Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustainable pathways towards universal renewable electricity access in Africa

Abstract

Half of the African population currently lacks the minimum levels of electricity access defined by the International Energy Agency. However, given the limited fossil fuel dependency and need for energy infrastructure expansion, there are expectations that at least some African countries could avoid fossil fuel dependency altogether and move directly to renewable energy (RE)-based electricity systems. In this Perspective, we present trends in Africa’s RE development and access on a national level and discuss the respective country-specific capacities to lead the transition to sustainable RE for all. If all existing wind, solar and hydropower plants operate on full capacity and all proposed plants are implemented, 76% (1,225 TWh) of electricity needs projected for 2040 (a total of 1,614 TWh) could be met by RE (82% hydropower, 11% solar power and 7% wind power). Hydropower has been the main RE resource to date, but declining costs for solar photovoltaics (90% decline since 2009) and wind turbines (55–60% decline since 2010) mean solar and wind have potential to lead sustainable RE pathways going forward, while also protecting freshwater ecosystems. Efficiently combining the advantages of hydropower with wind and solar will be a more sustainable alternative to hydropower alone. As resource potential differs among countries, transnational electricity sharing is recommended to distribute resources and share nationally produced peak capacity. Comprehensive investigations should further assess and monitor socioeconomic, political and ecological impacts of RE development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of renewable energy implementation in Africa.
Fig. 2: Existing renewable power plants and the share of renewable electricity generation.
Fig. 3: Existing and proposed renewable power plants by capacity size.
Fig. 4: Coverage of current and projected electricity demand by renewable energy.
Fig. 5: Optimization of renewable energy systems in long-term system-scale planning.

Similar content being viewed by others

Data availability

Data on renewable power plants was used from the RePP Africa database, available at https://doi.org/10.6084/m9.figshare.c.6058565.v1.

References

  1. UN Department of Economic and Social Affairs: Population Division. World Population Prospects 2022. https://population.un.org/wpp/ (2022).

  2. IEA. World Energy Outlook 2022. https://www.iea.org/reports/world-energy-outlook-2022 (2022).

  3. IEA. Africa Energy Outlook 2022. https://www.iea.org/reports/africa-energy-outlook-2022 (2022).

  4. IRENA. Renewable Capacity Statistics 2022. https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022 (2022).

  5. UN. Transforming our world: the 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda (2016).

  6. van der Zwaan, B., Kober, T., Longa, F. D., van der Laan, A. & Jan Kramer, G. An integrated assessment of pathways for low-carbon development in Africa. Energy Policy 117, 387–395 (2018).

    Article  Google Scholar 

  7. Ram, M. et al. Global energy transition to 100% renewables by 2050: not fiction, but much needed impetus for developing economies to leapfrog into a sustainable future. Energy 246, 123419 (2022).

    Article  Google Scholar 

  8. Batinge, B., Musango, J. K. & Brent, A. C. Leapfrogging to renewable energy: the opportunity for unmet electricity markets. S. Afr. J. Ind. Eng. 28, 32–49 (2017).

    Google Scholar 

  9. Barasa, M., Bogdanov, D., Oyewo, A. S. & Breyer, C. A cost optimal resolution for sub-Saharan Africa powered by 100% renewables in 2030. Renew. Sustain. Energy Rev. 92, 440–457 (2018).

    Article  Google Scholar 

  10. IRENA. Towards a Prosperous and Sustainable Africa. https://www.irena.org/publications/2022/Feb/Towards-a-prosperous-and-sustainable-Africa (2022).

  11. Adams, S., Klobodu, E. K. M. & Apio, A. Renewable and non-renewable energy, regime type and economic growth. Renew. Energy 125, 755–767 (2018).

    Article  Google Scholar 

  12. Lema, R., Bhamidipati, P. L., Gregersen, C., Hansen, U. E. & Kirchherr, J. China’s investments in renewable energy in Africa: creating co-benefits or just cashing-in? World Dev. 141, 105365 (2021).

    Article  Google Scholar 

  13. Ram, M., Aghahosseini, A. & Breyer, C. Job creation during the global energy transition towards 100% renewable power system by 2050. Technol. Forecast. Soc. Change 151, 119682 (2020).

    Article  Google Scholar 

  14. Tiba, S. & Belaid, F. Modeling the nexus between sustainable development and renewable energy: the African perspectives. J. Econ. Surv. 35, 307–329 (2021).

    Article  Google Scholar 

  15. Sterl, S., Shirley, R., Dortch, R., Guan, M. & Turner, A. A path across the rift. World Resources Institute https://www.wri.org/research/path-rift-informing-african-energy-transitions-unearthing-critical-questions (2023).

  16. Ritchie, H., Roser, M. & Rosado, P. Energy. Our World in Data https://ourworldindata.org/energy (2020).

  17. Mulugetta, Y. et al. Africa needs context-relevant evidence to shape its clean energy future. Nat. Energy 7, 1015–1022 (2022).

    Article  ADS  Google Scholar 

  18. Li, H. et al. A review of scenario analysis methods in planning and operation of modern power systems: methodologies, applications, and challenges. Electr. Power Syst. Res. 205, 107722 (2022).

    Article  Google Scholar 

  19. Carlino, A. et al. Climate change and the declining cost of solar power curb the need for hydropower expansion in Africa. Science 381, eadf5848 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. O’Brien, G. C. et al. The nature of our mistakes, from promise to practice: water stewardship for sustainable hydropower in sub-Saharan Africa. River Res. Appl. 37, 1538–1547 (2021).

    Article  Google Scholar 

  21. Opperman, J. J. et al. Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.1036653 (2023).

    Article  Google Scholar 

  22. Schiermeier, Q. Europe is demolishing its dams to restore ecosystems. Nature 557, 290–292 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Wan, W., Zhao, J., Popat, E., Herbert, C. & Döll, P. Analyzing the impact of streamflow drought on hydroelectricity production: a global-scale study. Water Resour. Res. 57, 4 (2021).

    Article  Google Scholar 

  25. Kumar, K. & Saini, R. P. A review on operation and maintenance of hydropower plants. Sustain. Energy Technol. Assess. 49, 101704 (2022).

    Google Scholar 

  26. Peters, R. et al. Integrated impact assessment for sustainable hydropower planning in the Vjosa catchment (Greece, Albania). Sustain. 13, 1514 (2021).

    Article  Google Scholar 

  27. Sterl, S. et al. Smart renewable electricity portfolios in West Africa. Nat. Sustain. 3, 710–719 (2020).

    Article  Google Scholar 

  28. Solomon, A. A., Child, M., Caldera, U. & Breyer, C. Exploiting wind-solar resource complementarity to reduce energy storage need. AIMS Energy 8, 749–770 (2020).

    Article  Google Scholar 

  29. Sterl, S. A grid for all seasons: enhancing the integration of variable solar and wind power in electricity systems across Africa. Curr. Sustain. Energy Rep. 8, 274–281 (2021).

    Article  Google Scholar 

  30. McCluskey, A., Strzepek, K. M. & Rose, A. Electricity trade impacts on regional power pools in sub-Saharan Africa. Renew. Energy Focus 41, 33–54 (2022).

    Article  Google Scholar 

  31. Llamosas, C. & Sovacool, B. K. The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams. Renew. Sustain. Energy Rev. 137, 110495 (2021).

    Article  Google Scholar 

  32. Gonzalez, J. M. et al. Quantifying cooperation benefits for new dams in transboundary water systems without formal operating rules. Front. Environ. Sci. 9, 596612 (2021).

    Article  Google Scholar 

  33. African Union. Agenda 2063: the Africa we want. https://au.int/Agenda2063/popular_version (2015).

  34. ESMAP. Regulatory Indicators for Sustainable Energy (RISE) 2022: building resilience. https://esmap.org/RISE_2022_report (2022).

  35. Dagnachew, A. G., Hof, A. F., Roelfsema, M. R. & van Vuuren, D. P. Actors and governance in the transition toward universal electricity access in sub-Saharan Africa. Energy Policy 143, 111572 (2020).

    Article  Google Scholar 

  36. IEA. World Energy Outlook 2021. https://www.iea.org/reports/world-energy-outlook-2021 (2021).

  37. Ulsrud, K. Access to electricity for all and the role of decentralized solar power in sub-Saharan Africa. Nor. Geogr. Tidsskr. J. Geogr. 74, 54–63 (2020).

    Article  Google Scholar 

  38. Peters, R., Berlekamp, J., Tockner, K. & Zarfl, C. RePP Africa — a georeferenced and curated database on existing and proposed wind, solar, and hydropower plants. Sci. Data 10, 16 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schulz, C. & Adams, W. M. Debating dams: the World Commission on Dams 20 years on. Wiley Interdiscip. Rev. Water https://doi.org/10.1002/wat2.1369 (2019).

    Article  Google Scholar 

  40. Thieme, M. L. et al. Navigating trade-offs between dams and river conservation. Glob. Sustain. 4, e17 (2021).

    Article  Google Scholar 

  41. Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., Bejarano, M. D. & Garrote, L. Ecological impacts of run-of-river hydropower plants — current status and future prospects on the brink of energy transition. Renew. Sustain. Energy Rev. 142, 110833 (2021).

    Article  Google Scholar 

  42. IEA, IRENA, UNSD, World Bank, WHO. Tracking SDG7: the Energy Progress Report 2021. https://www.iea.org/reports/tracking-sdg7-the-energy-progress-report-2021 (2021).

  43. Cole, M. A., Elliott, R. J. R. & Strobl, E. Climate change, hydro-dependency, and the African dam boom. World Dev. 60, 84–98 (2014).

    Article  Google Scholar 

  44. Timilsina, G. R. Are renewable energy technologies cost competitive for electricity generation? Renew. Energy 180, 658–672 (2021).

    Article  Google Scholar 

  45. Danso, D. K., François, B., Hingray, B. & Diedhiou, A. Assessing hydropower flexibility for integrating solar and wind energy in West Africa using dynamic programming and sensitivity analysis. Illustration with the Akosombo reservoir, Ghana. J. Clean. Prod. 287, 125559 (2021).

    Article  Google Scholar 

  46. Adenle, A. A. Assessment of solar energy technologies in Africa — opportunities and challenges in meeting the 2030 agenda and sustainable development goals. Energy Policy 137, 111180 (2020).

    Article  Google Scholar 

  47. Ouedraogo, N. S. Opportunities, barriers and issues with renewable energy development in Africa: a comprehensible review. Curr. Sustain. Energy Rep. 6, 52–60 (2019).

    Article  Google Scholar 

  48. IRENA. Renewable Energy Market Analysis: Africa and Its Regions. https://www.irena.org/publications/2022/Jan/Renewable-Energy-Market-Analysis-Africa (2022).

  49. Brautigam, D. & Hwang, J. Great walls over African rivers: Chinese engagement in African hydropower projects. Dev. Policy Rev. 37, 313–330 (2019).

    Article  Google Scholar 

  50. Tan-Mullins, M., Urban, F. & Mang, G. Evaluating the behaviour of Chinese stakeholders engaged in large hydropower projects in Asia and Africa. China Q. 230, 464–488 (2017).

    Article  Google Scholar 

  51. African Development Bank. Africa To Africa Investment — a first look. https://www.afdb.org/fileadmin/uploads/afdb/Documents/Generic-Documents/Africa-To-Africa_Investment-A_First_Look.pdf (2018).

  52. Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Thieme, M. L. et al. Dams and protected areas: quantifying the spatial and temporal extent of global dam construction within protected areas. Conserv. Lett. 13, e12719 (2020).

    Article  Google Scholar 

  54. Falchetta, G., Gernaat, D. E. H. J., Hunt, J. & Sterl, S. Hydropower dependency and climate change in sub-Saharan Africa: a nexus framework and evidence-based review. J. Clean. Prod. 231, 1399–1417 (2019).

    Article  Google Scholar 

  55. van Vliet, M. T. H. et al. Multi-model assessment of global hydropower and cooling water discharge potential under climate change. Glob. Environ. Change 40, 156–170 (2016).

    Article  Google Scholar 

  56. Gernaat, D. et al. Climate change impacts on renewable energy supply. Nat. Clim. Change 11, 2 (2021).

    Google Scholar 

  57. Turner, S. W. D., Hejazi, M., Kim, S. H., Clarke, L. & Edmonds, J. Climate impacts on hydropower and consequences for global electricity supply investment needs. Energy 141, 2081–2090 (2017).

    Article  Google Scholar 

  58. Bartle, A. Hydropower potential and development activities. Energy Policy 30, 1231–1239 (2002).

    Article  Google Scholar 

  59. Zhang, X. et al. Impacts of climate change, policy and water-energy-food nexus on hydropower development. Renew. Energy 116, 827–834 (2018).

    Article  ADS  Google Scholar 

  60. Du Venage, G. South Africa comes to standstill with Eskom’s load shedding. Eng. Min. J. 221, 18 (2020).

    Google Scholar 

  61. Madiba, T. et al. Under-frequency load shedding of microgrid systems: a review. Int. J. Model. Simul. 42, 653–679 (2022).

    Article  Google Scholar 

  62. Butgereit, L. An algorithm for measuring relative anger at Eskom during load-shedding using Twitter. In Proc. 2015 12th IEEE Africon International ConferenceGreen Innovation for African Renaissance (AFRICON) (2015).

  63. Anfom, K., Xioyang, X., Adu, D. & Darko, R. O. The state of energy in sub-Saharan Africa and the urgency for small hydropower development. Energy Rep. 9, 257–261 (2023).

    Article  Google Scholar 

  64. Alova, G., Trotter, P. A. & Money, A. A machine learning approach to predicting Africa’s electricity mix based on planned power plants and their chances of success. Nat. Energy 6, 158–166 (2021).

    Article  ADS  Google Scholar 

  65. Climate Action Tracker. Natural gas in Africa: why fossil fuels cannot sustainably meet the continent’s growing energy demand. https://climateactiontracker.org/publications/natural-gas-in-africa-why-fossil-fuels-cannot-sustainably-meet-the-continents-growing-energy-demand/ (2022).

  66. African Development Bank. Catalyzing growth and development through effective natural resources management. https://www.afdb.org/fileadmin/uploads/afdb/Documents/Publications/anrc/AfDB_ANRC_BROCHURE_en.pdf (2016).

  67. World Bank. The growing role of minerals and metals for a low carbon future. http://documents1.worldbank.org/curated/en/207371500386458722/pdf/117581-WP-P159838-PUBLIC-ClimateSmartMiningJuly.pdf (2017).

  68. Ericsson, M., Löf, O. & Löf, A. Chinese control over African and global mining — past, present and future. Miner. Econ. 33, 153–181 (2020).

    Article  Google Scholar 

  69. Hilson, G. Why is there a large-scale mining ‘bias’ in sub-Saharan Africa? Land Use Policy 81, 852–861 (2019).

    Article  Google Scholar 

  70. Yakovleva, N., Kotilainen, J. & Toivakka, M. Reflections on the opportunities for mining companies to contribute to the United Nations Sustainable Development Goals in sub-Saharan Africa. Extr. Ind. Soc. 4, 426–433 (2017).

    Google Scholar 

  71. Kuschminder, J., Bliss, M., & Kasanga, C. IGF Mining Policy Framework Assessment: Rwanda. https://www.iisd.org/system/files/publications/rwanda-mining-policy-framework-assessment-en.pdf (2017).

  72. Andreoni, A. in The Quality of Growth in Africa (eds Kanbur, R. et al.) 264–294 (Columbia Univ. Press, 2019).

  73. Porgo, M. & Gokyay, O. Environmental impacts of gold mining in Essakane site of Burkina Faso. Hum. Ecol. Risk Assess. Int. J. 23, 641–654 (2017).

    Article  CAS  Google Scholar 

  74. de Bruin, S. P., Schmeier, S., van Beek, R. & Gulpen, M. Projecting conflict risk in transboundary river basins by 2050 following different ambition scenarios. Int. J. Water Resour. Dev. 1, 26 (2023).

    Google Scholar 

  75. IRENA. The Renewable Energy Transition in Africa — Powering Access, Resilience and Prosperity. https://www.irena.org/publications/2021/March/The-Renewable-Energy-Transition-in-Africa (2020).

  76. Jacobson, M. Z. et al. Impacts of green new deal energy plans on grid stability, costs, jobs, health, and climate in 143 countries. One Earth 1, 449–463 (2019).

    Article  ADS  Google Scholar 

  77. Ganswindt, K., Khaleghi, T., Pietrzela, M. & Wenzel, S. Who is financing fossil fuel expansion in Africa? https://www.urgewald.org/sites/default/files/media-files/WhoisFinancingFossilFuelAfrica_Doppelseiten_LR.pdf (2022).

  78. Carley, S. & Konisky, D. M. The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020).

    Article  CAS  ADS  Google Scholar 

  79. Nel, E., Marais, L. & Mqotyana, Z. The regional implications of just transition in the world’s most coal-dependent economy: the case of Mpumalanga, South Africa. Front. Sustain. Cities https://doi.org/10.3389/frsc.2022.1059312 (2023).

  80. Murshed, M. Are trade liberalization policies aligned with renewable energy transition in low and middle income countries? An instrumental variable approach. Renew. Energy 151, 1110–1123 (2020).

    Article  Google Scholar 

  81. Shirley, R. et al. Powering jobs: the employment footprint of decentralized renewable energy technologies in sub Saharan Africa. J. Sustain. Res. 2, e200001 (2020).

    Google Scholar 

  82. IEA. Critical minerals threaten a decades-long trend of cost declines for clean energy technologies. https://www.iea.org/commentaries/critical-minerals-threaten-a-decades-long-trend-of-cost-declines-for-clean-energy-technologies (2022).

  83. Zakeri, B. et al. Pandemic, war, and global energy transitions. Energies 15, 6114 (2022).

    Article  Google Scholar 

  84. Frenz, W. COP 27 mit mageren ergebnissen. Nat. und R. 45, 101–103 (2023).

    ADS  Google Scholar 

  85. Falchetta, G., Dagnachew, A. G., Hof, A. F. & Milne, D. J. The role of regulatory, market and governance risk for electricity access investment in sub-Saharan Africa. Energy Sustain. Dev. 62, 136–150 (2021).

    Article  Google Scholar 

  86. Egli, F., Steffen, B. & Schmidt, T. S. A dynamic analysis of financing conditions for renewable energy technologies. Nat. Energy 3, 1084–1092 (2018).

    Article  ADS  Google Scholar 

  87. Sweerts, B., Longa, F. D. & van der Zwaan, B. Financial de-risking to unlock Africa’s renewable energy potential. Renew. Sustain. Energy Rev. 102, 75–82 (2019).

    Article  Google Scholar 

  88. Labordena, M., Patt, A., Bazilian, M., Howells, M. & Lilliestam, J. Impact of political and economic barriers for concentrating solar power in sub-Saharan Africa. Energy Policy 102, 52–72 (2017).

    Article  Google Scholar 

  89. IEA. Africa Energy Outlook 2019. https://www.iea.org/reports/africa-energy-outlook-2019 (2019).

  90. ANDRITZ. Republic of Congo — moving forward with hydropower. https://www.andritz.com/hydro-en/hydronews/hydropower-africa/rep-of-congo (2016).

  91. Bulut, M. & Özcan, E. A new approach to determine maintenance periods of the most critical hydroelectric power plant equipment. Reliab. Eng. Syst. Saf. 205, 107238 (2021).

    Article  Google Scholar 

  92. Dorji, U. & Ghomashchi, R. Hydro turbine failure mechanisms: an overview. Eng. Fail. Anal. 44, 136–147 (2014).

    Article  Google Scholar 

  93. Plummer Braeckman, J. & Guthrie, P. Loss of value: effects of delay on hydropower stakeholders. Proc. Inst. Civ. Eng. Eng. Sustain. 169, 253–264 (2015).

    Google Scholar 

  94. Soumonni, O. C. & Soumonni, O. Y. Promoting West African ownership of the power sector: alternative financing for distributed generation of renewable electricity. J. Afr. Bus. 12, 310–329 (2011).

    Article  Google Scholar 

  95. INTEC, GIZ. Reduction of Technical and Non-technical Electricity Losses in the Distribution Companines in the ECOWAS Region. https://www.ecowapp.org/sites/default/files/en_publication_2020_distribution_losses.pdf (2021).

  96. Timakova, O. A. Targeting Environmental Infrastructure: Libya Conflict Case Study. (Springer, 2023).

  97. Tiepoh, M. G.-N. The Liberian Civil War: the future of Liberian refugees. Refug. Can. J. Refug. 11, 14–17 (1992).

    Article  Google Scholar 

  98. Sharkey, W., Arthur, R. I. & Daniels, R. Change in fisheries access arrangements as a result of hydropower development: the case of reservoir fisheries at the Mount Coffee hydropower scheme in Liberia. Fish. Manag. Ecol. 28, 101–111 (2021).

    Article  Google Scholar 

  99. Del Bene, D., Scheidel, A. & Temper, L. More dams, more violence? A global analysis on resistances and repression around conflictive dams through co-produced knowledge. Sustain. Sci. 13, 617–633 (2018).

    Article  Google Scholar 

  100. Elsayed, H., Djordjevic, S., Savic, D., Tsoukalas, I. & Makropoulos, C. Water-food-energy nexus for transboundary cooperation in Eastern Africa. Water Supply 22, 3567–3587 (2022).

    Article  Google Scholar 

  101. Jacobson, M. Z. The cost of grid stability with 100% clean, renewable energy for all purposes when countries are isolated versus interconnected. Renew. Energy 179, 1065–1075 (2021).

    Article  Google Scholar 

  102. Sokołowski, M. M. & Heffron, R. J. Defining and conceptualizing energy policy failure: the when, where, why, and how. Energy Policy 161, 112745 (2022).

    Article  Google Scholar 

  103. Yang, C., Namahoro, J. P., Wu, Q. & Su, H. Renewable and non-renewable energy consumption on economic growth: evidence from asymmetric analysis across countries connected to Eastern Africa Power Pool. Sustain. 14, 24 (2022).

    Google Scholar 

  104. Gerrard, M. B. The Law of Clean Energy: Efficiency and Renewables. (American Bar Association, 2011).

  105. Ohene-Asare, K., Tetteh, E. N. & Asuah, E. L. Total factor energy efficiency and economic development in Africa. Energy Effic. 13, 1177–1194 (2020).

    Article  Google Scholar 

  106. Matek, B. & Gawell, K. The benefits of baseload renewables: a misunderstood energy technology. Electr. J. 28, 101–112 (2015).

    Article  Google Scholar 

  107. Duan, J., van Kooten, G. C. & Liu, X. Renewable electricity grids, battery storage and missing money. Resour. Conserv. Recycl. 161, 105001 (2020).

    Article  Google Scholar 

  108. Sawle, Y., Gupta, S. C. & Bohre, A. K. Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system. Renew. Sustain. Energy Rev. 81, 2217–2235 (2018).

    Article  Google Scholar 

  109. Anoune, K., Bouya, M., Astito, A., & Abdellah, A. B. Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: a review. Renew. Sustain. Energy Rev. 93, 652–673 (2018).

    Article  Google Scholar 

  110. Li, X., Paster, M. & Stubbins, J. The dynamics of electricity grid operation with increasing renewables and the path toward maximum renewable deployment. Renew. Sustain. Energy Rev. 47, 1007–1015 (2015).

    Article  Google Scholar 

  111. Gebretsadik, Y., Fant, C., Strzepek, K. & Arndt, C. Optimized reservoir operation model of regional wind and hydro power integration case study: Zambezi basin and South Africa. Appl. Energy 161, 574–582 (2016).

    Article  ADS  Google Scholar 

  112. Sterl, S., Fadly, D., Liersch, S., Koch, H. & Thiery, W. Linking solar and wind power in eastern Africa with operation of the Grand Ethiopian Renaissance Dam. Nat. Energy 6, 407–418 (2021).

    Article  ADS  Google Scholar 

  113. Hunt, J. D. et al. Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nat. Commun. 11, 947 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  114. Almeida, R. M. et al. Floating solar power could help fight climate change — let’s get it right. Nature 606, 246–249 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  115. IRENA. From baseload to peak: renewables provide a reliable solution. http://www.irena.org/DocumentDownloads/Publications/IRENA_Baseload_to_Peak_2015.pdf (2015).

  116. Cáceres, A. L., Jaramillo, P., Matthews, H. S., Samaras, C. & Nijssen, B. Potential hydropower contribution to mitigate climate risk and build resilience in Africa. Nat. Clim. Change 12, 719–727 (2022).

    Article  ADS  Google Scholar 

  117. Kati, V., Kassara, C., Vrontisi, Z. & Moustakas, A. The biodiversity-wind energy-land use nexus in a global biodiversity hotspot. Sci. Total Environ. 768, 144471 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  118. Turney, D. & Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 15, 3261–3270 (2011).

    Article  Google Scholar 

  119. Zarfl, C. & Lucía, A. The connectivity between soil erosion and sediment entrapment in reservoirs. Curr. Opin. Environ. Sci. Health 5, 53–59 (2018).

    Article  Google Scholar 

  120. Deemer, B. R. et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66, 949–964 (2016).

    Article  PubMed  Google Scholar 

  121. He, F. et al. Freshwater megafauna diversity: patterns, status and threats. Divers. Distrib. 24, 1395–1404 (2018).

    Article  Google Scholar 

  122. Carrizo, S. F. et al. Freshwater megafauna: flagships for freshwater biodiversity under threat. Bioscience 67, 919–927 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489 (2019).

    Article  Google Scholar 

  124. Tilt, B., Braun, Y. & He, D. Social impacts of large dam projects: a comparison of international case studies and implications for best practice. J. Environ. Manag. 90, S249–S257 (2009).

    Article  Google Scholar 

  125. Bilson Obour, P. et al. The impacts of dams on local livelihoods: a study of the Bui Hydroelectric Project in Ghana. Int. J. Water Resour. Dev. 32, 286–300 (2016).

    Article  Google Scholar 

  126. Schulz, C. & Skinner, J. Hydropower benefit-sharing and resettlement: a conceptual review. Energ. Res. Soc. Sci. 83, 102342 (2022).

    Article  Google Scholar 

  127. Polimeni, J. M., Iorgulescu, R. I. & Chandrasekara, R. Trans-border public health vulnerability and hydroelectric projects: the case of Yali Falls Dam. Ecol. Econ. 98, 81–89 (2014).

    Article  Google Scholar 

  128. Dotse-Gborgbortsi, W. et al. Dam-mediated flooding impact on outpatient attendance and diarrhoea cases in northern Ghana: a mixed methods study. BMC Public Health 22, 2108 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tuan, T. A. et al. Evidence that earthquakes have been triggered by reservoir in the Song Tranh 2 region, Vietnam. J. Seismol. 21, 1131–1143 (2017).

    Article  ADS  Google Scholar 

  130. Gómez-Cabrera, A., Gutierrez-Bucheli, L. & Muñoz, S. Causes of time and cost overruns in construction projects: a scoping review. Int. J. Constr. Manag. https://doi.org/10.1080/15623599.2023.2252288 (2023).

  131. Li, C. X. et al. Growing spatial overlap between dam-related flooding, cropland and domestic water points: a water-energy-food nexus management challenge in Malawi and Ghana. Front. Water 3, 730370 (2021).

    Article  ADS  Google Scholar 

  132. Aljefri, Y. M., Fang, L., Hipel, K. W. & Madani, K. Strategic analyses of the hydropolitical conflicts surrounding the Grand Ethiopian Renaissance Dam. Group Decis. Negot. 28, 305–340 (2019).

    Article  Google Scholar 

  133. Pascaris, A. S., Schelly, C., Burnham, L. & Pearce, J. M. Integrating solar energy with agriculture: industry perspectives on the market, community, and socio-political dimensions of agrivoltaics. Energy Res. Soc. Sci. 75, 102023 (2021).

    Article  Google Scholar 

  134. Rediske, G. et al. Wind power plant site selection: a systematic review. Renew. Sustain. Energy Rev. 148, 111293 (2021).

    Article  Google Scholar 

  135. Barron-Gafford, G. A. et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2, 848–855 (2019).

    Article  Google Scholar 

  136. Tefera, B. & Sterk, G. Hydropower-induced land use change in Fincha’a watershed, western Ethiopia: analysis and impacts. Mountain Res. Dev. 28, 72–80 (2008).

    Article  Google Scholar 

  137. Dorber, M., Arvesen, A., Gernaat, D. & Verones, F. Controlling biodiversity impacts of future global hydropower reservoirs by strategic site selection. Sci. Rep. 10, 21777 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Zeng, R., Cai, X., Ringler, C. & Zhu, T. Hydropower versus irrigation — an analysis of global patterns. Environ. Res. Lett. 12, 34006 (2017).

    Article  Google Scholar 

  139. IEA. Renewables 2021. https://www.iea.org/reports/renewables-2021 (2021).

  140. Ritchie, H. How does the land use of different electricity sources compare? Our World in Data https://ourworldindata.org/land-use-per-energy-source (2022).

  141. Popescu, V. D. et al. Quantifying biodiversity trade-offs in the face of widespread renewable and unconventional energy development. Sci. Rep. 10, 7603 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  142. Hamed, T. A. & Alshare, A. Environmental impact of solar and wind energy — a review. J. Sustain. Dev. Energy Water Environ. Syst. 10, 1090387 (2022).

    Article  Google Scholar 

  143. Loss, S. R., Dorning, M. A. & Diffendorfer, J. E. Biases in the literature on direct wildlife mortality from energy development. Bioscience 69, 348–359 (2019).

    Article  Google Scholar 

  144. Millon, L., Colin, C., Brescia, F. & Kerbiriou, C. Wind turbines impact bat activity, leading to high losses of habitat use in a biodiversity hotspot. Ecol. Eng. 112, 51–54 (2018).

    Article  Google Scholar 

  145. van Kamp, I. & van den Berg, F. Health effects related to wind turbine sound, including low-frequency sound and infrasound. Acoust. Aust. 46, 31–57 (2018).

    Article  Google Scholar 

  146. McKenna, R. et al. Scenicness assessment of onshore wind sites with geotagged photographs and impacts on approval and cost-efficiency. Nat. Energy 6, 663–672 (2021).

    Article  ADS  Google Scholar 

  147. Peri, E. & Tal, A. Is setback distance the best criteria for siting wind turbines under crowded conditions? An empirical analysis. Energy Policy 155, 112346 (2021).

    Article  Google Scholar 

  148. Cousse, J. Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies. Renew. Sustain. Energy Rev. 145, 111107 (2021).

    Article  Google Scholar 

  149. del Carmen Torres-Sibille, A., Cloquell-Ballester, V.-A., Cloquell-Ballester, V.-A. & Artacho Ramírez, M. Á. Aesthetic impact assessment of solar power plants: an objective and a subjective approach. Renew. Sustain. Energy Rev. 13, 986–999 (2009).

    Article  Google Scholar 

  150. van de Ven, D.-J. et al. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 11, 2907 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  151. Rushworth, I. & Krüger, S. Wind farms threaten southern Africa’s cliff-nesting vultures. Ostrich 85, 13–23 (2014).

    Article  Google Scholar 

  152. Wheeler, K. G. et al. Exploring cooperative transboundary river management strategies for the Eastern Nile Basin. Water Resour. Res. 54, 9224–9254 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  153. Falchetta, G. et al. Solar irrigation in sub-Saharan Africa: economic feasibility and development potential. Environ. Res. Lett. 18, 94044 (2023).

    Article  Google Scholar 

  154. Sawadogo, W. et al. Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. Clim. Dyn. 57, 1647–1672 (2021).

    Article  Google Scholar 

  155. Donk, P., Sterl, S., Thiery, W. & Willems, P. Climate-combined energy modelling approach for power system planning towards optimized integration of renewables under potential climate change — the Small Island Developing State perspective. Energy Policy 177, 113526 (2023).

    Article  Google Scholar 

  156. Craig, M. T., Losada Carreño, I., Rossol, M., Hodge, B.-M. & Brancucci, C. Effects on power system operations of potential changes in wind and solar generation potential under climate change. Environ. Res. Lett. 14, 034014 (2019).

    Article  CAS  ADS  Google Scholar 

  157. Fant, C., Adam Schlosser, C. & Strzepek, K. The impact of climate change on wind and solar resources in southern Africa. Appl. Energy 161, 556–564 (2016).

    Article  ADS  Google Scholar 

  158. Ndiaye, A. et al. Projected changes in solar PV and wind energy potential over West Africa: an analysis of CORDEX-CORE simulations. Energies 15, 9602 (2022).

    Article  Google Scholar 

  159. Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

    Article  ADS  Google Scholar 

  160. Meng, Y. et al. Hydropower production benefits more from 1.5 °C than 2 °C climate scenario. Water Resour. Res. 56, WR025519 (2020).

    Article  Google Scholar 

  161. Conway, D., Dalin, C., Landman, W. A. & Osborn, T. J. Hydropower plans in eastern and southern Africa increase risk of concurrent climate-related electricity supply disruption. Nat. Energy 2, 946–953 (2017).

    Article  ADS  Google Scholar 

  162. Mentis, D., Hermann, S., Howells, M., Welsch, M. & Siyal, S. H. Assessing the technical wind energy potential in Africa a GIS-based approach. Renew. Energy 83, 110–125 (2015).

    Article  Google Scholar 

  163. Suri, M. et al. Global Photovoltaic Power Potential by Country. Energy Sector Management Assistance Program (ESMAP) https://www.esmap.org/Global%20Photovoltaic%20Power%20Potential%20by%20Country (2023).

  164. Sterl, S. et al. An all-Africa dataset of energy model “supply regions” for solar photovoltaic and wind power. Sci. Data 9, 664 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Bichet, A. et al. Potential impact of climate change on solar resource in Africa for photovoltaic energy: analyses from CORDEX-AFRICA climate experiments. Environ. Res. Lett. 14, 124039 (2019).

    Article  CAS  ADS  Google Scholar 

  166. Jung, C. & Schindler, D. A review of recent studies on wind resource projections under climate change. Renew. Sustain. Energy Rev. 165, 112596 (2022).

    Article  Google Scholar 

  167. Bartle, A. World Atlas & Industry Guide 2021. Hydropower and Dams (2021).

  168. Yalew, S. G. et al. Impacts of climate change on energy systems in global and regional scenarios. Nat. Energy 5, 794–802 (2020).

    Article  ADS  Google Scholar 

  169. IRENA. Renewable Power Generation Costs in 2019. https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019 (2020).

  170. African Renewable Energy Initiative. Action plan: a framework for transforming Africa towards a renewable energy powered future with access for all. http://www.arei.org/wp-content/uploads/2018/03/AREI-Action-Plan-Nov-2016.pdf (2016).

  171. Almeida, R. M. et al. Strategic planning of hydropower development: balancing benefits and socioenvironmental costs. Curr. Opin. Environ. Sustain. 56, 101175 (2022).

    Article  Google Scholar 

  172. Garrett, K. P., McManamay, R. A. & Witt, A. Harnessing the power of environmental flows: sustaining river ecosystem integrity while increasing energy potential at hydropower dams. Renew. Sustain. Energy Rev. 173, 113049 (2023).

    Article  Google Scholar 

  173. Gonzalez, J. M. et al. Designing diversified renewable energy systems to balance multisector performance. Nat. Sustain. 6, 415–427 (2023).

    Article  Google Scholar 

  174. Dagnachew, A. G. et al. The role of decentralized systems in providing universal electricity access in sub-Saharan Africa — a model-based approach. Energy 139, 184–195 (2017).

    Article  Google Scholar 

  175. IRENA. Scaling Up Variable Renewable Power: the Role of Grid Codes. https://www.irena.org/publications/2016/May/Scaling-up-Variable-Renewable-Power-The-Role-of-Grid-Codes (2016).

Download references

Acknowledgements

C.Z. and R.P. acknowledge the funding through the Excellence Strategy at the University of Tübingen, funded by the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Contributions

R.P. and C.Z. conceptualized and outlined the manuscript. R.P. performed analysis and visualized graphics. C.Z., B.A.K., K.T. and J.B. substantially contributed to the interpretation. R.P. wrote the initial draft of this paper and all co-authors revised the work carefully. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Rebecca Peters or Christiane Zarfl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks S. Sterl, T. Mensah and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, R., Berlekamp, J., Kabiri, C. et al. Sustainable pathways towards universal renewable electricity access in Africa. Nat Rev Earth Environ 5, 137–151 (2024). https://doi.org/10.1038/s43017-023-00501-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00501-1

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene