Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crop traits and production under drought

Abstract

Drought limits crop productivity and threatens global food security, with moderate drought stress — when crops grow at a reduced rate — commonly experienced. Increasing plant tolerance to moderate drought is a key target for adaptation and management, but efforts to understand and increase drought tolerance often focus on more extreme drought that causes complete crop failure and only consider crop genetics. In this Review, we discuss the influence of moderate drought on crop productivity and the role of physiological traits in drought tolerance and adaptation. Traits related to crop water use, water capture, water availability, transpiration efficiency and phenology impact drought adaptation, but their overall effect varies situationally. For example, early restrictions in transpiration, higher transpiration efficiency or altered tillering increase water availability during grain filling and can double yield in some drought scenarios. However, these same traits under less severe drought scenarios can also lead to yield penalties. To assess when and under what conditions traits will be beneficial, crop models are used to integrate the effects of genetics, the environment and management, estimating the expected yield responses under these combinations of scenarios and traits. More robust characterization of moderate drought tolerance and better integration between plant genetic information and modelling will enable the local selection of crop varieties suited to the expected drought scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crop productive response to drought.
Fig. 2: The water-centred view of drought tolerance.
Fig. 3: Physiological traits impacting drought tolerance.
Fig. 4: Key drought response traits with known genes or genetic controls.
Fig. 5: Cumulated transpiration trajectories.
Fig. 6: Crop modelling to characterize the crop environments and assess the value of physiological traits in target environments.

Similar content being viewed by others

References

  1. Sinclair, T. R., Tanner, C. B. & Bennett, J. M. Water-use efficiency in crop production. BioScience 34, 36–40 (1984).

    Article  Google Scholar 

  2. Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Yang, Y., Liu, D. L., Anwar, M. R., Zuo, H. & Yang, Y. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiarid environment. Theor. Appl. Climatol. 115, 391–410 (2014).

    Article  ADS  Google Scholar 

  4. Zaman-Allah, M., Jenkinson, D. M. & Vadez, V. A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. J. Exp. Bot. 62, 4239–4252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Collins B., Chapman S., Hammer G. & Chenu K. Limiting transpiration rate in high evaporative demand conditions to improve Australian wheat productivity in silico. Plants 3 https://doi.org/10.1093/insilicoplants/diab006 (2021).

  6. Vadez, V., Kholova, J., Medina, S., Kakkera, A. & Anderberg, H. Transpiration efficiency: new insights into an old story. J. Exp. Bot. 65, 6141–6153 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Chenu, K. et al. Contribution of crop models to adaptation in wheat. Trends Plant. Sci. 22, 472–490 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Messina, C. D., Podlich, D., Dong, Z., Samples, M. & Cooper, M. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance. J. Exp. Bot. 62, 855–868 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Kholova, J., McLean, G., Vadez, V., Craufurd, P. & Hammer, G. L. Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crop. Res. 141, 38–46 (2013).

    Article  Google Scholar 

  10. Chenu, K., Deihimfard, R. & Chapman, S. C. Large-scale characterization of drought pattern: a continent-wide modelling approach applied to the Australian wheatbelt spatial and temporal trends. N. Phytol. 198, 801–820 (2013).

    Article  Google Scholar 

  11. Harrison, M., Tardieu, F., Dong, Z., Messina, C. & Hammer, G. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob. Change Biol. 20, 867–878 (2014).

    Article  ADS  Google Scholar 

  12. Hajjarpoor, A. et al. Environmental characterization and yield gap analysis to tackle genotype-by-environment-by-management interactions and map region-specific agronomic and breeding targets in groundnut. Field Crops Res. 267, 108160 (2021).

    Article  Google Scholar 

  13. Bhatnagar-Mathur, P., Vadez, V. & Sharma, K. K. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant. Cell Rep. 27, 411–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Lawlor, D. W. Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J. Exp. Bot. 64, 83–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Tardieu, F. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J. Exp. Bot. 63, 25–31 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez, D. Predicting optimum crop designs using crop models and seasonal climate forecasts. Sci. Rep. 8, 2231 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hajjarpoor, A. How process-based modeling can help plant breeding deal with G × E × M interactions. Field Crops Res. 283, 108554 (2022).

    Article  Google Scholar 

  18. Vadez, V. et al. Adaptation of grain legumes to climate change: a review. Agron. For. Sustain. Dev. 32, 31–44 (2012).

    Article  Google Scholar 

  19. Koehler, T. et al. Going underground: soil hydraulic properties impacting maize responsiveness to water deficit. Plant. Soil. 478, 43–58 (2022).

    Article  CAS  Google Scholar 

  20. Sinclair, T. & Ludlow, M. Influence of soil water supply on the plant water balance of four tropical grain legumes. Funct. Plant. Biol. 13, 329 (1986).

    Article  Google Scholar 

  21. Pellegrineschi, A. et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47, 493–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Juenger, T. E. & Verslues, P. E. Time for a drought experiment: do you know your plants’ water status? Plant. Cell 35, 10–23 (2023).

    Article  PubMed  Google Scholar 

  23. Craufurd, P. Q., Flower, D. J. & Peacock, J. M. Effect of heat and drought stress on sorghum (Sorghum bicolor). I. Panicle development and leaf appearance. Ex. Agric. 29, 61–76 (1993).

    Article  Google Scholar 

  24. Marrou, H., Vadez, V. & Sinclair, T. R. Plant survival of drought during establishment: an interspecific comparison of five grain legumes. Crop. Sci. 55, 1264–1273 (2015).

    Article  Google Scholar 

  25. Passioura, J. Grain yield, harvest index and water use of wheat. J. Aust. Inst. Agric. Sci. 43, 117–120 (1977).

    Google Scholar 

  26. Vadez, V., Kholova, J., Yadav, R. S. & Hash, C. T. Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant. Soil. 371, 447–462 (2013).

    Article  CAS  Google Scholar 

  27. Borrell, A. K. et al. Stay‐green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. N. Phytol. 203, 817–830 (2014).

    Article  Google Scholar 

  28. Messina, C. D. et al. Limited-transpiration trait may increase maize drought tolerance in the US corn belt. Agron. J. 107, 1978–1986 (2015).

    Article  CAS  Google Scholar 

  29. Borrell, A. K. et al. Genetic modification of PIN genes induces causal mechanisms of stay-green drought adaptation phenotype. J. Exp. Bot. 73, 6711–6726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kashiwagi, J. et al. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146, 213–222 (2005).

    Article  Google Scholar 

  31. Wang, Y. et al. Reducing basal nitrogen rate to improve maize seedling growth, water and nitrogen use efficiencies under drought stress by optimizing root morphology and distribution. Agric. Water Manag. 212, 328–337 (2019).

    Article  Google Scholar 

  32. Soltani, A., Ghassemi-Golezani, K., Khooie, F. R. & Moghaddam, M. A simple model for chickpea growth and yield. Field Crop. Res. 62, 213–224 (1999).

    Article  Google Scholar 

  33. Sujariya, S., Jongdee, B. & Fukai, S. Estimation of flowering time and its effect on grain yield of photoperiod sensitive varieties in rainfed lowland rice in northeast Thailand. Field Crop. Res. 302, 109075 (2023).

    Article  Google Scholar 

  34. Monkham, T. et al. Genotypic variation in grain yield and flowering pattern in terminal and intermittent drought screening methods in rainfed lowland rice. Field Crop. Res. 175, 26–36 (2015).

    Article  Google Scholar 

  35. Bidinger, F., Mahalakshmi, V. & Rao, G. Assessment of drought resistance in pearl-millet [Pennisetum americanum (l) Leeke]. 1. Factors affecting yields under stress. Aust. J. Agric. Res. 38, 37–48 (1987).

    Article  Google Scholar 

  36. Kouressy, M., Dingkuhn, M., Vaksmann, M. & Heinemann, A. B. Adaptation to diverse semi-arid environments of sorghum genotypes having different plant type and sensitivity to photoperiod. Agric. For. Meteorol. 148, 357–371 (2008).

    Article  ADS  Google Scholar 

  37. Nord, E. A. & Lynch, J. P. Delayed reproduction in Arabidopsis thaliana improves fitness in soil with suboptimal phosphorus availability. Plant. Cell Environ. 31, 1432–1441 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Beggi, F., Falalou, H., Buerkert, A. & Vadez, V. Tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) varieties to low soil P have higher transpiration efficiency and lower flowering delay than sensitive ones. Plant. Soil. 389, 89–108 (2015).

    Article  CAS  Google Scholar 

  39. Costa, W. A. J. M. D., Dennett, M. D., Ratnaweera, U. & Nyalemegbe, K. Effects of different water regimes on field-grown determinate and indeterminate faba bean (Vicia faba L.). I. Canopy growth and biomass production. Field Crop. Res. 49, 83–93 (1997).

    Article  Google Scholar 

  40. Van Oosterom, E. J., Weltzien, E., Yadav, O. P. & Bidinger, F. R. Grain yield components of pearl millet under optimum conditions can be used to identify germplasm with adaptation to arid zones. Field Crop. Res. 96, 407–421 (2006).

    Article  Google Scholar 

  41. Dodsworth, S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev. Biol. 336, 1–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Chang, W., Guo, Y., Zhang, H., Liu, X. & Guo, L. Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Front. Ecol. Evol. 8, 89 (2020).

    Article  ADS  Google Scholar 

  43. Laux, T., Mayer, K. F. X., Berger, J. & Jürgens, G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Brambilla, V., Gomez-Ariza, J., Cerise, M. & Fornara, F. The importance of being on time: regulatory networks controlling photoperiodic flowering in cereals. Front. Plant. Sci. 8, 665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gomez-Ariza, J. et al. A transcription factor coordinating internode elongation and photoperiodic signals in rice. Nat. Plants 5, 358–362 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Vicentini, G. et al. Environmental control of rice flowering time. Plant. Commun. 4, 100610 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim, S.-R. et al. Loss-of-function alleles of heading date 1 (Hd1) are associated with adaptation of temperate japonica rice plants to the tropical region. Front. Plant. Sci. 9, 1827 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Komiya, R., Yokoi, S. & Shimamoto, K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443–3450 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Liang, Y. et al. Zm MADS 69 functions as a flowering activator through the ZmRap2.7‐ZCN 8 regulatory module and contributes to maize flowering time adaptation. N. Phytol. 221, 2335–2347 (2019).

    Article  CAS  Google Scholar 

  51. Campoli, C., Shtaya, M., Davis, S. J. & von Korff, M. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant. Biol. 12, 97 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Du, H. et al. Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice. Mol. Plant. 11, 584–597 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Galbiati, F. et al. Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice: integration of drought and photoperiod in rice. Plant Cell Environ. 39, 1982–1993 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, L., Marguerit, E., Rossdeutsch, L., Ollat, N. & Gambetta, G. A. The influence of grapevine rootstocks on scion growth and drought resistance. Theor. And. Exp. Plant. Physiol. 28, 143–157 (2016).

    Article  Google Scholar 

  55. Lin, F. et al. GF14f gene is negatively associated with yield and grain chalkiness under rice ratooning. Front. Plant. Sci. 14, 1112146 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration — Guidelines for Computing Crop Water Requirements — FAO Irrigation and Drainage Paper 56 (Food and Agriculture Organization of the United Nations, 1998).

  57. Halilou, O. et al. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.). Field Crop. Res. 199, 42–51 (2016).

    Article  Google Scholar 

  58. Vadez, V. et al. Transpiration efficiency: insights from comparisons of C-4 cereal species. J. Exp. Bot. 72, 5221–5234 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reymond, M., Muller, B., Leonardi, A., Charcosset, A. & Tardieu, F. Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant. Physiol. 131, 664–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parent, B. et al. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant. Physiol. 149, 2000–2012 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ehlert, C., Maurel, C., Tardieu, F. & Simonneau, T. Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant. Physiol. 150, 1093–1104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pantin, F., Simonneau, T., Rolland, G., Dauzat, M. & Muller, B. Control of leaf expansion: a developmental switch from metabolics to hydraulics. Plant. Physiol. 156, 803–815 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martre, P. et al. Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant. Physiol. 130, 2101–2110 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding, L. et al. Modification of the expression of the aquaporin ZmPIP2;5 affects water relations and plant growth. Plant. Physiol. 182, 2154–2165 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, Y. & Cosgrove, D. J. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J. Exp. Bot. 51, 1543–1553 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Welcker, C. et al. A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait loci and introgression lines of maize. Plant. Physiol. 157, 718–729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dignat, G., Welcker, C., Sawkins, M., Ribaut, J. M. & Tardieu, F. The growths of leaves, shoots, roots and reproductive organs partly share their genetic control in maize plants: common QTLs for growth of different organs. Plant. Cell Env. 36, 1105–1119 (2013).

    Article  CAS  Google Scholar 

  68. Cairns, J. E. et al. Investigating early vigour in upland rice (Oryza sativa L.): part II. Identification of QTLs controlling early vigour under greenhouse and field conditions. Field Crop. Res. 113, 207–217 (2009).

    Article  Google Scholar 

  69. Condon, A. G., Richards, R. A., Rebetzke, G. J. & Farquhar, G. D. Breeding for high water-use efficiency. J. Exp. Bot. 55, 2447–2460 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Rebetzke, G. & Richards, R. Genetic improvement of early vigour in wheat. Aust J. Agric. Res. 50, 291–301 (1999).

    Article  Google Scholar 

  71. Sivasakthi, K. et al. Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol. 18, 29 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. ter Steege, M. W., den Ouden, F. M., Lambers, H., Stam, P. & Peeters, A. J. M. Genetic and physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of hexaploid wheat. A quantitative trait loci analysis. Plant. Physiol. 139, 1078–1094 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rebolledo, M. C. et al. Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping. EXBOTJ 66, 5555–5566 (2015).

    Article  CAS  Google Scholar 

  74. Affortit, P. et al. Physiological and genetic control of transpiration efficiency in African rice, Oryza glaberrima Steud. J. Exp. Bot. 73, 5279–5293 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Vukasovic, S. et al. Dissecting the genetics of early vigour to design drought-adapted wheat. Front. Plant. Sci. 12, 754439 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pilloni, R. Agronomical and Physiological Study of the Response of Sorghum and Pearl Millet Crops to Higher Sowing Density in the Semi-arid Tropics. Assessemnt of the Opportunity for Sustainable Intensification and Consequence for the Transpiration Response to Evaporative Demand of the Crops. PhD thesis, Univ. de Montpellier (2022).

  77. Singh, V., Van Oosterom, E. J., Jordan, D. R. & Hammer, G. L. Genetic control of nodal root angle in sorghum and its implications on water extraction. Eur. J. Agron. 42, 3–10 (2012).

    Article  Google Scholar 

  78. Grondin, A. et al. Aquaporins are main contributors to root hydraulic conductivity in pearl millet [Pennisetum glaucum (L) R. Br.]. PLoS ONE 15, e0233481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kashiwagi, J., Krishnamurthy, L., Crouch, J. H. & Serraj, R. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crop. Res. 95, 171–181 (2006).

    Article  Google Scholar 

  80. Manschadi, A. M., Christopher, J., deVoil, P. & Hammer, G. L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct. Plant. Biol. 33, 823 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Lynch, J. P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Botany 112, 347–357 (2013).

    Article  CAS  Google Scholar 

  82. Klein, S. P., Schneider, H. M., Perkins, A. C., Brown, K. M. & Lynch, J. P. Multiple integrated root phenotypes are associated with improved drought tolerance. Plant Physiol. 83, 1011–1025 (2020).

    Article  Google Scholar 

  83. Lynch, J. P. Rightsizing root phenotypes for drought resistance. J. Exp. Bot. 69, 3279–3292 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Schneider, R. et al. Restoring soil health to reduce irrigation demand and buffer the impacts of drought. Front. Agric. Sci. Eng. 7, 339–346 (2020).

    Article  Google Scholar 

  85. Menge, D. M., Kano‐Nakata, M., Yamauchi, A., Suralta, R. R. & Makihara, D. Root and shoot responses of upland new rice for Africa varieties to fluctuating soil moisture conditions as affected by different levels of nitrogen fertilization. J. Agron. Crop. Sci. 206, 322–337 (2020).

    Article  CAS  Google Scholar 

  86. Uga, Y., Okuno, K. & Yano, M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J. Exp. Bot. 62, 2485–2494 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Guseman, J. M., Webb, K., Srinivasan, C. & Dardick, C. DRO 1 influences root system architecture in Arabidopsis and Prunus species. Plant. J. 89, 1093–1105 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Feng, X. et al. ABA‐inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant. Biotechnol. J. 20, 2077–2088 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ogura, T. et al. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell 178, 400–412.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Kirschner, G. K. et al. ENHANCED GRAVITROPISM 2 encodes a STERILE ALPHA MOTIF-containing protein that controls root growth angle in barley and wheat. Proc. Natl Acad. Sci. USA 118, e2101526118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fusi, R. et al. Root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism. Proc. Natl Acad. Sci. USA 119, e2201350119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schneider, H. M. et al. Transcription factor bHLH121 regulates root cortical aerenchyma formation in maize. Proc. Natl Acad. Sci. USA 120, e2219668120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kawai, T. et al. WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proc. Natl Acad. Sci. USA 119, e2101846119 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Scharwies, J. D. & Dinneny, J. R. Water transport, perception, and response in plants. J. Plant. Res. 132, 311–324 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Maurel, C. & Nacry, P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat. Plants 6, 744–749 (2020).

    Article  PubMed  Google Scholar 

  96. Rishmawi, L. et al. Natural variation of maize root hydraulic architecture underlies highly diverse water uptake capacities. Plant. Physiol. 192, 2404–2418 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maurel, C., Simonneau, T. & Sutka, M. The significance of roots as hydraulic rheostats. J. Exp. Bot. 61, 3191–3198 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Tsuda, M. & Tyree, M. T. Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J. Exp. Bot. 51, 823–828 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Tharanya, M. et al. Pearl millet (Pennisetum glaucum) contrasting for the transpiration response to vapour pressure deficit also differ in their dependence on the symplastic and apoplastic water transport pathways. Funct. Plant. Biol. 45, 719–736 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Calvo‐Polanco, M. et al. Physiological roles of Casparian strips and suberin in the transport of water and solutes. N. Phytol. 232, 2295–2307 (2021).

    Article  Google Scholar 

  101. Burridge, J. D., Grondin, A. & Vadez, V. Optimizing crop water use for drought and climate change adaptation requires a multi-scale approach. Front. Plant Sci. 13, 824720 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ding, L. et al. The plasma membrane aquaporin ZmPIP2;5 enhances the sensitivity of stomatal closure to water deficit. Plant. Cell Environ. 45, 1146–1156 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Augstein, F. & Carlsbecker, A. Getting to the roots: a developmental genetic view of root anatomy and function from arabidopsis to lycophytes. Front. Plant. Sci. 9, 1410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ramachandran, P., Wang, G., Augstein, F., de Vries, J. & Carlsbecker, A. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development 145, dev159202 (2018).

    Article  PubMed  Google Scholar 

  105. Richards, R. & Passioura, J. A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain-yield in rain-fed environments. Aust. J. Agric. Res. 40, 943–950 (1989).

    Article  Google Scholar 

  106. Passioura, J. B. The meaning of matric potential. J. Exp. Bot. 31, 1161–1169 (1980).

    Article  Google Scholar 

  107. Carminati, A., Vetterlein, D., Weller, U., Vogel, H.-J. & Oswald, S. E. When roots lose contact. Vadose Zone J. 8, 805–809 (2009).

    Article  Google Scholar 

  108. Cai, G., Ahmed, M. A., Abdalla, M. & Carminati, A. Root hydraulic phenotypes impacting water uptake in drying soils. Plant. Cell Environ. 45, 650–663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Affortit, P. et al. Keep in touch: the soil–root hydraulic continuum and its role in drought resistance in crops. J. Exp. Bot. erad312 https://doi.org/10.1093/jxb/erad312 (2023).

  110. Carminati, A. et al. Root hairs enable high transpiration rates in drying soils. N. Phytol. 216, 771–781 (2017).

    Article  CAS  Google Scholar 

  111. Marin, M. et al. Significance of root hairs for plant performance under contrasting field conditions and water deficit. Ann. Botany 128, 1–16 (2021).

    Article  CAS  Google Scholar 

  112. Duddek, P. et al. The impact of drought-induced root and root hair shrinkage on root–soil contact. Plant. Physiol. 189, 1232–1236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kohli, P. S., Maurya, K., Thakur, J. K., Bhosale, R. & Giri, J. Significance of root hairs in developing stress‐resilient plants for sustainable crop production. Plant. Cell Environ. 45, 677–694 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Sandhu, N. et al. Traits and QTLs for development of dry direct-seeded rainfed rice varieties. J. Exp. Bot. 66, 225–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Horn, R., Wingen, L. U., Snape, J. W. & Dolan, L. Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components. J. Exp. Bot. 67, 4535–4543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Duan, S. et al. A natural non‐synonymous single nucleotide polymorphism in GmbHLH113 negates its inhibitory effect on root hair elongation in soybean. Plant J. 115, 742–757 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Moreno-Espíndola, I. P., Rivera-Becerril, F., de Jesús Ferrara-Guerrero, M. & De León-González, F. Role of root-hairs and hyphae in adhesion of sand particles. Soil. Biol. Biochem. 39, 2520–2526 (2007).

    Article  Google Scholar 

  118. North, G. B. & Nobel, P. S. Root–soil contact for the desert succulent Agave deserti in wet and drying soil. N. Phytol. 135, 21–29 (1997).

    Article  CAS  Google Scholar 

  119. Rabbi, S. M. F., Tighe, M. K., Knox, O. & Young, I. M. The impact of carbon addition on the organisation of rhizosheath of chickpea. Sci. Rep. 8, 18028 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, T. et al. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. J. Integr. Plant. Biol. 61, 449–462 (2019).

    Article  PubMed  Google Scholar 

  121. de la Fuente Cantó, C. et al. Genetic control of rhizosheath formation in pearl millet. Sci. Rep. 12, 9205 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  122. Pauwels, R., Graefe, J. & Bitterlich, M. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. Mycorrhiza 33, 165–179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sadras, V. O. & Angus, J. F. Benchmarking water-use efficiency of rainfed wheat in dry environments. Aust. J. Agric. Res. 57, 847–856 (2006).

    Article  Google Scholar 

  124. Kirkegaard, J. A., Lilley, J. M., Howe, G. N. & Graham, J. M. Impact of subsoil water use on wheat yield. Aust. J. Agric. Res. 58, 303 (2007).

    Article  Google Scholar 

  125. Slewinski, T. L. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. J. Exp. Bot. 63, 4647–4670 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Talbert, L. E., Lanning, S. P., Murphy, R. L. & Martin, J. M. Grain fill duration in twelve hard red spring wheat crosses: genetic variation and association with other agronomic traits. Crop. Sci. 41, 1390–1395 (2001).

    Article  Google Scholar 

  127. Gasura, E., Setimela, P., Edema, R., Gibson, P. T., Okori, P. & Tarekegne, A. M. Exploiting grain-filling rate and effective grain-filling duration to improve grain yield of early-maturing maize. Crop Sci. 53, 2295–2303 (1999).

    Article  Google Scholar 

  128. Mwanamwenge, J., Loss, S. P., Siddique, K. H. M. & Cocks, P. S. Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean (Vicia faba L.). Eur. J. Agron. 11, 1–11 (1999).

    Article  Google Scholar 

  129. Cruz, R. & Otoole, J. Dryland rice response to an irrigation gradient at flowering stage. Agron. J. 76, 178–183 (1984).

    Article  Google Scholar 

  130. Aparna, K., Hash, C. T., Yadav, R. S. & Vadez, V. Seed number and 100-seed weight of pearl millet (Pennisetum glaucum L.) respond differently to low soil moisture in genotypes contrasting for drought tolerance. J. Agron. Crop Sci. 200, 119–131 (2014).

    Article  CAS  Google Scholar 

  131. Boyer, J. & Westgate, M. Grain yields with limited water. J. Exp. Bot. 55, 2385–2394 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Fuad-Hassan, A., Tardieu, F. & Turc, O. Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant. Cell Environ. 31, 1349–1360 (2008).

    Article  PubMed  Google Scholar 

  133. Turc, O., Bouteille, M., Fuad-Hassan, A., Welcker, C. & Tardieu, F. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. N. Phytol. 212, 377–388 (2016).

    Article  Google Scholar 

  134. Edmeades, G. O. et al. The role and regulation of the anthesis-silking interval in maize. In: Westgate, M. E., Boote, K. J. (eds) Physiology and modeling kernel set in maize. CSSA special publication no. 29. CSSA, Madison WI, pp. 43–73 (2000).

  135. Fletcher, A. L., Sinclair, T. R. & Allen, L. H. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environ. Exp. Botany 61, 145–151 (2007).

    Article  CAS  Google Scholar 

  136. Gholipoor, M., Prasad, P. V. V., Mutava, R. N. & Sinclair, T. R. Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crop. Res. 119, 85–90 (2010).

    Article  Google Scholar 

  137. Kholova, J. et al. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. J. Exp. Bot. 61, 1431–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schoppach, R. & Sadok, W. Differential sensitivities of transpiration to evaporative demand and soil water deficit among wheat elite cultivars indicate different strategies for drought tolerance. Environ. Exp. Bot. 84, 1–10 (2012).

    Article  Google Scholar 

  139. Sadok, W. & Sinclair, T. R. Transpiration response of ‘slow-wilting’ and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. J. Exp. Bot. 61, 821–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Reddy, P. S. et al. Molecular cloning and expression analysis of aquaporin genes in pearl millet [Pennisetum glaucum (L) R. Br.] genotypes contrasting in their transpiration response to high vapour pressure deficits. Plant. Sci. 265, 167–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Yang, Z. et al. Leveraging abscisic acid receptors for efficient water use in Arabidopsis. Proc. Natl Acad. Sci. USA 113, 6791–6796 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mega, R. et al. Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat. Plants 5, 153–159 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Thompson, A. J. et al. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant. Physiol. 143, 1905–1917 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Van Oosterom, E. J., Borrell, A. K., Deifel, K. S. & Hammer, G. L. Does increased leaf appearance rate enhance adaptation to postanthesis drought stress in sorghum? Crop. Sci. 51, 2728–2740 (2011).

    Article  Google Scholar 

  145. Kholov, J. et al. Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Funct. Plant. Biol. 41, 1019–1034 (2014).

    Article  Google Scholar 

  146. Christopher, J. T., Christopher, M. J., Borrell, A. K., Fletcher, S. & Chenu, K. Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. J. Exp. Bot. 67, 5159–5172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Trachsel, S. et al. Identification of QTL for early vigor and stay-green conferring tolerance to drought in two connected advanced backcross populations in tropical maize (Zea mays L.). PLoS ONE 11, e0149636 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Condon, A. G., Richards, R. A., Rebetzke, G. J. & Farquhar, G. D. Improving intrinsic water-use efficiency and crop yield. Crop Sci. 42, 122–131 (2002).

    PubMed  Google Scholar 

  149. Fletcher, A., Christopher, J., Hunter, M., Rebetzke, G. & Chenu, K. A low-cost method to rapidly and accurately screen for transpiration efficiency in wheat. Plant. Methods 14, 77 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Dunn, J. et al. Reduced stomatal density in bread wheat leads to increased water-use efficiency. J. Exp. Bot. 70, 4737–4748 (2019).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, S. & Qin, F. Genetic dissection of maize drought tolerance for trait improvement. Mol. Breed. 41, 8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tardieu, F. Different avenues for progress apply to drought tolerance, water use efficiency and yield in dry areas. Curr. Opin. Biotechnol. 73, 128–134 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Franks, P. J., Doheny-Adams, T. W., Britton-Harper, Z. J. & Gray, J. E. Increasing water‐use efficiency directly through genetic manipulation of stomatal density. N. Phytol. 207, 188–195 (2015).

    Article  CAS  Google Scholar 

  154. Hepworth, C., Doheny-Adams, T., Hunt, L., Cameron, D. D. & Gray, J. E. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. N. Phytol. 208, 336–341 (2015).

    Article  CAS  Google Scholar 

  155. Kumar, S. et al. Rice breeding for yield under drought has selected for longer flag leaves and lower stomatal density. J. Exp. Bot. 72, 4981–4992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kholova, J., Hash, C. T., Kakkera, A., Kocova, M. & Vadez, V. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. J. Exp. Bot. 61, 369–377 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Vadez, V., Krishnamurthy, L., Hash, C. T., Upadhyaya, H. D. & Borrell, A. K. Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop. Pasture Sci. 62, 645–655 (2011).

    Article  Google Scholar 

  158. Ryan, A. et al. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency. Plant. Sci. 251, 101–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Henry, A., Stuart-Williams, H., Dixit, S., Kumar, A. & Farquhar, G. Stomatal conductance responses to evaporative demand conferred by rice drought-yield quantitative trait locus qDTY12.1. Funct. Plant. Biol. 46, 660 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pilloni, R. et al. Higher sowing density of pearl millet increases productivity and water use efficiency in high evaporative demand seasons. Front. Plant Sci. 13, 1035181 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Yin, X. & Struik, P. C. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology. EXBOTJ 66, 6535–6549 (2015).

    Article  CAS  Google Scholar 

  162. Perez, R. P. A. et al. Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection. Plant. Cell Env. 42, 2105–2119 (2019).

    Article  CAS  Google Scholar 

  163. Coupel-Ledru, A. et al. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc. Natl Acad. Sci. USA 113, 8963–8968 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  164. Schoppach, R., Sinclair, T. R. & Sadok, W. Sleep tight and wake-up early: nocturnal transpiration traits to increase wheat drought tolerance in a Mediterranean environment. Funct. Plant. Biol. 47, 1117–1127 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Hammer, G. L. et al. Crop design for specific adaptation in variable dryland production environments. Crop. Pasture Sci. 65, 614–626 (2014).

    Article  Google Scholar 

  166. Chenu, K. et al. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant. Cell Environ. 31, 378–391 (2008).

    Article  PubMed  Google Scholar 

  167. Vadez, V., Soltani, A. & Sinclair, T. R. Modelling possible benefits of root related traits to enhance terminal drought adaptation of chickpea. Field Crop. Res. 137, 108–115 (2012).

    Article  Google Scholar 

  168. Vadez, V. et al. Mapping water stress incidence and intensity, optimal plant populations, and cultivar duration for African groundnut productivity enhancement. Front. Plant Sci. 8, 432 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Chenu, K. et al. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a ‘gene-to-phenotype’ modeling approach. Genetics 183, 1507–1523 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Millet, E. et al. Genomic prediction of maize yield across European environmental conditions. Nat. Genet. 51, 952 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Cooper, M., Technow, F., Messina, C., Gho, C. & Totir, L. R. Use of crop growth models with whole-genome prediction: application to a maize multienvironment trial. Crop Sci. 56, 2141–2156 (2016).

    Article  Google Scholar 

  172. Tardieu, F. & Parent, B. Predictable ‘meta-mechanisms’ emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms: meta-mechanisms in plant water relations. Plant, Cell Environ. 40, 846–857 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Chenu, K. in Crop Physiology. Applications for Genetic Improvement and Agronomy 2nd edn (eds Sadras, V. O. & Calderini, D. F.) 321–348 (Academic, 2015).

  174. Resende, R. T., Chenu, K., Rasmussen, S. K., Heinemann, A. B. & Fritsche-Neto, R. Editorial: enviromics in plant breeding. Front. Plant Sci 13, 935380 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Ghanem, M. E., Marrou, H., Soltani, A., Kumar, S. & Sinclair, T. R. Lentil variation in phenology and yield evaluated with a model. Agron. J. 107, 1967–1977 (2015).

    Article  CAS  Google Scholar 

  176. Collins, B. & Chenu, K. Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate. Clim. Risk Manag. 32, 100300 (2021).

    Article  Google Scholar 

  177. Rahimi-Moghaddam, S., Deihimfard, R., Nazari, M. R., Mohammadi-Ahmadmahmoudi, E. & Chenu, K. Understanding wheat growth and the seasonal climatic characteristics of major drought patterns occurring in cold dryland environments from Iran. Eur. J. Agron. 145, 126772 (2023).

    Article  Google Scholar 

  178. Cooper, M. & Messina, C. D. Can we harness ‘enviromics’ to accelerate crop improvement by integrating breeding and agronomy? Front. Plant Sci. 12, 735143 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Pauli, D. et al. The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiol. 172, 622–634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Schwalbert, R. et al. Mid-season county-level corn yield forecast for US corn belt integrating satellite imagery and weather variables. Crop Sci. 60, 739–750 (2020).

    Article  Google Scholar 

  181. Smith, D. T., Potgieter, A. B. & Chapman, S. C. Scaling up high-throughput phenotyping for abiotic stress selection in the field. Theor. Appl. Genet. 134, 1845–1866 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Yang, Y. et al. High-resolution spatially explicit land surface model calibration using field-scale satellite-based daily evapotranspiration product. J. Hydrol. 596, 125730 (2021).

    Article  Google Scholar 

  183. Martre, P., He, J., Le Gouis, J. & Semenov, M. A. In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. J. Exp. Bot. 66, 3581–3598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Casadebaig, P. et al. Assessment of the potential impacts of wheat plant traits across environments by combining crop modeling and global sensitivity analysis. PLoS ONE 11, 1–27 (2016).

    Article  Google Scholar 

  185. Bustos-Korts, D. et al. Combining crop growth modeling and statistical genetic modeling to evaluate phenotyping strategies. Front. Plant Sci. 10, 1491 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Sinclair, T. R., Hammer, G. L. & Van Oosterom, E. J. Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct. Plant. Biol. 32, 945 (2005).

    Article  PubMed  Google Scholar 

  187. Sinclair, T. R., Messina, C. D., Beatty, A. & Samples, M. Assessment across the United States of the benefits of altered soybean drought traits. Agron. J. 102, 475–482 (2010).

    Article  Google Scholar 

  188. Flohr, B. M., Hunt, J. R., Kirkegaard, J. A. & Evans, J. R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crop Res. 209, 108–119 (2017).

    Article  Google Scholar 

  189. Flohr, B. M. et al. Fast winter wheat phenology can stabilise flowering date and maximise grain yield in semi-arid Mediterranean and temperate environments. Field Crop Res. 223, 12–25 (2018).

    Article  Google Scholar 

  190. Prado, S. et al. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant. Cell Environ. 41, 314–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Cooper, M. et al. Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci. 65, 311–336 (2014).

    Article  CAS  Google Scholar 

  192. Ly, D. et al. Whole-genome prediction of reaction norms to environmental stress in bread wheat (Triticum aestivum L.) by genomic random regression. Field Crop. Res. 216, 32–41 (2018).

    Article  Google Scholar 

  193. Rincent, R. et al. Using crop growth model stress covariates and AMMI decomposition to better predict genotype-by-environment interactions. Theor. Appl. Genet. 132, 3399–3411 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Technow, F., Messina, C. D., Totir, L. R. & Cooper, M. Integrating crop growth models with whole genome prediction through approximate bayesian computation. PLoS ONE 10, e0130855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Robert, P., Le Gouis, J., Rincent, R. & The BreedWheat Consortium. Combining crop growth modeling with trait-assisted prediction improved the prediction of genotype by environment interactions. Front. Plant. Sci. 11, 827 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Welcker, C. et al. Physiological adaptive traits are a potential allele reservoir for maize genetic progress under challenging conditions. Nat. Commun. 13, 3225 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  197. Halilou, O., Hamidou, F., Taya, B. K., Mahamane, S. & Vadez, V. Water use, transpiration efficiency and yield in cowpea (Vigna unguiculata) and peanut (Arachis hypogaea) across water regimes. Crop. Pasture Sci. 66, 715–728 (2015).

    Article  CAS  Google Scholar 

  198. Holzworth, D. P. et al. Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327–350 (2014).

    Article  Google Scholar 

  199. Veyradier M., Christopher J. & Chenu K. in Proc. 7th Int. Conf. Functional-Structural Plant Models (eds Sievänen, R., Nikinmaa, E., Godin, C., Lintunen, A. & Nygren P.) 317–319 (2013).

Download references

Acknowledgements

V.V. was supported by the Make Our Planet Great Again (MOPGA) ICARUS project (Improve Crops in Arid Regions and future climates) funded by the Agence Nationale de la Recherche (ANR) (grant ANR-17-MPGA-0011), by the Occitanie Region through a financial contribution to grant ANR-17-MPGA-0011 and by Montpellier University of Excellence (I-Site MUSE). A.G. acknowledges support from the Agence National de la Recherche (PlastiMil grant ANR-20-CE20-0016). A.H. acknowledges support from the Bill and Melinda Gates Foundation projects ‘Stress tolerant rice for Africa and South Asia’ and ‘PlantDirect - Dry Direct Seeded Rice for the Indo-Gangetic Plains of India’. K.C. acknowledges support from the Australian Research Council (ARC Linkage Project LP210200723) and The University of Queensland. L.L. acknowledges support from the Agence National de la Recherche (SorDrought grant ANR-23-CE20-0052).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Vincent Vadez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Cara Griffiths, Enli Wang, who co-reviewed with Die He, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadez, V., Grondin, A., Chenu, K. et al. Crop traits and production under drought. Nat Rev Earth Environ 5, 211–225 (2024). https://doi.org/10.1038/s43017-023-00514-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00514-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing