Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causes and consequences of the Messinian salinity crisis

Abstract

Salt giants are massive salt deposits (hundreds of metres thick) that form during the evaporation of semi-enclosed seas. The drivers of salt giant formation and their feedbacks on global and regional environmental change remain debated. In this Review, we summarize the boundary conditions, causes and consequences of the Mediterranean Messinian salinity crisis (MSC; 5.97–5.33 million years ago). Salt giant formation is more complex than the simple evaporation of an enclosed sea. Instead, the tectonic setting of an evaporative basin largely determines the timing and mode of salt formation, with superimposed impacts of orbital-scale climate and sea-level fluctuations. These drivers triggered precipitation of carbonates, gypsum, halite and bittern salts, with well-defined orbital cyclicities in carbonate and gypsum phases. Removal of Ca2+ during salt giant deposition decouples the oceanic Ca2+ and HCO3 sinks, causing reduced CaCO3 burial and, consequently, increased ocean pH, lower atmospheric partial pressure of CO2, and global cooling. Salt giants, which reflect a net evaporite-ion extraction of ~7–10% from oceans and persist over million-year timescales, could therefore be an important climate driver but are currently underconsidered in long-term carbon cycle models. Future research should use advanced hydrogeochemical models of water–ocean exchange to further explore interactions between salt giants and environmental change.

Key points

  • Giant salt deposits (gypsum and halite) formed in the Mediterranean during the Messinian salinity crisis (MSC), and their timing and mode depended on tectonic impacts on the evaporative basin.

  • Geodynamic and eustatic sea-level forcing are crucial for initiating and terminating salt giant formation with a subsidiary role for regional climate.

  • The main controls on evaporitic mineral precipitation are the magnitude of freshwater deficit and the extent to which water exchange between basin and ocean is limited.

  • Evaluation of an updated sea-level record for the time interval 6.4 to 5.0 million years ago demonstrates that sea level is a viable driver of the prominent MSC sedimentary cyclicity, in addition to orbital variation in the freshwater budget.

  • The formation and dissolution of giant calcium sulfate (gypsum and anhydrite) deposits can have global consequences as an episodic driver of carbon cycle changes. Oceanic Ca2+ removal via CaSO4 deposition decouples the oceanic Ca2+ and HCO3 sinks, causing a decrease in CaCO3 burial and, consequently, increased ocean pH, lower atmospheric partial pressure of CO2, and global cooling.

  • Most biogeochemical models assume that evaporite precipitation and weathering are balanced over timescales of more than 100 kyr. However, salt giants can reflect about a 7–10% net extraction of evaporite ions from ocean water that persists over million-year timescales, suggesting that current carbon cycle models could be missing an important long-term climate driver.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mediterranean MSC evaporite stages.
Fig. 2: Messinian salinity crisis stratigraphy in basinal settings.
Fig. 3: Global benthic foraminiferal oxygen and carbon isotope records correlated to the main phases of the Messinian salinity crisis.
Fig. 4: Sea-level reconstruction with sill-depth scenarios for the Messinian salinity crisis.
Fig. 5: Geodynamic context of the Messinian salinity crisis.
Fig. 6: Post-Messinian salinity crisis removal of Messinian salts to the Atlantic, following an abrupt refilling event.

Similar content being viewed by others

References

  1. Camerlenghi, A. & Aloisi, V. Uncovering the Mediterranean salt giant (MEDSALT) — scientific networking as incubator of cross-disciplinary research in Earth sciences. Eur. Rev. 28, 40–61 (2020).

    Article  Google Scholar 

  2. Hübscher, C. et al. Global look at salt giants. Eos https://doi.org/10.1029/2007EO160002 (2007).

  3. Ryan, W. B. F. Decoding the Mediterranean salinity crisis. Sedimentology 56, 95–136 (2009).

    Article  Google Scholar 

  4. Haq, B., Gorini, C., Baur, J., Moneron, J. & Rubino, J. Deep Mediterranean’s Messinian evaporite giant: how much salt? Glob. Planet. Change 184, 103052 (2020).

    Article  Google Scholar 

  5. Wortmann, U. & Paytan, A. Rapid variability of seawater chemistry over the past 130 million years. Science 337, 334–336 (2012).

    Article  CAS  Google Scholar 

  6. Heida, H. et al. Flexural-isostatic reconstruction of the western Mediterranean during the Messinian salinity crisis: implications for water level and basin connectivity. Bas. Res. 34, 50–80 (2022).

    Article  Google Scholar 

  7. Urgeles, R. et al. New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro margin, western Mediterranean. Bas. Res. 23, 123–145 (2011).

    Article  Google Scholar 

  8. Madof, A. S., Bertoni, C. & Lofi, J. Discovery of vast fluvial deposits provides evidence for drawdown during the Late Miocene Messinian salinity crisis. Geology 47, 171–174 (2019).

    Article  CAS  Google Scholar 

  9. Garcia-Castellanos, D. et al. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778–781 (2009).

    Article  CAS  Google Scholar 

  10. van Dijk, G. et al. A terminal Messinian flooding of the Mediterranean evidenced by contouritic deposits on sicily. Sedimentology 70, 1195–1223 (2023).

    Article  Google Scholar 

  11. Amarathunga, U. et al. Sill-controlled salinity contrasts followed post-Messinian flooding of the Mediterranean. Nat. Geosci. 15, 720–725 (2022).

    Article  CAS  Google Scholar 

  12. Lofi, J. et al. Erosional processes and paleo-environmental changes in the western Gulf of Lions (SW France) during the Messinian salinity crisis. Mar. Geol. 217, 1–30 (2005).

    Article  Google Scholar 

  13. Rouchy, J. M. & Caruso, A. The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sediment. Geol. 188–189, 35–67 (2006).

    Article  Google Scholar 

  14. Gvirtzman, Z. et al. Intra-Messinian truncation surface in the Levant basin explained by subaqueous dissolution. Geology 45, 915–918 (2017).

    Article  Google Scholar 

  15. Roveri, M. et al. The Messinian salinity crisis: past and future of a great challenge for marine sciences. Mar. Geol. 352, 25–58 (2014).

    Article  Google Scholar 

  16. Lofi, J. et al. Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi-site seismic analysis. Bull. Soc. Geol. Fr. 182, 163–180 (2011).

    Article  Google Scholar 

  17. Hilgen, F. J. et al. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett. 136, 495–510 (1995).

    Article  CAS  Google Scholar 

  18. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J. & Wilson, D. S. Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652–655 (1999).

    Article  CAS  Google Scholar 

  19. Sierro, F. J., Hilgen, F. J., Krijgsman, W. & Flores, J. A. The Abad composite (SE Spain): a Messinian reference section for the Mediterranean and the APTS. Palaeogeogr. Palaeoclimatol. Palaeoecol. 168, 141–169 (2001).

    Article  Google Scholar 

  20. Natalicchio, M. et al. Did Late Miocene (Messinian) gypsum precipitate from evaporated marine brines? Insights from the Piedmont basin (Italy). Geology 42, 179–182 (2014).

    Article  CAS  Google Scholar 

  21. Reghizzi, M., Lugli, S., Manzi, V., Rossi, F. P. & Roveri, M. Orbitally forced hydrological balance during the Messinian salinity crisis: insights from strontium isotopes (87Sr/86Sr) in the Vena del Gesso basin (Northern Apennines, Italy). Paleoceanogr. Paleoclimatol. 33, 716–731 (2018).

    Article  Google Scholar 

  22. Topper, R. P. M. & Meijer, P. T. A modeling perspective on spatial and temporal variations in Messinian evaporite deposits. Mar. Geol. 336, 44–60 (2013).

    Article  Google Scholar 

  23. Grothe, A. et al. Paratethys pacing of the Messinian salinity crisis: low salinity waters contributing to gypsum precipitation? Earth Planet. Sci. Lett. 532, 116029 (2020).

    Article  CAS  Google Scholar 

  24. Andreetto, F. et al. High-amplitude water-level fluctuations at the end of the Mediterranean Messinian salinity crisis: implications for gypsum formation, connectivity and global climate. Earth Planet. Sci. Lett. 595, 117767 (2022).

    Article  CAS  Google Scholar 

  25. Raad, F. et al. A song of volumes, surfaces and fluxes: the case study of the Central Mallorca depression (Balearic promontory) during the Messinian salinity crisis. Basin Res. 35, 1–27 (2023).

    Article  Google Scholar 

  26. Flecker, R. et al. Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change. Earth Sci. Rev. 150, 365–392 (2015).

    Article  Google Scholar 

  27. Hilgen, F., Kuiper, K., Krijgsman, W., Snel, E. & Van der Laan, E. Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian salinity crisis. Stratigraphy 4, 231–238 (2007).

    Article  Google Scholar 

  28. Krijgsman, W. et al. The Gibraltar corridor: watergate of the Messinian salinity crisis. Mar. Geol. 403, 238–246 (2018).

    Article  Google Scholar 

  29. Bryden, H. L., Candela, J. & Kinder, T. H. Exchange through the Strait of Gibraltar. Prog. Oceanogr. 33, 201–248 (1994).

    Article  Google Scholar 

  30. Capella, W. et al. Palaeogeographic evolution of the Late Miocene Rifian corridor (Morocco): reconstructions from surface and subsurface data. Earth Sci. Rev. 180, 37–59 (2018).

    Article  Google Scholar 

  31. Booth-Rea, G., Ranero, C. R. & Grevemeyer, I. The Alboran volcanic-arc modulated the Messinian faunal exchange and salinity crisis. Sci. Rep. 8, 13015 (2018).

    Article  Google Scholar 

  32. De la Vara, A., Topper, R. P. M., Meijer, P. T. & Kouwenhoven, T. J. Water exchange through the Betic and Rifian corridors prior to the Messinian salinity crisis: a model study. Paleoceanography 30, 548–557 (2015).

    Article  Google Scholar 

  33. Bulian, F. et al. Impact of the Mediterranean–Atlantic connectivity and the Late Miocene carbon shift on deep-sea communities in the western Alboran basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 589, 110841 (2022).

    Article  Google Scholar 

  34. Kouwenhoven, T. J., Hilgen, F. J. & Van Der Zwaan, G. J. Late Tortonian–Early Messinian stepwise disruption of the Mediterranean–Atlantic connections: constraints from benthic foraminiferal and geochemical data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 303–319 (2003).

    Article  Google Scholar 

  35. Mayer-Eymar, K. Catalogue systématique et descriptif des fossiles des terrains tertiaires qui se trouvent du Musée fédéral de Zürich, Zürich (1867).

  36. Selli, R. Il Messiniano Mayer-Eymar 1867. Proposta di un neostratotipo. G. Geol. 28, 1–33 (1960).

    Google Scholar 

  37. Ruggieri, G. The Miocene and later evolution of the Mediterranean Sea. Asp. Tethyan Biogeogr. 283–290 (1967).

  38. Hsü, K., Ryan, W. B. F. & Cita, M. Late Miocene desiccation of the Mediterranean. Nature 242, 240–244 (1973).

    Article  Google Scholar 

  39. Ryan, W. B. F. 50th anniversary review of the Mediterranean desiccation hypothesis. Riv. del. Nuovo Cimento 46, 163–291 (2023).

    Article  Google Scholar 

  40. Roveri, M. et al. Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity crisis. Am. J. Sci. 314, 751–784 (2014).

    Article  Google Scholar 

  41. Lugli, S., Manzi, V., Roveri, M. & Schreiber, B. C. The Primary Lower Gypsum in the Mediterranean: a new facies interpretation for the first stage of the Messinian salinity crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 83–99 (2010).

    Article  Google Scholar 

  42. Stoica, M., Krijgsman, W., Fortuin, A. & Gliozzi, E. Paratethyan ostracods in the Spanish Lago-Mare: more evidence for interbasinal exchange at high Mediterranean sea level. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 854–870 (2016).

    Article  Google Scholar 

  43. Andreetto, F. et al. Freshening of the Mediterranean salt giant: controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian salinity crisis. Earth Sci. Rev. 216, 103577 (2021).

    Article  CAS  Google Scholar 

  44. Gliozzi, E., Ceci, M. E., Grossi, F. & Ligios, S. Paratethyan ostracod immigrants in Italy during the Late Miocene. Geobios 40, 325–337 (2007).

    Article  Google Scholar 

  45. Manzi, V., Lugli, S., Ricci Lucchi, F. & Roveri, M. Deep-water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): did the Mediterranean ever dry out? Sedimentology 52, 875–902 (2005).

    Article  CAS  Google Scholar 

  46. Raad, F., Lofi, J., Maillard, A., Tzevahirtzian, A. & Caruso, A. The Messinian salinity crisis deposits in the Balearic promontory: an undeformed analog of the MSC Sicilian basins? Mar. Pet. Geol. 124, 104777 (2021).

    Article  Google Scholar 

  47. Ochoa, D. et al. Messinian salinity crisis deposits widespread over the Balearic promontory: insights from new high-resolution seismic data. Mar. Pet. Geol. 66, 41–54 (2014).

    Google Scholar 

  48. Manzi, V. et al. The deep-water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: the Fanantello section (Northern Apennines, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 470–499 (2007).

    Article  Google Scholar 

  49. de Lange, G. J. & Krijgsman, W. Messinian salinity crisis: a novel unifying shallow gypsum/deep dolomite formation mechanism. Mar. Geol. 275, 273–277 (2010).

    Article  Google Scholar 

  50. Manzi, V., Roveri, M., Argnani, A., Cowan, D. & Lugli, S. Large-scale mass-transport deposits recording the collapse of an evaporitic platform during the Messinian salinity crisis (Caltanissetta basin, Sicily). Sediment. Geol. 424, 106003 (2021).

    Article  Google Scholar 

  51. Lugli, S., Manzi, V., Roveri, M. & Schreiber, B. C. The deep record of the Messinian salinity crisis: evidence of a non-desiccated Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433, 201–218 (2015).

    Article  Google Scholar 

  52. Gvirtzman, Z., Reshef, M., Buch-Leviatan, O. & Ben-Avraham, Z. Intense salt deformation in the Levant basin in the middle of the Messinian salinity crisis. Earth Planet. Sci. Lett. 379, 108–119 (2013).

    Article  CAS  Google Scholar 

  53. Bertoni, C. & Cartwright, J. A. Controls on the basinwide architecture of Late Miocene (Messinian) evaporites on the Levant margin (eastern Mediterranean). Sediment. Geol. 188–189, 93–114 (2006).

    Article  Google Scholar 

  54. Feng, Y. E., Steinberg, J. & Reshef, M. Intra-salt deformation: implications for the evolution of the Messinian evaporites in the Levant basin, eastern Mediterranean. Mar. Pet. Geol. 88, 251–267 (2017).

    Article  Google Scholar 

  55. Feng, Y. E., Yankelzon, A., Steinberg, J. & Reshef, M. Lithology and characteristics of the Messinian evaporite sequence of the deep Levant basin, eastern Mediterranean. Mar. Geol. 376, 118–131 (2016).

    Article  Google Scholar 

  56. Manzi, V. et al. Synchronous onset of the Messinian salinity crisis and diachronous evaporite deposition: new evidences from the deep eastern Mediterranean basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 584, 110685 (2021).

    Article  Google Scholar 

  57. Manzi, V., Lugli, S., Roveri, M., Schreiber, B. C. & Gennari, R. The Messinian ‘Calcare di Base’ (Sicily, Italy) revisited. Bull. Geol. Soc. Am. 123, 347–370 (2011).

    Article  CAS  Google Scholar 

  58. Caruso, A., Pierre, C., Blanc-Valleron, M.-M. & Rouchy, J. M. Carbonate deposition and diagenesis in evaporitic environments: the evaporative and sulphur-bearing limestones during the settlement of the Messinian salinity crisis in Sicily and Calabria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 429, 136–162 (2015).

    Article  Google Scholar 

  59. Bourillot, R. et al. Structure and evolution of a Messinian mixed carbonate-siliciclastic platform: the role of evaporites (Sorbas basin, south-east Spain). Sedimentology 57, 477–512 (2010).

    Article  Google Scholar 

  60. Roveri, M., Lugli, S., Manzi, V., Reghizzi, M. & Rossi, F. P. Stratigraphic relationships between shallow-water carbonates and primary gypsum: insights from the Messinian succession of the Sorbas basin (Betic Cordillera, southern Spain). Sediment. Geol. 404, 105678 (2020).

    Article  Google Scholar 

  61. Roveri, M., Lugli, S., Manzi, V. & Schreiber, B. C. The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis. Terra Nova 20, 483–488 (2008).

    Article  Google Scholar 

  62. Manzi, V. et al. High-frequency cyclicity in the Mediterranean Messinian evaporites: evidence for solar-lunar climate forcing. J. Sediment. Res. 82, 991–1005 (2012).

    Article  Google Scholar 

  63. García-Veigas, J., Cendón, D. I., Gibert, L., Lowenstein, T. K. & Artiaga, D. Geochemical indicators in western Mediterranean Messinian evaporites: implications for the salinity crisis. Mar. Geol. 403, 197–214 (2018).

    Article  Google Scholar 

  64. Bulian, F., Kouwenhoven, T. J., Andersen, N., Krijgsman, W. & Sierro, F. J. Reflooding and repopulation of the Mediterranean Sea after the Messinian salinity crisis: benthic foraminifera assemblages and stable isotopes of Spanish basins. Mar. Micropal. 176, 102160 (2022).

    Article  Google Scholar 

  65. Rohling, E. J., Marino, G. & Grant, K. M. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth Sci. Rev. 143, 62–97 (2015).

    Article  CAS  Google Scholar 

  66. Manzi, V. et al. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25, 315–322 (2013).

    Article  Google Scholar 

  67. Zachariasse, W. J. & Lourens, L. J. The Messinian on Gavdos (Greece) and the status of currently used ages for the onset of the MSC and gypsum precipitation. Newsl. Stratigr. 55, 333–360 (2022).

    Article  Google Scholar 

  68. Tzevahirtzian, A., Caruso, A., Andreetto, F., Bonomo, S. & Krijgsman, W. A bio-chronostratigraphic study of the upper Miocene from the northern Caltanissetta Basin, Sicily (core 3AGN2S04). Implications for dating the Messinian salinity crisis onset. Sediment. Geol. https://doi.org/10.1016/j.sedgeo.2023.106330 (2023).

  69. Van Couvering, J. A., Castradori, D., Cita, M. B., Hilgen, F. J. & Rio, D. The base of the Zanclean stage and of the Pliocene series. Episodes 23, 179–187 (2000).

    Article  Google Scholar 

  70. Clauzon, G., Suc, J.-P., Gautier, F., Berger, A. & Loutre, M.-F. Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24, 363–366 (1996).

    Article  Google Scholar 

  71. Krijgsman, W. et al. Revised astrochronology for the Ain el Beida section (Atlantic Morocco): no glacio-eustatic control for the onset of the Messinian salinity crisis. Stratigraphy 1, 87–101 (2004).

    Article  Google Scholar 

  72. Topper, R. P. M., Flecker, R., Meijer, P. T. & Wortel, M. J. R. A box model of the Late Miocene Mediterranean Sea: implications from combined 87Sr/86Sr and salinity data. Paleoceanography 26, PA3223 (2011).

    Article  Google Scholar 

  73. Krijgsman, W., Fortuin, A. R., Hilgen, F. J. & Sierro, F. J. Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity. Sediment. Geol. 140, 43–60 (2001).

    Article  CAS  Google Scholar 

  74. Rohling, E. J., Schiebel, R. & Siddall, M. Controls on Messinian lower evaporite cycles in the Mediterranean. Earth Planet. Sci. Lett. 275, 165–171 (2008).

    Article  CAS  Google Scholar 

  75. Garcia-Castellanos, D. & Villaseñor, A. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 480, 359–363 (2011).

    Article  CAS  Google Scholar 

  76. Krijgsman, W. & Meijer, P. T. Depositional environments of the Mediterranean ‘Lower Evaporites’ of the Messinian salinity crisis: constraints from quantitative analyses. Mar. Geol. 253, 73–81 (2008).

    Article  Google Scholar 

  77. Manzi, V. et al. The onset of the Messinian salinity crisis in the deep Eastern Mediterranean basin. Terra Nova 30, 189–198 (2018).

    Article  Google Scholar 

  78. Meilijson, A. et al. Chronology with a pinch of salt: integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity. Earth Sci. Rev. 194, 374–398 (2019).

    Article  Google Scholar 

  79. Meijer, P. T. A box model of the blocked-outflow scenario for the Messinian salinity crisis. Earth Planet. Sci. Lett. 248, 486–494 (2006).

    Article  CAS  Google Scholar 

  80. Sanford, W. E. & Wood, W. W. Brine evolution and mineral deposition in hydrologically open evaporite basins. Am. J. Sci. 291, 687–710 (1991).

    Article  CAS  Google Scholar 

  81. Manzi, V., Lugli, S., Roveri, M. & Schreiber, B. C. A new facies model for the Upper Gypsum of Sicily (Italy): chronological and palaeoenvironmental constraints for the Messinian salinity crisis in the Mediterranean. Sedimentology 56, 1937–1960 (2009).

    Article  CAS  Google Scholar 

  82. Andreetto, F. et al. Multi-proxy investigation of the post-evaporitic succession of the Piedmont basin (Pollenzo section, NW Italy): a new piece in the Stage 3 puzzle of the Messinian salinity crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 594, 110961 (2022).

    Article  Google Scholar 

  83. Jolivet, L., Augier, R., Robin, C., Suc, J.-P. & Rouchy, J. M. Lithospheric-scale geodynamic context of the Messinian salinity crisis. Sediment. Geol. 188–189, 9–33 (2006).

    Article  Google Scholar 

  84. Mancilla, F. L. et al. Slab rupture and delamination under the Betics and Rif constrained from receiver functions. Tectonophysics 663, 225–237 (2015).

    Article  Google Scholar 

  85. Spakman, W., Chertova, M. V., Van Den Berg, A. & Van Hinsbergen, D. J. J. Puzzling features of western Mediterranean tectonics explained by slab dragging. Nat. Geosci. 11, 211–216 (2018).

    Article  CAS  Google Scholar 

  86. Wortel, M. J. R. & Spakman, W. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290, 1910–1917 (2000).

    Article  CAS  Google Scholar 

  87. Capella, W., Spakman, W., van Hinsbergen, D. J. J., Chertova, M. V. & Krijgsman, W. Mantle resistance against Gibraltar slab dragging as a key cause of the Messinian salinity crisis. Terra Nova 32, 141–150 (2020).

    Article  Google Scholar 

  88. Capella, W. et al. Thick-skinned tectonics closing the Rifian corridor. Tectonophysics 710–711, 249–265 (2017).

    Article  Google Scholar 

  89. Sabino, M. et al. Climatic and hydrologic variability in the northern Mediterranean across the onset of the Messinian salinity crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 545, 109632 (2020).

    Article  Google Scholar 

  90. Modestou, S. et al. Precessional variability of 87Sr/86Sr in the Late Miocene Sorbas basin: an interdisciplinary study of drivers of interbasin exchange. Paleoceanography 32, 531–552 (2017).

    Article  Google Scholar 

  91. Blanc, P.-L. Of sills and straits: a quantitative assessment of the Messinian salinity crisis. Deep. Sea Res. 1 Oceanogr. Res. Pap. 47, 1429–1460 (2000).

    Article  Google Scholar 

  92. Meijer, P. & Krijgsman, W. A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian salinity crisis. Earth Planet. Sci. Lett. 240, 510–520 (2005).

    Article  CAS  Google Scholar 

  93. Pellen, R. et al. Structural and sedimentary origin of the Gargano–Pelagosa gateway and impact on sedimentary evolution during the Messinian salinity crisis. Earth Sci. Rev. 232, 104114 (2022).

    Article  Google Scholar 

  94. Krijgsman, W., Palcu, D. V., Andreetto, F., Stoica, M. & Mandic, O. Changing seas in the Late Miocene Northern Aegean: a Paratethyan perspective to Mediterranean stratigraphy. Earth Sci. Rev. 210, 103386 (2020).

    Article  Google Scholar 

  95. Gülyüz, E., Durak, H., Özkaptan, M. & Krijgsman, W. Paleomagnetic constraints on the Early Miocene closure of the southern Neo-Tethys (Van region; East Anatolia): inferences for the timing of Eurasia–Arabia collision. Glob. Planet. Change 185, 103089 (2020).

    Article  Google Scholar 

  96. Harzhauser, M., Piller, W. E. & Steininger, F. F. Circum-Mediterranean Oligo–Miocene biogeographic evolution — the gastropods’ point of view. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183, 103–133 (2002).

    Article  Google Scholar 

  97. Oguz, T., Özsoy, E., Latif, M. A., Sur, H. I. & Ünlüata, Ü. Modeling of hydraulically controlled exchange flow in the Bosphorus Strait. J. Phys. Oceanogr. 20, 945–965 (1990).

    Article  Google Scholar 

  98. Radionova, E. P. & Golovina, L. Upper Maeotian–Lower Pontian ‘transitional strata’ in the Taman peninsula: stratigraphic position and paleogeographic interpretation. Geol. Carpath. 62, 77–90 (2011).

    Article  Google Scholar 

  99. Grothe, A., Sangiorgi, F., Brinkhuis, H., Stoica, M. & Krijgsman, W. Migration of the dinoflagellate Galeacysta etrusca and its implications for the Messinian salinity crisis. Newsl. Stratigr. 51, 73–91 (2018).

    Article  Google Scholar 

  100. Van Baak, C. G. C., Stoica, M., Grothe, A., Aliyeva, E. & Krijgsman, W. Mediterranean-Paratethys connectivity during the Messinian salinity crisis: the Pontian of Azerbaijan. Glob. Planet. Change 141, 63–81 (2016).

    Article  Google Scholar 

  101. Van Baak, C. G. C. et al. Paratethys response to the Messinian salinity crisis. Earth Sci. Rev. 172, 193–223 (2017).

    Article  Google Scholar 

  102. Krijgsman, W. et al. Mediterranean–Black Sea gateway exchange: scientific drilling workshop on the BlackGate project. Sci. Drill. 31, 93–110 (2022).

    Article  Google Scholar 

  103. Wegwerth, A. et al. Meltwater events and the Mediterranean reconnection at the Saalian–Eemian transition in the Black Sea. Earth Planet. Sci. Lett. 404, 124–135 (2014).

    Article  CAS  Google Scholar 

  104. Bista, D. et al. Sr isotope-salinity modelling constraints on quaternary Black Sea connectivity. Quat. Sci. Rev. 273, 107254 (2021).

    Article  Google Scholar 

  105. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1388 (2020).

    Article  CAS  Google Scholar 

  106. Ohneiser, C. et al. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nat. Commun. 6, 8765 (2015).

    Article  CAS  Google Scholar 

  107. Rohling, E. J. et al. Comparison and synthesis of sea-level and deep-sea temperature variations over the past 40 million years. Rev. Geophys. 60, e2002RG000775 (2022).

    Article  Google Scholar 

  108. Gladstone, R., Flecker, R., Valdes, P., Lunt, D. & Markwick, P. The Mediterranean hydrologic budget from a Late Miocene global climate simulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 254–267 (2007).

    Article  Google Scholar 

  109. Simon, D. et al. Quantifying the Mediterranean freshwater budget throughout the Late Miocene: new implications for sapropel formation and the Messinian salinity crisis. Earth Planet. Sci. Lett. 472, 25–37 (2017).

    Article  CAS  Google Scholar 

  110. Drury, A. J. et al. Late Miocene climate and time scale reconciliation: accurate orbital calibration from a deep-sea perspective. Earth Planet. Sci. Lett. 475, 254–266 (2017).

    Article  CAS  Google Scholar 

  111. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article  CAS  Google Scholar 

  112. van der Laan, E. et al. Astronomical forcing of Northwest African climate and glacial history during the late Messinian (6.5–5.5Ma). Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 107–126 (2012).

    Article  Google Scholar 

  113. Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. https://doi.org/10.1038/s41467-018-03950-1 (2018).

  114. Kontakiotis, G. et al. Decoding sea surface and paleoclimate conditions in the eastern Mediterranean over the Tortonian–Messinian Transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 534, 109312 (2019).

    Article  Google Scholar 

  115. Bulian, F., Sierro, F. J., Ledesma, S., Jiménez-Espejo, F. J. & Bassetti, M.-A. Messinian West Alboran Sea record in the proximity of Gibraltar: early signs of Atlantic–Mediterranean gateway restriction. Mar. Geol. 434, 106430 (2021).

    Article  Google Scholar 

  116. Natalicchio, M. et al. Paleoenvironmental change in a precession-paced succession across the onset of the Messinian salinity crisis: insight from element geochemistry and molecular fossils. Palaeogeogr. Palaeoclimatol. Palaeoecol. 518, 45–61 (2019).

    Article  Google Scholar 

  117. Rohling, E. J. et al. Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years. Sci. Adv. 7, eabf5326 (2021).

    Article  CAS  Google Scholar 

  118. Fauquette, S. et al. How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, 281–301 (2006).

    Article  Google Scholar 

  119. Vasiliev, I. et al. How dry was the Mediterranean during the Messinian salinity crisis? Palaeogeogr. Palaeoclimatol. Palaeoecol. 471, 120–133 (2017).

    Article  Google Scholar 

  120. Butiseacă, G. A. et al. Multiple crises preceded the Mediterranean salinity crisis: aridification and vegetation changes revealed by biomarkers and stable isotopes. Glob. Planet. Change 217, 103951 (2022).

    Article  Google Scholar 

  121. Karakitsios, V. et al. Messinian salinity crisis record under strong freshwater input in marginal, intermediate, and deep environments: the case of the North Aegean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 485, 316–335 (2017).

    Article  Google Scholar 

  122. Kontakiotis, G. et al. Hypersalinity accompanies tectonic restriction in the eastern Mediterranean prior to the Messinian salinity crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 592, 110903 (2022).

    Article  Google Scholar 

  123. Bertini, A. The northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments. Sediment. Geol. 188–189, 235–258 (2006).

    Article  Google Scholar 

  124. Hilgen, F. J. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the Geomagnetic Polarity Time Scale. Earth Planet. Sci. Lett. 104, 226–244 (1991).

    Article  Google Scholar 

  125. Marzocchi, A. et al. Orbital control on late Miocene climate and the North African monsoon: insight from an ensemble of sub-precessional simulations. Clim. Past. 11, 1271–1295 (2015).

    Article  Google Scholar 

  126. Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).

    Article  Google Scholar 

  127. Grant, K. M. et al. Organic carbon burial in Mediterranean sapropels intensified during green Sahara periods since 3.2 Myr ago. Commun. Earth Environ. 3, 11 (2022).

  128. Colin, C. et al. Reconstruction of northern African monsoon between 6.2 and 4.9 Ma and possible relationships with Late Miocene events. C. R. Geosci. 340, 749–760 (2008).

    Article  Google Scholar 

  129. Colin, C. et al. Late Miocene to Early Pliocene climate variability off NW Africa (ODP Site 659). Palaeogeogr. Palaeoclimatol. Palaeoecol. 401, 81–95 (2014).

    Article  Google Scholar 

  130. Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V. V. Rise and fall of the Paratethys Sea during the Messinian salinity crisis. Earth Planet. Sci. Lett. 290, 183–191 (2010).

    Article  CAS  Google Scholar 

  131. Palcu, D. V. et al. Late Miocene megalake regressions in Eurasia. Sci. Rep. 11, 1–12 (2021).

    Article  Google Scholar 

  132. Sprovieri, M., Sacchi, M. & Rohling, E. J. Climatically influenced interactions between the Mediterranean and the Paratethys during the Tortonian. Paleoceanography 18, 1034 (2003).

    Article  Google Scholar 

  133. Amies, J. D., Rohling, E. J., Grant, K. M., Rodríguez-Sanz, L. & Marino, G. Quantification of African monsoon runoff during last interglacial sapropel S5. Paleoceanogr. Paleoclimatol. 34, 1487–1516 (2019).

    Article  Google Scholar 

  134. Bosmans, J. H. C. et al. Precession and obliquity forcing of the freshwater budget over the Mediterranean. Quat. Sci. Rev. 123, 16–30 (2015).

    Article  Google Scholar 

  135. Griffin, D. L. The Late Neogene Sahabi rivers of the Sahara and their climatic and environmental implications for the Chad Basin. J. Geol. Soc. Lond. 163, 905–921 (2006).

    Article  Google Scholar 

  136. Griffin, D. L. Aridity and humidity: two aspects of the Late Miocene climate of North Africa and the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 65–91 (2002).

    Article  Google Scholar 

  137. Drake, N. A. et al. Reconstructing palaeoclimate and hydrological fluctuations in the Fezzan basin (southern Libya) since 130 ka: a catchment-based approach. Quat. Sci. Rev. 200, 376–394 (2018).

    Article  Google Scholar 

  138. Rohling, E. J. et al. African monsoon variability during the previous interglacial maximum. Earth Planet. Sci. Lett. 202, 61–75 (2002).

    Article  CAS  Google Scholar 

  139. Coulthard, T. J., Ramirez, J. A., Barton, N., Rogerson, M. & Brücher, T. Were rivers flowing across the Sahara during the last interglacial? Implications for human migration through Africa. PLoS ONE 8, e74834 (2013).

    Article  CAS  Google Scholar 

  140. Aloisi, G. et al. The geochemical riddle of ‘low-salinity gypsum’ deposits. Geochim. Cosmochim. Acta 327, 247–275 (2022).

    Article  CAS  Google Scholar 

  141. Wallmann, K. et al. Salty brines on the Mediterranean sea floor. Nature 387, 31–32 (1997).

    Article  CAS  Google Scholar 

  142. La Cono, V. et al. The discovery of Lake Hephaestus, the youngest athalassohaline deep-sea formation on Earth. Sci. Rep. 9, 1679 (2019).

    Article  Google Scholar 

  143. Yakimov, M. M. et al. Microbial community of the deep-sea brine Lake Kryos seawater–brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ. Microbiol. 17, 364–382 (2015).

    Article  CAS  Google Scholar 

  144. Warren, J. K. Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci. Rev. 98, 217–268 (2010).

    Article  CAS  Google Scholar 

  145. Shields, G. A. & Mills, B. J. W. Evaporite weathering and deposition as a long-term climate forcing mechanism. Geology 49, 299–303 (2021).

    Article  CAS  Google Scholar 

  146. Hay, W. W. et al. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 3–46 (2006).

    Article  Google Scholar 

  147. Capella, W. et al. Mediterranean isolation preconditioning the Earth system for Late Miocene climate cooling. Sci. Rep. 9, 3795 (2019).

    Article  Google Scholar 

  148. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    Article  CAS  Google Scholar 

  149. Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    Article  CAS  Google Scholar 

  150. Nichols, G., Williams, E. & Paola, C. Sedimentary Processes, Environments and Basins (Blackwell, 2007).

  151. Hamilton, J. & Ford, D. Karst geomorphology and hydrogeology of the Bear Rock Formation — a remarkable dolostone and gypsum megabreccia in the continuous permafrost zone of Northwest Territories, Canada. Carbonates Evaporites 17, 114–115 (2002).

    Article  Google Scholar 

  152. Turchyn, A. V. & dePaolo, D. J. Seawater chemistry through Phanerozoic time. Annu. Rev. Earth Planet. Sci. 47, 197–224 (2019).

    Article  CAS  Google Scholar 

  153. Ivanovic, R. F., Valdes, P. J., Gregoire, L., Flecker, R. & Gutjahr, M. Sensitivity of modern climate to the presence, strength and salinity of Mediterranean–Atlantic exchange in a global general circulation model. Clim. Dyn. 42, 859–877 (2014).

    Article  Google Scholar 

  154. Legg, S. et al. Improving oceanic overflow representation in climate models: the Gravity Current Entrainment Climate Process team. Bull. Am. Meteorol. Soc. 90, 657–670 (2009).

    Article  Google Scholar 

  155. Hernández-Molina, F. J. et al. Onset of Mediterranean outflow into the North Atlantic. Science 344, 1244–1250 (2014).

    Article  Google Scholar 

  156. Bigg, G. R., Jickells, T. D., Liss, P. S. & Osborn, T. J. The role of the oceans in climate. Int. J. Climatol. 23, 1127–1159 (2003).

    Article  Google Scholar 

  157. Adcroft, A. et al. The GFDL Global Ocean and Sea Ice Model OM4.0: model description and simulation features. J. Adv. Model. Earth Syst. 11, 3167–3211 (2019).

    Article  Google Scholar 

  158. Bruciaferri, D., Shapiro, G. I. & Wobus, F. A multi-envelope vertical coordinate system for numerical ocean modelling. Ocean. Dyn. 68, 1239–1258 (2018).

    Article  Google Scholar 

  159. Popov, S. V. et al. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238, 91–106 (2006).

    Article  Google Scholar 

  160. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  161. Hilgen, F. J., Lourens, L. J. & Van Dam, J. A. in The Geological Time Scale 2012 (eds Gradstein, F. M. et al.) 947–1002 (Elsevier, 2012).

  162. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).

    Google Scholar 

  163. Dumitru, O. A. et al. Constraints on global mean sea level during Pliocene warmth. Nature 574, 233–236 (2019).

    Article  CAS  Google Scholar 

  164. Dumitru, O. A. et al. Sea-level stands from the western Mediterranean over the past 6.5 million years. Sci. Rep. 11, 261 (2021).

    Article  CAS  Google Scholar 

  165. Hollyday, A. et al. A revised estimate of Early Pliocene global mean sea level using geodynamic models of the Patagonian slab window. Geochem. Geophys. Geosyst. 24, e2022GC010648 (2023).

    Article  Google Scholar 

  166. Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086–1088 (2001).

    Article  CAS  Google Scholar 

  167. Bąbel, M. & Schreiber, B. C. in Sediments, Diagenesis, and Sedimentary Rocks. Treatise on Geochemistry 2nd edn, Vol. 9, 483–560 (2014).

  168. Harvie, C. E. & Weare, J. H. The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25°C. Geochim. Cosmochim. Acta 44, 723–751 (1980).

    Article  Google Scholar 

  169. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  CAS  Google Scholar 

  170. Meybeck, M. Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Phil. Trans. R. Soc. Lond. 358, 1935–1955 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the project SALTGIANT-Understanding the Mediterranean Salt Giant, funded by the European Union’s Horizon 2020 programme (Marie Skłodowska-Curie grant agreement no. 765256). It also contributes to Australian Research Council projects FL120100050, DP2000101157 (E.J.R.), and DP190100874 (A.P.R.). D.V.P. acknowledges project PNRR C9-I8 ‘Multiproxy reconstruction of Eurasian Megalakes, connectivity and isolation patterns during Neogene-Quaternary times’, code 97/15.11.2022, contract no. 760115/23.05.2023 and the project ‘Impact of sea-level rise on anoxic basins: Paratethys vs. Black Sea’ (grant Veni.212.136) of the research Talent programme– Veni which is financed by the Dutch Research Council (NWO).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the content, discussion, writing and editing of the paper. D.V.P., F.R., G.A., F.J.S., E.J.R. and U.A. constructed the figures.

Corresponding author

Correspondence to Wout Krijgsman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks C. Hübscher, A. Camerlenghi, G. Kontakiotis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krijgsman, W., Rohling, E.J., Palcu, D.V. et al. Causes and consequences of the Messinian salinity crisis. Nat Rev Earth Environ (2024). https://doi.org/10.1038/s43017-024-00533-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43017-024-00533-1

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene