Health Perspect. 104, 1166–1170 (1996).

    Article  CAS  Google Scholar 

  42. Yang, B. et al. Polycyclic aromatic hydrocarbon occurrence in forest soils in response to fires: a summary across sites. Environ. Sci. Process. Impacts 24, 32–41 (2022).

    Article  CAS  Google Scholar 

  43. Keiluweit, M., Nico, P. S., Johnson, M. G. & Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010).

    Article  CAS  Google Scholar 

  44. Xu, W., Walpen, N., Keiluweit, M., Kleber, M. & Sander, M. Redox properties of pyrogenic dissolved organic matter (pyDOM) from biomass-derived chars. Environ. Sci. Technol. 55, 11434–11444 (2021).

    Article  CAS  Google Scholar 

  45. Sigmund, G. et al. Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years. Commun. Earth Environ. 2, 68 (2021).

    Article  Google Scholar 

  46. Fang, T. et al. Wildfire particulate matter as a source of environmentally persistent free radicals and reactive oxygen species. Environ. Sci. Atmos. 3, 581–594 (2023).

    Article  CAS  Google Scholar 

  47. Bahureksa, W. et al. Nitrogen enrichment during soil organic matter burning and molecular evidence of Maillard reactions. Environ. Sci. Technol. 56, 4597–4609 (2022).

    Article  CAS  Google Scholar 

  48. Cawley, K. M. et al. Molecular and spectroscopic characterization of water extractable organic matter from thermally altered soils reveal insight into disinfection byproduct precursors. Environ. Sci. Technol. 51, 771–779 (2017).

    Article  CAS  Google Scholar 

  49. Wu, S. et al. Pyridinic- and pyrrolic nitrogen in pyrogenic carbon improves electron shuttling during microbial Fe(III) reduction. ACS Earth Space Chem. 5, 900–909 (2021).

    Article  CAS  Google Scholar 

  50. Roth, H. K. et al. Enhanced speciation of pyrogenic organic matter from wildfires enabled by 21 T FT-ICR mass spectrometry. Anal. Chem. 94, 2973–2980 (2022).

    Article  CAS  Google Scholar 

  51. Torres-Rojas, D. et al. Nitrogen speciation and transformations in fire-derived organic matter. Geochim. Cosmochim. Acta 276, 170–185 (2020).

    Article  CAS  Google Scholar 

  52. Roth, H. K. et al. Effects of burn severity on organic nitrogen and carbon chemistry in high-elevation forest soils. Soil Environ. Health 1, 100023 (2023).

    Article  Google Scholar 

  53. Santos, F., Russell, D. & Berhe, A. A. Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California. J. Geophys. Res. Biogeosci. 121, 2877–2885 (2016).

    Article  CAS  Google Scholar 

  54. Sánchez-García, C. et al. Chemical characteristics of wildfire ash across the globe and their environmental and socio-economic implications. Environ. Int. 178, 108065 (2023).

    Article  Google Scholar 

  55. Vassilev, S. V., Baxter, D. & Vassileva, C. G. An overview of the behaviour of biomass during combustion: part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112, 391–449 (2013).

    Article  CAS  Google Scholar 

  56. Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G. An overview of the composition and application of biomass ash: part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 105, 19–39 (2013).

    Article  CAS  Google Scholar 

  57. Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105, 40–76 (2013).

    Article  CAS  Google Scholar 

  58. Perrier, N., Gilkes, R. J. & Colin, F. Heating Fe oxide-rich soils increases the dissolution rate of metals. Clays Clay Min. 54, 165–175 (2006).

    Article  CAS  Google Scholar 

  59. Landers, M. & Gilkes, R. J. Dehydroxylation and dissolution of nickeliferous goethite in New Caledonian lateritic Ni ore. Appl. Clay Sci. 35, 162–172 (2007).

    Article  CAS  Google Scholar 

  60. Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G. An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010).

    Article  CAS  Google Scholar 

  61. Kim, Y. H. et al. Mutagenicity and lung toxicity of smoldering vs. flaming emissions from various biomass fuels: implications for health effects from wildland fires. Environ. Health Perspect. 126, 017011 (2018).

    Article  Google Scholar 

  62. Jordanova, D., Jordanova, N., Barrón, V. & Petrov, P. The signs of past wildfires encoded in the magnetic properties of forest soils. Catena 171, 265–279 (2018).

    Article  CAS  Google Scholar 

  63. Pereira, P., Úbeda, X. & Martin, D. A. Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 191, 105–114 (2012).

    Article  CAS  Google Scholar 

  64. Yan, L., Chen, Q., Yang, Y. & Zhu, R. The significant role of montmorillonite on the formation of hematite nanoparticles from ferrihydrite under heat treatment. Appl. Clay Sci. 202, 105962–105962 (2021).

    Article  CAS  Google Scholar 

  65. Araya, S. N., Fogel, M. L. & Berhe, A. A. Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires. SOIL 3, 31–44 (2017).

    Article  CAS  Google Scholar 

  66. Baieta, R., Vieira, A. M. D., Vaňková, M. & Mihaljevič, M. Effects of forest fires on soil lead elemental contents and isotopic ratios. Geoderma 414, 115760 (2022).

    Article  CAS  Google Scholar 

  67. Oleszek, S., Shiota, K., Chen, M. & Takaoka, M. Effective separation and recovery of manganese and potassium from biomass ash by solvent extraction. ACS Omega 7, 20155–20164 (2022).

    Article  CAS  Google Scholar 

  68. Clement, B. M., Javier, J., Sah, J. P. & Ross, M. S. The effects of wildfires on the magnetic properties of soils in the Everglades. Earth Surf. Process. Landf. 36, 460–466 (2011).

    Article  Google Scholar 

  69. Johnston, S. G., Karimian, N. & Burton, E. D. Fire promotes arsenic mobilization and rapid arsenic(III) formation in soil via thermal alteration of arsenic-bearing iron oxides. Front. Earth Sci. https://doi.org/10.3389/feart.2019.00139 (2019).

    Article  Google Scholar 

  70. Baalousha, M. et al. Discovery and potential ramifications of reduced iron-bearing nanoparticles — magnetite, wustite, and zero-valent iron — in wildland–urban interface fire ashes. Environ. Sci. Nano 9, 4136–4149 (2022).

    Article  CAS  Google Scholar 

  71. Chen, J. et al. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China. Chemosphere 90, 1925–1932 (2013).

    Article  CAS  Google Scholar 

  72. Galbreath, K. C. & Zygarlicke, C. J. Formation and chemical speciation of arsenic-, chromium-, and nickel-bearing coal combustion PM2.5. Fuel Process. Technol. 85, 701–726 (2004).

    Article  CAS  Google Scholar 

  73. Stam, A. F. et al. Chromium speciation in coal and biomass co-combustion products. Environ. Sci. Technol. 45, 2450–2456 (2011).

    Article  CAS  Google Scholar 

  74. Wu, J. et al. Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. J. Hazard. Mater. 445, 130482 (2023).

    Article  CAS  Google Scholar 

  75. Mao, L., Deng, N., Liu, L., Cui, H. & Zhang, W. Effects of Al2O3, Fe2O3, and SiO2 on Cr(VI) formation during heating of solid waste containing Cr(III). Chem. Eng. J. 304, 216–222 (2016).

    Article  CAS  Google Scholar 

  76. Verbinnen, B., Billen, P., Van Coninckxloo, M. & Vandecasteele, C. Heating temperature dependence of Cr(III) oxidation in the presence of alkali and alkaline earth salts and subsequent Cr(VI) leaching behavior. Environ. Sci. Technol. 47, 5858–5863 (2013).

    Article  CAS  Google Scholar 

  77. Yang, Y., Ma, H., Chen, X., Zhu, C. & Li, X. Effect of incineration temperature on chromium speciation in real chromium-rich tannery sludge under air atmosphere. Environ. Res. 183, 109159 (2020).

    Article  CAS  Google Scholar 

  78. Alam, M. et al. Identification and quantification of Cr, Cu, and As incidental nanomaterials derived from CCA-treated wood in wildland-urban interface fire ashes. J. Hazard. Mater. 445, 130608 (2023).

    Article  CAS  Google Scholar 

  79. Wolf, R. E., Morman, S. A., Hageman, P. L., Hoefen, T. M. & Plumlee, G. S. Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 401, 2733–2745 (2011).

    Article  CAS  Google Scholar 

  80. US Environmental Protection Agency Toxicological Review of Hexavalent Chromium (EPA, 1998).

  81. Johnston, S. G., Burton, E. D. & Moon, E. M. Arsenic mobilization is enhanced by thermal transformation of schwertmannite. Environ. Sci. Technol. 50, 8010–8019 (2016).

    Article  CAS  Google Scholar 

  82. Burton, E. D., Choppala, G., Karimian, N. & Johnston, S. G. A new pathway for hexavalent chromium formation in soil: fire-induced alteration of iron oxides. Environ. Pollut. 247, 618–625 (2019).

    Article  CAS  Google Scholar 

  83. Burton, E. D. et al. Chromium(VI) formation via heating of Cr(III)-Fe(III)-(oxy)hydroxides: a pathway for fire-induced soil pollution. Chemosphere 222, 440–444 (2019).

    Article  CAS  Google Scholar 

  84. Zhou, Y., Chen, Z., Gong, H. & Yang, Z. Chromium speciation in tannery sludge residues after different thermal decomposition processes. J. Clean. Prod. 314, 128071–128071 (2021).

    Article  CAS  Google Scholar 

  85. Wolf, R. E., Morman, S. A., Plumlee, G. S., Hageman, P. L. & Adams, M. Release of Hexavalent Chromium by Ash and Soils in Wildfire-Impacted Areas pubs.usgs.gov/publication/ofr20081345 (US Geological Survey, 2008).

  86. Lopez, A. M., Pacheco, J. L. & Fendorf, S. Metal toxin threat in wildland fires determined by geology and fire severity. Nat. Commun. 14, 8007 (2023).

    Article  CAS  Google Scholar 

  87. Alshehri, T. et al. Wildland-urban interface fire ashes as a major source of incidental nanomaterials. J. Hazard. Mater. 443, 130311–130311 (2023).

    Article  CAS  Google Scholar 

  88. Lin, Y.-C. et al. Enhancements of airborne particulate arsenic over the subtropical free troposphere: impact of southern Asian biomass burning. Atmos. Chem. Phys. 18, 13865–13879 (2018).

    Article  CAS  Google Scholar 

  89. Tuhy, M. et al. Metal(loid)s remobilization and mineralogical transformations in smelter-polluted savanna soils under simulated wildfire conditions. J. Environ. Manage. 293, 112899 (2021).

    Article  CAS  Google Scholar 

  90. Burton, C. A. et al. Trace elements in stormflow, ash, and burned soil following the 2009 station fire in Southern California. PLoS ONE 11, e0153372 (2016).

    Article  Google Scholar 

  91. Chrysochoou, M., Theologou, E., Bompoti, N., Dermatas, D. & Panagiotakis, I. Occurrence, origin and transformation processes of geogenic chromium in soils and sediments. Curr. Pollut. Rep. 2, 224–235 (2016).

    Article  CAS  Google Scholar 

  92. Kumar, A., Wu, S., Huang, Y., Liao, H. & Kaplan, J. O. Mercury from wildfires: global emission inventories and sensitivity to 2000–2050 global change. Atmos. Environ. 173, 6–15 (2018).

    Article  CAS  Google Scholar 

  93. Dastoor, A. et al. Arctic mercury cycling. Nat. Rev. Earth Environ. 3, 270–286 (2022).

    Article  CAS  Google Scholar 

  94. Lopez, A. F., Barron, E. G. H. & Bugallo, P. M. B. Contribution to understanding the influence of fires on the mercury cycle: systematic review, dynamic modelling and application to sustainable hypothetical scenarios. Environ. Monit. Assess. 194, 707 (2022).

    Article  Google Scholar 

  95. Webster, J. P., Kane, T. J., Obrist, D., Ryan, J. N. & Aiken, G. R. Estimating mercury emissions resulting from wildfire in forests of the western United States. Sci. Total Environ. 568, 578–586 (2016).

    Article  CAS  Google Scholar 

  96. Biswas, A., Blum, J. D., Klaue, B. & Keeler, G. J. Release of mercury from Rocky Mountain forest fires. Glob. Biogeochem. Cycles https://doi.org/10.1029/2006GB002696 (2007).

    Article  Google Scholar 

  97. Campos, I., Vale, C., Abrantes, N., Keizer, J. J. & Pereira, P. Effects of wildfire on mercury mobilisation in eucalypt and pine forests. Catena 131, 149–159 (2015).

    Article  CAS  Google Scholar 

  98. Homann, P. S., Darbyshire, R. L., Bormann, B. T. & Morrissette, B. A. Forest structure affects soil mercury losses in the presence and absence of wildfire. Environ. Sci. Technol. 49, 12714–12722 (2015).

    Article  CAS  Google Scholar 

  99. Zhou, J., Obrist, D., Dastoor, A., Jiskra, M. & Ryjkov, A. Vegetation uptake of mercury and impacts on global cycling. Nat. Rev. Earth Environ. 2, 269–284 (2021).

    Article  Google Scholar 

  100. Yan, X.-L. et al. Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L. Environ. Sci. Technol. 42, 1479–1484 (2008).

    Article  CAS  Google Scholar 

  101. Hata, T. et al. Electron microscopic study on pyrolysis of CCA (chromium, copper and arsenic oxide)-treated wood. J. Anal. Appl. Pyrolysis 68–69, 635–643 (2003).

    Article  Google Scholar 

  102. Nguyen, M. N. et al. Thermal induced changes of rice straw phytolith in relation to arsenic release: a perspective of rice straw arsenic under open burning. J. Environ. Manage. 304, 114294 (2022).

    Article  CAS  Google Scholar 

  103. Nguyen, M. N. et al. Arsenic in rice straw phytoliths: encapsulation and release properties. Appl. Geochem. 127, 104907 (2021).

    Article  CAS  Google Scholar 

  104. Schaller, J., Wang, J., Islam, M. R. & Planer-Friedrich, B. Black carbon yields highest nutrient and lowest arsenic release when using rice residuals in paddy soils. Sci. Rep. 8, 17004 (2018).

    Article  Google Scholar 

  105. Weninger, T., Filipović, V., Mešić, M., Clothier, B. & Filipović, L. Estimating the extent of fire induced soil water repellency in Mediterranean environment. Geoderma 338, 187–196 (2019).

    Article  Google Scholar 

  106. Malkinson, D. & Wittenberg, L. Post fire induced soil water repellency — modeling short and long-term processes. Geomorphology 125, 186–192 (2011).

    Article  Google Scholar 

  107. Yusiharni, E. & Gilkes, R. J. Short term effects of heating a lateritic podzolic soil on the availability to plants of native and added phosphate. Geoderma 191, 132–139 (2012).

    Article  CAS  Google Scholar 

  108. Baranyai, V. Z., Kristály, F. & Szűcs, I. Low temperature rehydration of thermally dehydroxylated Bayer–gibbsite, evolution and transformation of phases. J. Therm. Anal. Calorim. 129, 1353–1365 (2017).

    Article  CAS  Google Scholar 

  109. Yusiharni, E. & Gilkes, R. Rehydration of heated gibbsite, kaolinite and goethite: an assessment of properties and environmental significance. Appl. Clay Sci. 64, 61–74 (2012).

    Article  CAS  Google Scholar 

  110. Solomon, D. et al. Micro-and nano-environments of C sequestration in soil: a multi-elemental STXM–NEXAFS assessment of black C and organomineral associations. Sci. Total Environ. 438, 372–388 (2012).

    Article  CAS  Google Scholar 

  111. Lin, Y., Munroe, P., Joseph, S., Kimber, S. & Van Zwieten, L. Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil 357, 369–380 (2012).

    Article  CAS  Google Scholar 

  112. Yang, F. et al. Stabilization of dissolvable biochar by soil minerals: release reduction and organo-mineral complexes formation. J. Hazard. Mater. 412, 125213 (2021).

    Article  CAS  Google Scholar 

  113. Yang, F. et al. Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms. Environ. Sci. Technol. 52, 8321–8329 (2018).

    Article  CAS  Google Scholar 

  114. Eckmeier, E. et al. Preservation of fire-derived carbon compounds and sorptive stabilisation promote the accumulation of organic matter in black soils of the Southern Alps. Geoderma 159, 147–155 (2010).

    Article  CAS  Google Scholar 

  115. Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org. Geochem. 29, 811–819 (1998).

    Article  CAS  Google Scholar 

  116. Wiedemeier, D. B., Hilf, M. D., Smittenberg, R. H., Haberle, S. G. & Schmidt, M. W. I. Improved assessment of pyrogenic carbon quantity and quality in environmental samples by high-performance liquid chromatography. J. Chromatogr. A 1304, 246–250 (2013).

    Article  CAS  Google Scholar 

  117. Chen, X. et al. Rapid simulation of decade-scale charcoal aging in soil: changes in physicochemical properties and their environmental implications. Environ. Sci. Technol. 57, 128–138 (2023).

    Article  CAS  Google Scholar 

  118. Sun, T. et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat. Commun. 8, 14873 (2017).

    Article  CAS  Google Scholar 

  119. Klüpfel, L., Keiluweit, M., Kleber, M. & Sander, M. Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 48, 5601–5611 (2014).

    Article  Google Scholar 

  120. Sun, T. et al. Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon. Environ. Sci. Technol. 52, 8538–8547 (2018).

    Article  CAS  Google Scholar 

  121. Kappler, A. et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ. Sci. Technol. Lett. 1, 339–344 (2014).

    Article  CAS  Google Scholar 

  122. Lutfalla, S. et al. Pyrogenic carbon lacks long-term persistence in temperate arable soils. Front. Earth Sci. https://doi.org/10.3389/feart.2017.00096 (2017).

    Article  Google Scholar 

  123. Bostick, K. W. et al. Biolability of fresh and photodegraded pyrogenic dissolved organic matter from laboratory-prepared chars. J. Geophys. Res. Biogeosci. 126, e2020JG005981 (2021).

    Article  CAS  Google Scholar 

  124. Goranov, A. I. et al. Microbial labilization and diversification of pyrogenic dissolved organic matter. Biogeosciences 19, 1491–1514 (2022).

    Article  CAS  Google Scholar 

  125. Fischer, M. S. et al. Pyrolyzed substrates induce aromatic compound metabolism in the post-fire fungus, Pyronema domesticum. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.729289 (2021).

    Article  Google Scholar 

  126. De la Rosa, J. M., Miller, A. Z. & Knicker, H. Soil-borne fungi challenge the concept of long-term biochemical recalcitrance of pyrochar. Sci. Rep. 8, 2896 (2018).

    Article  Google Scholar 

  127. Graham, E. B. et al. Potential bioavailability of representative pyrogenic organic matter compounds in comparison to natural dissolved organic matter pools. Biogeosciences 20, 3449–3457 (2023).

    Article  CAS  Google Scholar 

  128. Liang, B. et al. Stability of biomass-derived black carbon in soils. Geochim. Cosmochim. Acta 72, 6069–6078 (2008).

    Article  CAS  Google Scholar 

  129. Nelson, A. R. et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 7, 1419–1430 (2022).

    Article  CAS  Google Scholar 

  130. Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  CAS  Google Scholar 

  131. Zimmerman, A. R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 44, 1295–1301 (2010).

    Article  CAS  Google Scholar 

  132. VanderRoest, J. P. et al. Fire impacts on the soil metabolome and organic matter biodegradability. Environ. Sci. Technol. 8, 4167-4180 (2024).

    Google Scholar 

  133. de la Rosa, J. M. & Knicker, H. Bioavailability of N released from N-rich pyrogenic organic matter: an incubation study. Soil Biol. Biochem. 43, 2368–2373 (2011).

    Article  Google Scholar 

  134. Si, D. et al. Linking pyrogenic carbon redox property to arsenite oxidation: impact of N-doping and pyrolysis temperature. J. Hazard. Mater. 445, 130477 (2023).

    Article  CAS  Google Scholar 

  135. Pennino, M. J., Leibowitz, S. G., Compton, J. E., Beyene, M. T. & LeDuc, S. D. Wildfires can increase regulated nitrate, arsenic, and disinfection byproduct violations and concentrations in public drinking water supplies. Sci. Total Environ. 804, 149890 (2022).

    Article  CAS  Google Scholar 

  136. Thery, G. et al. Wildfires on Cr-rich ferralsols can cause freshwater Cr(VI) pollution: a pilot study in new Caledonia. Appl. Geochem. 148, 105513 (2023).

    Article  CAS  Google Scholar 

  137. Eary, L. E. & Rai, D. Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22, 972–977 (1988).

    Article  CAS  Google Scholar 

  138. Sass, B. M. & Rai, D. Solubility of amorphous chromium(III)–iron(III) hydroxide solid solutions. Inorg. Chem. 26, 14 (1987).

    Article  Google Scholar 

  139. Zhong, D. et al. Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: key roles of Fe3O4 and persistent free radicals. Environ. Pollut. 243, 1302–1309 (2018).

    Article  CAS  Google Scholar 

  140. Xu, X., Huang, H., Zhang, Y., Xu, Z. & Cao, X. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption. Environ. Pollut. 244, 423–430 (2019).

    Article  CAS  Google Scholar 

  141. Xu, Z. et al. Participation of soil active components in the reduction of Cr(VI) by biochar: differing effects of iron mineral alone and its combination with organic acid. J. Hazard. Mater. 384, 121455 (2020).

    Article  CAS  Google Scholar 

  142. Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).

    Article  CAS  Google Scholar 

  143. Fendorf, S. E. Surface reactions of chromium in soils and waters. Geoderma 67, 55–71 (1995).

    Article  CAS  Google Scholar 

  144. Ku, P. J. et al. Origin, reactivity, and bioavailability of mercury in wildfire ash. Environ. Sci. Technol. 52, 14149–14157 (2018).

    Article  CAS  Google Scholar 

  145. Melendez-Perez, J. J. et al. Soil and biomass mercury emissions during a prescribed fire in the Amazonian rain forest. Atmos. Environ. 96, 415–422 (2014).

    Article  CAS  Google Scholar 

  146. Li, H.-H. et al. Impacts of forest fire ash on aquatic mercury cycling. Environ. Sci. Technol. 56, 11835–11844 (2022).

    Article  CAS  Google Scholar 

  147. Leng, L. et al. An overview of sulfur-functional groups in biochar from pyrolysis of biomass. J. Environ. Chem. Eng. 10, 107185 (2022).

    Article  CAS  Google Scholar 

  148. Nelson, D. C. et al. Karrikins discovered in smoke trigger arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol. 149, 863–873 (2009).

    Article  CAS  Google Scholar 

  149. Soós, V., Badics, E., Incze, N. & Balázs, E. Fire-borne life: a brief review of smoke-induced germination. Nat. Prod. Commun. https://doi.org/10.1177/1934578X19872925 (2019).

  150. Kochanek, J., Long, R. L., Lisle, A. T. & Flematti, G. R. Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development. PLoS ONE 11, e0161234 (2016).

    Article  Google Scholar 

  151. Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H. & Martin, D. A. Current research issues related to post-wildfire runoff and erosion processes. Earth Sci. Rev. 122, 10–37 (2013).

    Article  Google Scholar 

  152. Kieta, K. A., Owens, P. N. & Petticrew, E. L. Determination of sediment sources following a major wildfire and evaluation of the use of color properties and polycyclic aromatic hydrocarbons (PAHs) as tracers. J. Soils Sediment. 23, 4187–4207 (2023).

    Article  CAS  Google Scholar 

  153. Barton, R. et al. Hydrology, rather than wildfire burn extent, determines post-fire organic and black carbon export from mountain rivers in central coastal California. Limnol. Oceanogr. Lett. 9, 70–80 (2023).

    Article  Google Scholar 

  154. Silins, U. et al. Five-year legacy of wildfire and salvage logging impacts on nutrient runoff and aquatic plant, invertebrate, and fish productivity. Ecohydrology 7, 1508–1523 (2014).

    Article  Google Scholar 

  155. Emelko, M. B., Silins, U., Bladon, K. D. & Stone, M. Implications of land disturbance on drinking water treatability in a changing climate: demonstrating the need for ‘source water supply and protection’ strategies. Water Res. 45, 461–472 (2011).

    Article  CAS  Google Scholar 

  156. Bladon, K. D. Rethinking wildfires and forest watersheds. Science 359, 1001–1002 (2018).

    Article  CAS  Google Scholar 

  157. Nunes, J. P. et al. Assessing water contamination risk from vegetation fires: Challenges, opportunities and a framework for progress. Hydrol. Process. 32, 687–694 (2018).

    Article  CAS  Google Scholar 

  158. Silins, U., Stone, M., Emelko, M. B. & Bladon, K. D. Sediment production following severe wildfire and post-fire salvage logging in the Rocky Mountain headwaters of the Oldman River Basin, Alberta. Catena 79, 189–197 (2009).

    Article  Google Scholar 

  159. Emmerton, C. A. et al. Severe western Canadian wildfire affects water quality even at large basin scales. Water Res. 183, 116071 (2020).

    Article  CAS  Google Scholar 

  160. Writer, J. H. et al. Water treatment implications after the High Park Wildfire, Colorado. J. AWWA 106, E189–E199 (2014).

    Article  Google Scholar 

  161. Hohner, A. K., Cawley, K., Oropeza, J., Summers, R. S. & Rosario-Ortiz, F. L. Drinking water treatment response following a Colorado wildfire. Water Res. 105, 187–198 (2016).

    Article  CAS  Google Scholar 

  162. Robinne, F. N. et al. Regional-scale index for assessing the exposure of drinking-water sources to wildfires. Forests 10, 1–21 (2019).

    Article  Google Scholar 

  163. Robinne, F. N. et al. Global index for mapping the exposure of water resources to wildfire. Forests 7, 1–16 (2016).

    Article  Google Scholar 

  164. Martin, D. A. At the nexus of fire, water and society. Philos. Trans. R. Soc. B 371, 20150172 (2016).

    Article  Google Scholar 

  165. Rhoades, C. C. et al. The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman fire, Colorado. Int. J. Wildland Fire 20, 430–442 (2011).

    Article  CAS  Google Scholar 

  166. Rhoades, C. C. et al. The legacy of a severe wildfire on stream nitrogen and carbon in headwater catchments. Ecosystems 22, 643–657 (2019).

    Article  CAS  Google Scholar 

  167. Burke, M. P. et al. Pre- and post-fire pollutant loads in an urban fringe watershed in southern California. Environ. Monit. Assess. 185, 10131–10145 (2013).

    Article  CAS  Google Scholar 

  168. Gustine, R. N., Hanan, E. J., Robichaud, P. R. & Elliot, W. J. From burned slopes to streams: how wildfire affects nitrogen cycling and retention in forests and fire-prone watersheds. Biogeochemistry 157, 51–68 (2022).

    Article  Google Scholar 

  169. Paul, M. J. et al. Wildfire induces changes in receiving waters: a review with considerations for water quality management. Water Resour. Res. 58, e2021WR030699 (2022).

    Article  Google Scholar 

  170. Rozendaal, D. M. A. et al. Demographic drivers of aboveground biomass dynamics during secondary succession in neotropical dry and wet forests. Ecosystems 20, 340–353 (2017).

    Article  Google Scholar 

  171. Turner, M. G., Smithwick, E. A. H., Metzger, K. L., Tinker, D. B. & Romme, W. H. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proc. Natl Acad. Sci. USA 104, 4782–4789 (2007).

    Article  CAS  Google Scholar 

  172. Minshall, G. W. Responses of stream benthic macroinvertebrates to fire. For. Ecol. Manag. 178, 155–161 (2003).

    Article  Google Scholar 

  173. Kronvang, B., Laubel, A. & Grant, R. Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbæk stream, Denmark. Hydrol. Process. 11, 627–642 (1997).

    Article  Google Scholar 

  174. House, W. A. Geochemical cycling of phosphorus in rivers. Appl. Geochem. 18, 739–748 (2003).

    Article  CAS  Google Scholar 

  175. Emelko, M. B. et al. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Glob. Change Biol. 22, 1168–1184 (2016).

    Article  Google Scholar 

  176. Riedel, T., Biester, H. & Dittmar, T. Molecular fractionation of dissolved organic matter with metal salts. Environ. Sci. Technol. 46, 4419–4426 (2012).

    Article  CAS  Google Scholar 

  177. Harper, A. R. et al. Chemical composition of wildfire ash produced in contrasting ecosystems and its toxicity to Daphnia magna. Int. J. Wildland Fire 28, 726–737 (2019).

    Article  CAS  Google Scholar 

  178. Ré, A. et al. Cytotoxic effects of wildfire ashes: in-vitro responses of skin cells. Environ. Pollut. 285, 117279 (2021).

    Article  Google Scholar 

  179. Afonso, M. et al. Effects of pine and eucalypt ashes on bacterial isolates from the skin microbiome of the fire salamander (Salamandra salamandra). Sci. Total Environ. 841, 156677 (2022).

    Article  CAS  Google Scholar 

  180. Coelho, L. et al. Effects of eucalypt ashes from moderate and high severity wildfires on the skin microbiome of the Iberian frog (Rana iberica). Environ. Pollut. 313, 120065 (2022).

    Article  CAS  Google Scholar 

  181. Priya, P. S. et al. Syringol, a wildfire residual methoxyphenol causes cytotoxicity and teratogenicity in zebrafish model. Sci. Total Environ. 864, 160968 (2023).

    Article  CAS  Google Scholar 

  182. Campos, I. et al. Assessment of the toxicity of ash-loaded runoff from a recently burnt eucalypt plantation. Eur. J. For. Res. 131, 1889–1903 (2012).

    Article  Google Scholar 

  183. Brown, D. J. et al. Comparison of short term low, moderate, and high severity fire impacts to aquatic and terrestrial ecosystem components of a southern USA mixed pine/hardwood forest. For. Ecol. Manag. 312, 179–192 (2014).

    Article  Google Scholar 

  184. Munro, N. T., Kovac, K.-J., Niejalke, D. & Cunningham, R. B. The effect of a single burn event on the aquatic invertebrates in artesian springs. Austral Ecol. 34, 837–847 (2009).

    Article  Google Scholar 

  185. Martens, A. M. et al. Long-term impact of severe wildfire and post-wildfire salvage logging on macroinvertebrate assemblage structure in Alberta’s Rocky Mountains. Int. J. Wildland Fire 28, 738–749 (2019).

    Article  Google Scholar 

  186. Wang, J.-J., Dahlgren, R. A., Erşan, M. S., Karanfil, T. & Chow, A. T. Wildfire altering terrestrial precursors of disinfection byproducts in forest detritus. Environ. Sci. Technol. 49, 5921–5929 (2015).

    Article  CAS  Google Scholar 

  187. Wang, J.-J., Dahlgren, R. A. & Chow, A. T. Controlled burning of forest detritus altering spectroscopic characteristics and chlorine reactivity of dissolved organic matter: effects of temperature and oxygen availability. Environ. Sci. Technol. 49, 14019–14027 (2015).

    Article  CAS  Google Scholar 

  188. Muellner, M. G. et al. Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic? Environ. Sci. Technol. 41, 645–651 (2007).

    Article  CAS  Google Scholar 

  189. Chow, A. T., Tsai, K.-P., Fegel, T. S., Pierson, D. N. & Rhoades, C. C. Lasting effects of wildfire on disinfection by-product formation in forest catchments. J. Environ. Qual. 48, 1826–1834 (2019).

    Article  CAS  Google Scholar 

  190. Whicker, J. J., Pinder, J. E., Breshears, D. D. & Eberhart, C. F. From dust to dose: effects of forest disturbance on increased inhalation exposure. Sci. Total Environ. 368, 519–530 (2006).

    Article  CAS  Google Scholar 

  191. Grant, E. & Runkle, J. D. Long-term health effects of wildfire exposure: a scoping review. J. Clim. Change Health 6, 100110 (2022).

    Article  Google Scholar 

  192. Fann, N. et al. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total. Env. 610–611, 802–809 (2018).

    Article  Google Scholar 

  193. Haikerwal, A., Doyle, L. W., Wark, J. D., Irving, L. & Cheong, J. L. Y. Wildfire smoke exposure and respiratory health outcomes in young adults born extremely preterm or extremely low birthweight. Environ. Res. 197, 111159 (2021).

    Article  CAS  Google Scholar 

  194. Gould, C. F. et al. Health effects of wildfire smoke exposure. Annu. Rev. Med. 75, 277–292 (2024).

    Article  CAS  Google Scholar 

  195. National Academies of Sciences, Engineering, and Medicine. The Chemistry of Fires at the Wildland–Urban Interface https://doi.org/10.17226/26460 (National Academies Press, 2022).

  196. Bucheli, T. D., Blum, F., Desaules, A. & Gustafsson, Ö. Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56, 1061–1076 (2004).

    Article  CAS  Google Scholar 

  197. Choi, S.-D. Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire. Sci. Total Environ. 470–471, 1441–1449 (2014).

    Article  Google Scholar 

  198. Santín, C. et al. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci. Rep. 7, 11233 (2017).

    Article  Google Scholar 

  199. Kim, E.-J., Oh, J.-E. & Chang, Y.-S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci. Total Environ. 311, 177–189 (2003).

    Article  CAS  Google Scholar 

  200. Chen, H., Uzun, H., Chow, A. T. & Karanfil, T. Low water treatability efficiency of wildfire-induced dissolved organic matter and disinfection by-product precursors. Water Res. 184, 116111 (2020).

    Article  CAS  Google Scholar 

  201. Fernandez-Garcia, V. MOSEV: A global burn severity database from MODIS (2000-2020). Earth Syst. Sci. Data 13, 1925–1938 (2021).

    Article  Google Scholar 

  202. Waters, M. T., Scaffidi, A., Flematti, G. R. & Smith, S. M. The origins and mechanisms of karrikin signalling. Curr. Opin. Plant Biol. 16, 667–673 (2013).

    Article  CAS  Google Scholar 

  203. Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 11 (2009).

    Article  Google Scholar 

  204. Parsons, A., Robichaud, P. R., Lewis, S. A., Napper, C. & Clark, J. T. Field Guide for Mapping Post-Fire Soil Burn Severity, 243 (Citeseer, 2010).

  205. Schwertmann, U. in Soil Color, 51–69 (Wiley, 1993).

Download references

Acknowledgements

The authors acknowledge support from the Center for Innovation in Global Health at Stanford University and the London School of Hygiene and Tropical Medicine under the Planetary Health Postdoctoral Fellowship (A.M.L.), Stanford Doerr School of Sustainability under the Stanford Earth Postdoctoral Fellowship (C.C.E.A.), Stanford Woods Institute for the Environment (S.F.), the National Science Foundation under grant no. 2114868 (H.K.R., J.P.VR., T.B.) and US Department of Agriculture National Institute of Food and Agriculture through AFRI grant no. 2021-67019-34608 (H.K.R., J.P.VR, T.B.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Thomas Borch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Philip Owens, who co-reviewed with Kristen Kieta; Diana Vieira; and Yu Luo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, A.M., Avila, C.C.E., VanderRoest, J.P. et al. Molecular insights and impacts of wildfire-induced soil chemical changes. Nat Rev Earth Environ (2024). https://doi.org/10.1038/s43017-024-00548-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43017-024-00548-8

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene