Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impacts of climate change on coastal groundwater

Abstract

Coastal groundwater (CGW) is a critical water resource for many communities and can be a key part of coastal ecosystems. Owing to its location, CGW faces both terrestrial and marine effects of climate change while simultaneously being impacted by anthropogenic activities. In this Review, we discuss the expected impacts of climate change on CGW and CGW-dependent ecosystems. Sea-level rise, coastal flooding increases and precipitation and aridity changes will drive alterations in the amount, chemistry and fluxes of CGW. Impacts could also arise from changes in storm and cyclone activity, land and ocean temperature rises, cryosphere melt, ocean chemistry and coastal erosion, but the overall effect is understudied. Human-induced stressors, such as groundwater extraction, will interact with climate change impacts to alter CGW at different temporal and spatial scales. CGW-associated ecosystems are expected to respond to changes in an ecosystem and site-specific manner — for example, some coastal temperate and tropical ecosystems might be more impacted by seawater intrusion owing to sea-level rise and coastal flooding, whereas others, such as coastal polar ecosystems, could be more affected by increases in cryosphere melt. A comprehensive and global CGW observatory programme is needed to better understand baseline CGW conditions, track change and support resource management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coastal groundwater dynamics and system typologies.
Fig. 2: Coastal groundwater systems in which the impacts of climate change have been assessed.
Fig. 3: Recharge-limited coastlines projected to become arid by 2080.
Fig. 4: Interactions between climate change and anthropogenic stressors.
Fig. 5: Climatic impact-drivers and their potential effects on coastal aquifers.

Similar content being viewed by others

References

  1. CIESEN. Center for International Earth Science Information Network, Columbia University. National Aggregates of Geospatial Data: Population, Landscape and Climate Estimates Version 3 (PLACE III), Palisades, NY: CIESIN (Columbia University, 2012).

  2. Santos, I. R. et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nat. Rev. Earth Environ. 2, 307–323 (2021).

    Article  ADS  Google Scholar 

  3. Taniguchi, M. et al. Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, magnitudes, and effects. Front. Environ. Sci. 7, 141 (2019).

    Article  Google Scholar 

  4. Cho, H.-M. et al. Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean. Sci. Rep. 8, 1–7 (2018).

    ADS  Google Scholar 

  5. Rahman, S., Tamborski, J. J., Charette, M. A. & Cochran, J. K. Dissolved silica in the subterranean estuary and the impact of submarine groundwater discharge on the global marine silica budget. Mar. Chem. 208, 29–42 (2019).

    Article  CAS  Google Scholar 

  6. Zhou, Y., Sawyer, A. H., David, C. H. & Famiglietti, J. S. Fresh submarine groundwater discharge to the near‐global coast. Geophys. Res. Lett. 46, 5855–5863 (2019).

    Article  ADS  Google Scholar 

  7. Luijendijk, E., Gleeson, T. & Moosdorf, N. Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nat. Commun. 11, 1260 (2020).

    Article  Google Scholar 

  8. Alorda-Kleinglass, A. et al. The social implications of submarine groundwater discharge from an ecosystem services perspective: a systematic review. Earth Sci. Rev. 221, 103742 (2021).

    Article  Google Scholar 

  9. Michael, H. A., Russoniello, C. J. & Byron, L. A. Global assessment of vulnerability to sea‐level rise in topography‐limited and recharge‐limited coastal groundwater systems. Water Resour. Res. 49, 2228–2240 (2013).

    Article  ADS  Google Scholar 

  10. Rotzoll, K. & Fletcher, C. H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477–481 (2013).

    Article  ADS  Google Scholar 

  11. Werner, A. D. & Simmons, C. T. Impact of sea‐level rise on sea water intrusion in coastal aquifers. Groundwater 47, 197–204 (2009).

    Article  CAS  Google Scholar 

  12. Cardenas, M. B. et al. Devastation of aquifers from tsunami‐like storm surge by supertyphoon Haiyan. Geophys. Res. Lett. 42, 2844–2851 (2015).

    Article  ADS  Google Scholar 

  13. Paldor, A. & Michael, H. Storm surges cause simultaneous salinization and freshening of coastal aquifers, exacerbated by climate change. Water Resour. Res. 57, e2020WR029213 (2021).

    Article  ADS  Google Scholar 

  14. Holding, S. & Allen, D. M. Wave overwash impact on small islands: generalised observations of freshwater lens response and recovery for multiple hydrogeological settings. J. Hydrol. 529, 1324–1335 (2015).

    Article  ADS  Google Scholar 

  15. Holding, S. et al. Groundwater vulnerability on small islands. Nat. Clim. Change 6, 1100–1103 (2016).

    Article  ADS  Google Scholar 

  16. Jasechko, S., Perrone, D., Seybold, H., Fan, Y. & Kirchner, J. W. Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat. Commun. 11, 3229 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 9, 084010 (2014).

    Article  ADS  Google Scholar 

  18. Cao, T., Han, D. & Song, X. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. 603, 126844 (2021).

    Article  Google Scholar 

  19. Tully, K. et al. The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. Bioscience 69, 368–378 (2019).

    Article  Google Scholar 

  20. IPCC. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

  21. Ruane, A. C. et al. The climatic impact‐driver framework for assessment of risk‐relevant climate information. Earth’s Future 10, e2022EF002803 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  22. Bear, J. Hydraulics of Groundwater (Courier Corporation, 2012).

  23. Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S. & Taniguchi, M. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66, 3–33 (2003).

    Article  CAS  Google Scholar 

  24. Cooper, H. Sea Water in Coastal Aquifers (US Government Printing Office, 1964).

  25. Kim, G. & Hwang, D. W. Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring. Geophys. Res. Lett. 29, 23-21–23-24 (2002).

    Article  Google Scholar 

  26. Li, L., Barry, D., Stagnitti, F. & Parlange, J. Y. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 35, 3253–3259 (1999).

    Article  CAS  ADS  Google Scholar 

  27. Michael, H. A., Mulligan, A. E. & Harvey, C. F. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436, 1145–1148 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Santos, I. R., Eyre, B. D. & Huettel, M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar. Coast. Shelf Sci. 98, 1–15 (2012).

    Article  ADS  Google Scholar 

  29. Moore, W. S. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2, 59–88 (2010).

    Article  ADS  Google Scholar 

  30. Moore, W. S. The subterranean estuary: a reaction zone of ground water and sea water. Mar. Chem. 65, 111–125 (1999).

    Article  CAS  Google Scholar 

  31. Slomp, C. P. & Van Cappellen, P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydrol. 295, 64–86 (2004).

    Article  CAS  ADS  Google Scholar 

  32. Lecher, A. L., Chien, C.-T. & Paytan, A. Submarine groundwater discharge as a source of nutrients to the North Pacific and Arctic coastal ocean. Mar. Chem. 186, 167–177 (2016).

    Article  CAS  Google Scholar 

  33. Cabral, A. et al. Fresh and saline submarine groundwater discharge as sources of carbon and nutrients to the Japan Sea. Mar. Chem. 249, 104209 (2023).

    Article  CAS  Google Scholar 

  34. Mayfield, K. K. et al. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba. Nat. Commun. 12, 148 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. McKenzie, T. et al. Submarine groundwater discharge: a previously undocumented source of contaminants of emerging concern to the coastal ocean (Sydney, Australia). Mar. Pollut. Bull. 160, 111519 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Robinson, C. E. et al. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: controls on submarine groundwater discharge and chemical inputs to the ocean. Adv. Water Resour. 115, 315–331 (2018).

    Article  CAS  ADS  Google Scholar 

  37. Yang, J., Zhang, H., Yu, X., Graf, T. & Michael, H. A. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation. Adv. Water Resour. 111, 423–434 (2018).

    Article  ADS  Google Scholar 

  38. Bear, J., Cheng, A. H.-D., Sorek, S., Ouazar, D. & Herrera, I. Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices Vol. 14 (Springer Science & Business Media, 1999).

  39. Rohde, R. A. & Hausfather, Z. The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).

    Article  ADS  Google Scholar 

  40. Paldor, A., Frederiks, R.S. & Michael, H.A. Dynamic steady state in coastal aquifers is driven by multi‐scale cyclical processes, controlled by aquifer storativity. Geophys. Res. Lett. 49, GL098599 (2022).

    Article  Google Scholar 

  41. Chang, S. W., Clement, T. P., Simpson, M. J. & Lee, K.-K. Does sea-level rise have an impact on saltwater intrusion? Adv. Water Resour. 34, 1283–1291 (2011).

    Article  ADS  Google Scholar 

  42. Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

    Article  ADS  Google Scholar 

  43. Habel, S., Fletcher, C. H., Rotzoll, K. & El-Kadi, A. I. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Res. 114, 122–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Guimond, J., Mohammed, A., Walvoord, M., Bense, V. & Kurylyk, B. Sea-level rise and warming mediate coastal groundwater discharge in the Arctic. Environ. Res. Lett. 17, 040027 (2022).

    Article  Google Scholar 

  45. Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).

    Article  ADS  Google Scholar 

  46. Nienhuis, J. H. & van de Wal, R. S. Projections of global delta land loss from sea‐level rise in the 21st century. Geophys. Res. Lett. 48, e2021GL093368 (2021).

    Article  ADS  Google Scholar 

  47. Quataert, E., Storlazzi, C., Van Rooijen, A., Cheriton, O. & Van Dongeren, A. The influence of coral reefs and climate change on wave‐driven flooding of tropical coastlines. Geophys. Res. Lett. 42, 6407–6415 (2015).

    Article  ADS  Google Scholar 

  48. Devlin, A. T. et al. Coupling of sea level and tidal range changes, with implications for future water levels. Sci. Rep. 7, 17021 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  49. Moore, W. S. & Joye, S. B. Saltwater intrusion and submarine groundwater discharge: acceleration of biogeochemical reactions in changing coastal aquifers. Front. Earth Sci. 9, 600710 (2021).

    Article  ADS  Google Scholar 

  50. Spiteri, C., Slomp, C. P., Charette, M. A., Tuncay, K. & Meile, C. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modeling. Geochim. Cosmochim. Acta 72, 3398–3412 (2008).

    Article  CAS  ADS  Google Scholar 

  51. Roy, M., Martin, J. B., Cherrier, J., Cable, J. E. & Smith, C. G. Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary. Geochim. Cosmochim. Acta 74, 5560–5573 (2010).

    Article  CAS  ADS  Google Scholar 

  52. Sanders, C. J., Santos, I. R., Barcellos, R. & Silva Filho, E. V. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: consequence of sea level rise? Cont. Shelf Res. 43, 86–94 (2012).

    Article  ADS  Google Scholar 

  53. Archana, A., Francis, C. A. & Boehm, A. B. The beach aquifer microbiome: research gaps and data needs. Front. Environ. Sci. 9, 653568 (2021).

    Article  Google Scholar 

  54. Ruiz-González, C., Rodellas, V. & Garcia-Orellana, J. The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiol. Rev. 45, fuab010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ruiz‐González, C. et al. High spatial heterogeneity and low connectivity of bacterial communities along a Mediterranean subterranean estuary. Mol. Ecol. 31, 5745–5764 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Santoro, A. E., Francis, C. A., De Sieyes, N. R. & Boehm, A. B. Shifts in the relative abundance of ammonia‐oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ. Microbiol. 10, 1068–1079 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Moeck, C. et al. A global-scale dataset of direct natural groundwater recharge rates: a review of variables, processes and relationships. Sci. Total Environ. 717, 137042 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Green, T. et al. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

    Article  ADS  Google Scholar 

  59. Okuhata, B. et al. Effects of multiple drivers of environmental change on native and invasive macroalgae in nearshore groundwater dependent ecosystems. Water Resour. Res. 59, e2023WR034593 (2023).

    Article  ADS  Google Scholar 

  60. Stigter, T. et al. Comparative assessment of climate change and its impacts on three coastal aquifers in the Mediterranean. Reg. Environ. Change 14, 41–56 (2014).

    Article  Google Scholar 

  61. Bryan, E., Meredith, K. T., Baker, A., Post, V. E. & Andersen, M. S. Island groundwater resources, impacts of abstraction and a drying climate: Rottnest Island, Western Australia. J. Hydrol. 542, 704–718 (2016).

    Article  CAS  ADS  Google Scholar 

  62. Tashie, A. M., Mirus, B. B. & Pavelsky, T. M. Identifying long‐term empirical relationships between storm characteristics and episodic groundwater recharge. Water Resour. Res. 52, 21–35 (2016).

    Article  ADS  Google Scholar 

  63. Jasechko, S. & Taylor, R. G. Intensive rainfall recharges tropical groundwaters. Environ. Res. Lett. 10, 124015 (2015).

    Article  ADS  Google Scholar 

  64. Adyasari, D., Montiel, D., Mortazavi, B. & Dimova, N. Storm-driven fresh submarine groundwater discharge and nutrient fluxes from a barrier island. Front. Mar. Sci. 8, 679010 (2021).

    Article  Google Scholar 

  65. Oehler, T. et al. Seasonal variability of land–ocean groundwater nutrient fluxes from a tropical karstic region (southern Java, Indonesia). J. Hydrol. 565, 662–671 (2018).

    Article  CAS  ADS  Google Scholar 

  66. Lam, Q., Meon, G. & Pätsch, M. Coupled modelling approach to assess effects of climate change on a coastal groundwater system. Groundw. Sustain. Dev. 14, 100633 (2021).

    Article  Google Scholar 

  67. Beven, K. J. Rainfall-runoff modelling: the primer. Hydrol. Sci. J. 46, 1002–1002 (2001).

    Google Scholar 

  68. Skougaard Kaspersen, P., Høegh Ravn, N., Arnbjerg-Nielsen, K., Madsen, H. & Drews, M. Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding. Hydrol. Earth Syst. Sci. 21, 4131–4147 (2017).

    Article  ADS  Google Scholar 

  69. Peña, F. et al. Compound flood modeling framework for surface–subsurface water interactions. Nat. Hazards Earth Syst. Sci. 22, 775–793 (2022).

    Article  ADS  Google Scholar 

  70. Levintal, E. et al. Agricultural managed aquifer recharge (Ag-MAR) — a method for sustainable groundwater management: a review. Crit. Rev. Environ. Sci. Technol. 53, 291–314 (2023).

    Article  Google Scholar 

  71. Serinaldi, F., Loecker, F., Kilsby, C. G. & Bast, H. Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes. Nat. Hazards 94, 71–92 (2018).

    Article  Google Scholar 

  72. McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).

    Article  Google Scholar 

  73. Budyko, M. I. Climate and Life (Elsevier, 1974).

  74. Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y. & Allen, S. T. Global recharge data set indicates strengthened groundwater connection to surface fluxes. Geophys. Res. Lett. 49, e2022GL099010 (2022).

    Article  ADS  Google Scholar 

  76. McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J. Hydrol. 416, 182–205 (2012).

    Article  ADS  Google Scholar 

  77. Diego-Feliu, M. et al. Extreme precipitation events induce high fluxes of groundwater and associated nutrients to coastal ocean. Hydrol. Earth Syst. Sci. 26, 4619–4635 (2022).

    Article  CAS  ADS  Google Scholar 

  78. Santos, I. R., de Weys, J., Tait, D. R. & Eyre, B. D. The contribution of groundwater discharge to nutrient exports from a coastal catchment: post-flood seepage increases estuarine N/P ratios. Estuar. Coast. 36, 56–73 (2013).

    Article  CAS  Google Scholar 

  79. Katazakai, S. & Zhang, J. A shift from snow to rain in midlatitude Japan increases fresh submarine groundwater discharge and doubled inorganic carbon flux over 20 years. Environ. Sci. Technol. 55, 14667–14675 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  80. McDonough, L. K. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 11, 1279 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Charette, M. A. & Sholkovitz, E. R. Trace element cycling in a subterranean estuary: part 2. Geochemistry of the pore water. Geochim. Cosmochim. Acta 70, 811–826 (2006).

    Article  CAS  ADS  Google Scholar 

  82. Santos, I. R. et al. Uranium and barium cycling in a salt wedge subterranean estuary: the influence of tidal pumping. Chem. Geol. 287, 114–123 (2011).

    Article  CAS  ADS  Google Scholar 

  83. Roy, M., Martin, J. B., Cable, J. E. & Smith, C. G. Variations of iron flux and organic carbon remineralization in a subterranean estuary caused by inter-annual variations in recharge. Geochim. Cosmochim. Acta 103, 301–315 (2013).

    Article  CAS  ADS  Google Scholar 

  84. Hu, C., Muller‐Karger, F. E. & Swarzenski, P. W. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025449 (2006).

  85. Cho, H.-M. et al. Estimating submarine groundwater discharge in Jeju volcanic island (Korea) during a typhoon (Kong-rey) using humic-fluorescent dissolved organic matter-Si mass balance. Sci. Rep. 11, 941 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sugimoto, R. et al. Seasonal changes in submarine groundwater discharge and associated nutrient transport into a tideless semi-enclosed embayment (Obama Bay, Japan). Estuar. Coast. 39, 13–26 (2016).

    Article  CAS  Google Scholar 

  87. Douglas, A. R. et al. Organic matter composition and inorganic nitrogen response to Hurricane Harvey’s negative storm surge in Corpus Christi Bay, Texas. Front. Mar. Sci. 9, 961206 (2022).

    Article  Google Scholar 

  88. Smith, C. G., Cable, J. E. & Martin, J. B. Episodic high intensity mixing events in a subterranean estuary: effects of tropical cyclones. Limnol. Oceanogr. 53, 666–674 (2008).

    Article  ADS  Google Scholar 

  89. Terry, J. P. & Falkland, A. C. Responses of Atoll freshwater lenses to storm-surge overwash in the Northern Cook Islands. Hydrogeol. J. 18, 749 (2010).

    Article  CAS  ADS  Google Scholar 

  90. Anderson, W. P. Aquifer salinization from storm overwash. J. Coast. Res. 18, 413–420 (2002).

    Google Scholar 

  91. Nordio, G. et al. Frequent storm surges affect the groundwater of coastal ecosystems. Geophys. Res. Lett. 50, e2022GL100191 (2023).

    Article  ADS  Google Scholar 

  92. Storlazzi, C. D. et al. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 4, eaap9741 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  93. Benz, S. A., Bayer, P. & Blum, P. Global patterns of shallow groundwater temperatures. Environ. Res. Lett. 12, 034005 (2017).

    Article  ADS  Google Scholar 

  94. Benz, S. A. et al. Global groundwater warming. Preprint at https://doi.org/10.31223/X5Q64H (2022).

  95. Hemmerle, H. & Bayer, P. Climate change yields groundwater warming in Bavaria, Germany. Front. Earth Sci. https://doi.org/10.3389/feart.2020.575894 (2020).

  96. Lee, B., Hamm, S.-Y., Jang, S., Cheong, J.-Y. & Kim, G.-B. Relationship between groundwater and climate change in South Korea. Geosci. J. 18, 209–218 (2014).

    Article  ADS  Google Scholar 

  97. Henry, H. & Kohout, F. in Underground Waste Management and Environmental Implications 202–221 (GeoScienceWorld,1972); https://doi.org/10.1306/M18373C19.

  98. Freeze, R. & Cherry, J. A. Groundwater. Vol. 7632, 604 (Prentice-Hall Inc., 1979).

  99. Kelly, J. L., Glenn, C. R. & Lucey, P. G. High‐resolution aerial infrared mapping of groundwater discharge to the coastal ocean. Limnol. Oceanogr. Methods 11, 262–277 (2013).

    Article  Google Scholar 

  100. Portnoy, J., Nowicki, B., Roman, C. & Urish, D. The discharge of nitrate‐contaminated groundwater from developed shoreline to marsh‐fringed estuary. Water Resour. Res. 34, 3095–3104 (1998).

    Article  CAS  ADS  Google Scholar 

  101. Miller, D. C. & Ullman, W. J. Ecological consequences of ground water discharge to Delaware Bay, United States. Groundwater 42, 959–970 (2004).

    Article  Google Scholar 

  102. Danielescu, S., MacQuarrie, K. T. & Faux, R. N. The integration of thermal infrared imaging, discharge measurements and numerical simulation to quantify the relative contributions of freshwater inflows to small estuaries in Atlantic Canada. Hydrol. Process. 23, 2847–2859 (2009).

    Article  ADS  Google Scholar 

  103. Coluccio, K. et al. Mapping groundwater discharge to a coastal lagoon using combined spatial airborne thermal imaging, radon (222Rn) and multiple physicochemical variables. Hydrol. Process. 34, 4592–4608 (2020).

    Article  ADS  Google Scholar 

  104. Lee, E. et al. Unmanned aerial vehicles (UAVs)‐based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the coastal zone. Limnol. Oceanogr. Methods 14, 725–735 (2016).

    Article  CAS  Google Scholar 

  105. Jou-Claus, S., Folch, A. & Garcia-Orellana, J. Applicability of Landsat 8 thermal infrared sensor for identifying submarine groundwater discharge springs in the Mediterranean Sea basin. Hydrol. Earth Syst. Sci. 25, 4789–4805 (2021).

    Article  ADS  Google Scholar 

  106. Pu, L. et al. Thermal effects on flow and salinity distributions in coastal confined aquifers. Water Resour. Res. 56, e2020WR027582 (2020).

    Article  ADS  Google Scholar 

  107. van Lopik, J. H., Hartog, N., Zaadnoordijk, W. J., Cirkel, D. G. & Raoof, A. Salinization in a stratified aquifer induced by heat transfer from well casings. Adv. Water Resour. 86, 32–45 (2015).

    Article  ADS  Google Scholar 

  108. Pu, L., Xin, P., Yu, X., Li, L. & Barry, D. A. Temperature of artificial freshwater recharge significantly affects salinity distributions in coastal confined aquifers. Adv. Water Resour. 156, 104020 (2021).

    Article  Google Scholar 

  109. Nguyen, T. T. et al. Effects of temperature on tidally influenced coastal unconfined aquifers. Water Resour. Res. 56, e2019WR026660 (2020).

    Article  ADS  Google Scholar 

  110. Ahrens, J. et al. Seasonality of organic matter degradation regulates nutrient and metal net fluxes in a high energy sandy beach. J. Geophys. Res. Biogeosci. 125, e2019JG005399 (2020).

    Article  CAS  ADS  Google Scholar 

  111. Degenhardt, J. et al. Seasonal dynamics of microbial diversity at a sandy high energy beach reveal a resilient core community. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.573570 (2020).

  112. Riedel, T. Temperature-associated changes in groundwater quality. J. Hydrol. 572, 206–212 (2019).

    Article  CAS  ADS  Google Scholar 

  113. Figura, S. The Impact of Climate Change on Groundwater Temperature and Oxygen Concentration in Swiss Aquifers (ETH Zurich, 2013).

  114. Hall, E. K., Neuhauser, C. & Cotner, J. B. Toward a mechanistic understanding of how natural bacterial communities respond to changes in temperature in aquatic ecosystems. ISME J. 2, 471–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Adyasari, D., Hassenrück, C., Oehler, T., Sabdaningsih, A. & Moosdorf, N. Microbial community structure associated with submarine groundwater discharge in northern Java (Indonesia). Sci. Total Environ. 689, 590–601 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  116. Jiang, S. et al. Organic carbon in a seepage face of a subterranean estuary: turnover and microbial interrelations. Sci. Total Environ. 725, 138220 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Velasco Ayuso, S., Acebes, P., López-Archilla, A. I., Montes, C. & Guerrero, M. D. C. Environmental factors controlling the spatiotemporal distribution of microbial communities in a coastal, sandy aquifer system (Doñana, southwest Spain). Hydrogeol. J. 17, 767–780 (2009).

    Article  CAS  ADS  Google Scholar 

  118. Cogswell, C. & Heiss, J. W. Climate and seasonal temperature controls on biogeochemical transformations in unconfined coastal aquifers. J. Geophys. Res. Biogeosci. 126, e2021JG006605 (2021).

    Article  CAS  ADS  Google Scholar 

  119. Oehler, T. et al. Tropical beaches attenuate groundwater nitrogen pollution flowing to the ocean. Environ. Sci. Technol. 55, 8432–8438 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  120. Flynn, T. M. et al. Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol. 13, 1–15 (2013).

    Article  Google Scholar 

  121. Hunter, K. S., Wang, Y. & Van Cappellen, P. Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Hydrol. 209, 53–80 (1998).

    Article  CAS  ADS  Google Scholar 

  122. Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuar. Coast. 35, 383–400 (2012).

    Article  CAS  Google Scholar 

  123. Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zone J. 15, 1–20 (2016).

    Article  Google Scholar 

  124. Woo, M.-K. Permafrost Hydrology (Springer Science & Business Media, 2012).

  125. Dimova, N. T. et al. Current magnitude and mechanisms of groundwater discharge in the Arctic: case study from Alaska. Environ. Sci. Technol. 49, 12036–12043 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  126. Watanabe, K. & Osada, Y. Comparison of hydraulic conductivity in frozen saturated and unfrozen unsaturated soils. Vadose Zone J. https://doi.org/10.2136/vzj2015.11.0154 (2016).

  127. Koch, J. C., Kikuchi, C. P., Wickland, K. P. & Schuster, P. Runoff sources and flow paths in a partially burned, upland boreal catchment underlain by permafrost. Water Resour. Res. 50, 8141–8158 (2014).

    Article  ADS  Google Scholar 

  128. Lamontagne-Hallé, P., McKenzie, J. M., Kurylyk, B. L. & Zipper, S. C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 13, 084017 (2018).

    Article  ADS  Google Scholar 

  129. O’Connor, M. T., Cardenas, M. B., Neilson, B. T., Nicholaides, K. D. & Kling, G. W. Active layer groundwater flow: the interrelated effects of stratigraphy, thaw, and topography. Water Resour. Res. 55, 6555–6576 (2019).

    Article  ADS  Google Scholar 

  130. Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).

    Article  CAS  ADS  Google Scholar 

  131. Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  132. Reyes, F. R. & Lougheed, V. L. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arctic Antarctic Alp. Res. 47, 35–48 (2015).

    Article  ADS  Google Scholar 

  133. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  CAS  ADS  Google Scholar 

  134. Wickland, K. P. et al. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ. Res. Lett. 13, 065011 (2018).

    Article  ADS  Google Scholar 

  135. Connolly, C. T., Cardenas, M. B., Burkart, G. A., Spencer, R. G. & McClelland, J. W. Groundwater as a major source of dissolved organic matter to Arctic coastal waters. Nat. Commun. 11, 1479 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  136. Lecher, A. L. Groundwater discharge in the Arctic: a review of studies and implications for biogeochemistry. Hydrology 4, 41 (2017).

    Article  Google Scholar 

  137. Levy, A., Robinson, Z., Krause, S., Waller, R. & Weatherill, J. Long‐term variability of proglacial groundwater‐fed hydrological systems in an area of glacier retreat, Skeiðarársandur, Iceland. Earth Surf. Process. Landf. 40, 981–994 (2015).

    Article  ADS  Google Scholar 

  138. Liljedahl, A., Gädeke, A., O’Neel, S., Gatesman, T. & Douglas, T. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 44, 6876–6885 (2017).

    Article  ADS  Google Scholar 

  139. Piotrowski, J. A. Groundwater under ice sheets and glaciers. in Glacier Science and Environmental Change 50–60 (Blackwell Science, 2006).

  140. Uemura, T., Taniguchi, M. & Shibuya, K. Submarine groundwater discharge in Lützow‐Holm Bay, Antarctica. Geophys. Res. Lett. https://doi.org/10.1029/2010GL046394 (2011).

  141. Null, K. A. et al. Groundwater discharge to the western Antarctic coastal ocean. Polar Res. 38, 3497 (2019).

    Article  ADS  Google Scholar 

  142. Falk, U. & Silva-Busso, A. Discharge of groundwater flow to Potter Cove on King George Island, Antarctic Peninsula. Hydrol. Earth Syst. Sci. 25, 3227–3244 (2021).

    Article  ADS  Google Scholar 

  143. Gustafson, C. D. et al. A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science 376, 640–644 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  144. Liljedahl, L. C. et al. Rapid and sensitive response of Greenland’s groundwater system to ice sheet change. Nat. Geosci. 14, 751–755 (2021).

    Article  CAS  ADS  Google Scholar 

  145. Chaillou, G. et al. Flow and discharge of groundwater from a snowmelt-affected sandy beach. J. Hydrol. 557, 4–15 (2018).

    Article  CAS  ADS  Google Scholar 

  146. Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).

    Article  ADS  Google Scholar 

  147. Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, GL048681 (2011).

    Article  Google Scholar 

  148. Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 1777–1799 (2014).

    Article  ADS  Google Scholar 

  149. Sadler, H. & Serson, H. An unusual polynya in an Arctic Fjord. Fjord Oceanogr. 4, 299–304 (1980).

    Article  Google Scholar 

  150. Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  151. Oliver, E. C. et al. Marine heatwaves. Annu. Rev. Mar. Sci. 13, 313–342 (2021).

    Article  ADS  Google Scholar 

  152. Calvo‐Martin, E. et al. On the hidden diversity and niche specialization of the microbial realm of subterranean estuaries. Environ. Microbiol. 24, 5859–5881 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Koski, K. & Wilson, J. Carbonate dissolution in mixed waters due to ocean acidification. In AGU Fall Meeting Abstracts GC21A-0737 (AGU, 2009).

  154. Davis, K. L., McMahon, A., Kelaher, B., Shaw, E. & Santos, I. R. Fifty years of sporadic coral reef calcification estimates at One Tree Island, Great Barrier Reef: is it enough to imply long term trends? Front. Mar. Sci. 6, 282 (2019).

    Article  Google Scholar 

  155. Moore, W. S., Vincent, J., Pickney, J. L. & Wilson, A. M. Predicted episode of submarine groundwater discharge onto the South Carolina, USA, continental shelf and its effect on dissolved oxygen. Geophys. Res. Lett. 49, e2022GL100438 (2022).

    Article  ADS  Google Scholar 

  156. George, C. et al. A new mechanism for submarine groundwater discharge from continental shelves. Water Resour. Res. 56, e2019WR026866 (2020).

    Article  ADS  Google Scholar 

  157. Sawyer, A. H., Shi, F., Kirby, J. T. & Michael, H. A. Dynamic response of surface water‐groundwater exchange to currents, tides, and waves in a shallow estuary. J. Geophys. Res. Ocean. 118, 1749–1758 (2013).

    Article  ADS  Google Scholar 

  158. Rodellas, V. et al. Temporal variations in porewater fluxes to a coastal lagoon driven by wind waves and changes in lagoon water depths. J. Hydrol. 581, 124363 (2020).

    Article  Google Scholar 

  159. Guimond, J. D. C., Kurylyk, B., Walvoord, M., McClelland, J. & Cardenas, M. Wind-modulated groundwater discharge along a microtidal Arctic coastline. Environ. Res. Lett. 18, 094042 (2023).

    Article  ADS  Google Scholar 

  160. Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8, 6641 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  161. Chesnaux, R., Marion, D., Boumaiza, L., Richard, S. & Walter, J. An analytical methodology to estimate the changes in fresh groundwater resources with sea-level rise and coastal erosion in strip-island unconfined aquifers: illustration with Savary Island, Canada. Hydrogeol. J. https://doi.org/10.1007/s10040-020-02300-0 (2021).

  162. Liu, Q., Liang, L., Yuan, X., Mou, X. & Su, L. Effects of groundwater level changes associated with coastline changes in coastal wetlands. Wetlands 40, 1647–1656 (2020).

    Article  Google Scholar 

  163. Zhang, Y., Li, L., Erler, D. V., Santos, I. & Lockington, D. Effects of beach slope breaks on nearshore groundwater dynamics. Hydrol. Process. 31, 2530–2540 (2017).

    Article  ADS  Google Scholar 

  164. Rakhimbekova, S., Power, C., O’Carroll, D. M. & Robinson, C. E. Potential for shoreline recession to accelerate discharge of groundwater pollutants to coastal waters. Water Resour. Res. 59, e2022WR034230 (2022).

    Article  ADS  Google Scholar 

  165. Santi, P., Cannon, S., DeGraff, J. & Shroder, J. Wildfire and landscape change. Treatise Geomorphol. 13, 262–287 (2013).

    Article  Google Scholar 

  166. Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).

    Article  PubMed  ADS  Google Scholar 

  167. Smith, H. G., Sheridan, G. J., Lane, P. N., Nyman, P. & Haydon, S. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396, 170–192 (2011).

    Article  CAS  ADS  Google Scholar 

  168. Maina, F. Z. & Siirila‐Woodburn, E. R. Watersheds dynamics following wildfires: nonlinear feedbacks and implications on hydrologic responses. Hydrol. Process. 34, 33–50 (2020).

    Article  ADS  Google Scholar 

  169. Bogan, R. A., Ohde, S., Arakaki, T., Mori, I. & McLeod, C. W. Changes in rainwater pH associated with increasing atmospheric carbon dioxide after the industrial revolution. Water Air Soil Pollut. 196, 263–271 (2009).

    Article  CAS  ADS  Google Scholar 

  170. Andrews, J. A. & Schlesinger, W. H. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob. Biogeochem. Cycles 15, 149–162 (2001).

    Article  CAS  ADS  Google Scholar 

  171. Hendry, A. et al. Assessing the characteristics and drivers of compound flooding events around the UK coast. Hydrol. Earth Syst. Sci. 23, 3117–3139 (2019).

    Article  ADS  Google Scholar 

  172. Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article  ADS  Google Scholar 

  173. Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).

    Article  ADS  Google Scholar 

  174. Bloomfield, J. P., Marchant, B. P. & McKenzie, A. A. Changes in groundwater drought associated with anthropogenic warming. Hydrol. Earth Syst. Sci. 23, 1393–1408 (2019).

    Article  CAS  ADS  Google Scholar 

  175. Guimond, J. A., Mohammed, A. A., Walvoord, M. A., Bense, V. F. & Kurylyk, B. L. Saltwater intrusion intensifies coastal permafrost thaw. Geophys. Res. Lett. 48, e2021GL094776 (2021).

    Article  ADS  Google Scholar 

  176. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article  ADS  Google Scholar 

  177. McMillan, S. K. et al. Before the storm: antecedent conditions as regulators of hydrologic and biogeochemical response to extreme climate events. Biogeochemistry 141, 487–501 (2018).

    Article  CAS  Google Scholar 

  178. Vidon, P., Marchese, S. & Rook, S. Impact of Hurricane Irene and Tropical Storm Lee on riparian zone hydrology and biogeochemistry. Hydrol. Process. 31, 476–488 (2017).

    Article  CAS  ADS  Google Scholar 

  179. Befus, K., Barnard, P. L., Hoover, D. J., Finzi Hart, J. & Voss, C. I. Increasing threat of coastal groundwater hazards from sea-level rise in California. Nat. Clim. Change 10, 946–952 (2020).

    Article  ADS  Google Scholar 

  180. Habel, S., Fletcher, C. H., Anderson, T. R. & Thompson, P. R. Sea-level rise induced multi-mechanism flooding and contribution to urban infrastructure failure. Sci. Rep. 10, 3796 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  181. Cantelon, J. A., Guimond, J. A., Robinson, C. E., Michael, H. A. & Kurylyk, B. L. Vertical saltwater intrusion in coastal aquifers driven by episodic flooding: a review. Water Resour. Res. 58, e2022WR032614 (2022).

    Article  ADS  Google Scholar 

  182. Hingst, M. C. et al. Surface water–groundwater connections as pathways for inland salinization of coastal aquifers. Groundwater https://doi.org/10.1111/gwat.13274 (2022).

  183. Yu, X. et al. Impact of topography on groundwater salinization due to ocean surge inundation. Water Resour. Res. 52, 5794–5812 (2016).

    Article  ADS  Google Scholar 

  184. Chui, T. F. M. & Terry, J. P. Modeling fresh water lens damage and recovery on atolls after storm‐wave washover. Groundwater 50, 412–420 (2012).

    Article  CAS  Google Scholar 

  185. Post, V. E. & Houben, G. J. Density-driven vertical transport of saltwater through the freshwater lens on the island of Baltrum (Germany) following the 1962 storm flood. J. Hydrol. 551, 689–702 (2017).

    Article  ADS  Google Scholar 

  186. Yang, J., Graf, T., Herold, M. & Ptak, T. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface–subsurface approach. J. Contam. Hydrol. 149, 61–75 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  187. Bailey, R. T. & Jenson, J. W. Effects of marine overwash for atoll aquifers: environmental and human factors. Groundwater 52, 694–704 (2014).

    Article  CAS  Google Scholar 

  188. Holding, S. & Allen, D. From days to decades: numerical modelling of freshwater lens response to climate change stressors on small low-lying islands. Hydrol. Earth Syst. Sci. 19, 933–949 (2015).

    Article  ADS  Google Scholar 

  189. Panthi, J., Pradhanang, S. M., Nolte, A. & Boving, T. B. Saltwater intrusion into coastal aquifers in the contiguous United States — a systematic review of investigation approaches and monitoring networks. Sci. Total Environ. 836, 155641 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  190. Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2, 342–345 (2012).

    Article  ADS  Google Scholar 

  191. Rachid, G., Alameddine, I. & El-Fadel, M. Management of saltwater intrusion in data-scarce coastal aquifers: impacts of seasonality, water deficit, and land use. Water Resour. Manag. 35, 5139–5153 (2021).

    Article  Google Scholar 

  192. Ranjan, S. P., Kazama, S. & Sawamoto, M. Effects of climate and land use changes on groundwater resources in coastal aquifers. J. Environ. Manag. 80, 25–35 (2006).

    Article  Google Scholar 

  193. Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  ADS  Google Scholar 

  194. Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  195. Yang, J., Graf, T. & Ptak, T. Sea level rise and storm surge effects in a coastal heterogeneous aquifer: a 2D modelling study in northern Germany. Grundwasser 20, 39–51 (2015).

    Article  CAS  ADS  Google Scholar 

  196. Carlson, D. A., Van Biersel, T. P. & Milner, L. R. Storm‐damaged saline‐contaminated boreholes as a means of aquifer contamination. Groundwater 46, 69–79 (2008).

    Article  CAS  Google Scholar 

  197. Illangasekare, T. et al. Impacts of the 2004 tsunami on groundwater resources in Sri Lanka. Water Resour. Res. https://doi.org/10.1029/2006WR004876 (2006).

  198. Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353, 705–707 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  199. Kwon, E., Park, J., Park, W.-B., Kang, B.-R. & Woo, N. C. Nitrate contamination of coastal groundwater: sources and transport mechanisms along a volcanic aquifer. Sci. Total Environ. 768, 145204 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  200. Bishop, J. M., Glenn, C. R., Amato, D. W. & Dulai, H. Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. J. Hydrol. Regional Stud. 11, 194–218 (2017).

    Article  Google Scholar 

  201. Bosserelle, A. L., Morgan, L. K. & Hughes, M. W. Groundwater rise and associated flooding in coastal settlements due to sea‐level rise: a review of processes and methods. Earth’s Future 10, e2021EF002580 (2022).

    Article  ADS  Google Scholar 

  202. Tay, C. et al. Sea-level rise from land subsidence in major coastal cities. Nat. Sustain. 5, 1–9 (2022).

    Article  Google Scholar 

  203. Anderson, T. R. et al. Modeling multiple sea level rise stresses reveals up to twice the land at risk compared to strictly passive flooding methods. Sci. Rep. 8, 1–14 (2018).

    Article  ADS  Google Scholar 

  204. Becker, B., Reichel, F., Bachmann, D. & Schinke, R. High groundwater levels: processes, consequences, and management. Wiley Interdiscip. Rev. Water 9, e1605 (2022).

    Article  Google Scholar 

  205. Habel, S., Fletcher, C. H., Barbee, M. M. & Fornace, K. L. Hidden threat: the influence of sea-level rise on coastal groundwater and the convergence of impacts on municipal infrastructure. Ann. Rev. Marine Sci. https://doi.org/10.1146/annurev-marine-020923-120737 (2023).

  206. Gold, A. C., Brown, C. M., Thompson, S. P. & Piehler, M. F. Inundation of stormwater infrastructure is common and increases risk of flooding in coastal urban areas along the US Atlantic coast. Earth’s Future 10, e2021EF002139 (2022).

    Article  ADS  Google Scholar 

  207. Jasour, Z. Y., Reilly, A. C., Tonn, G. L. & Ferreira, C. M. Roadway flooding as a bellwether for household retreat in rural, coastal regions vulnerable to sea-level rise. Clim. Risk Manag. 36, 100425 (2022).

    Article  Google Scholar 

  208. Ju, Y., Lindbergh, S., He, Y. & Radke, J. D. Climate-related uncertainties in urban exposure to sea level rise and storm surge flooding: a multi-temporal and multi-scenario analysis. Cities 92, 230–246 (2019).

    Article  Google Scholar 

  209. Su, X., Liu, T., Beheshti, M. & Prigiobbe, V. Relationship between infiltration, sewer rehabilitation, and groundwater flooding in coastal urban areas. Environ. Sci. Pollut. Res. 27, 14288–14298 (2020).

    Article  Google Scholar 

  210. Threndyle, R. E., Jamieson, R. C., Kennedy, G., Lake, C. B. & Kurylyk, B. L. Future inundation of coastal on-site wastewater treatment systems in a region with pronounced sea-level rise. J. Hydrol. 614, 128548 (2022).

    Article  Google Scholar 

  211. McKenzie, T., Habel, S. & Dulai, H. Sea‐level rise drives wastewater leakage to coastal waters and storm drains. Limnol. Oceanogr. Lett. 6, 154–163 (2021).

    Article  Google Scholar 

  212. Hummel, M. A., Berry, M. S. & Stacey, M. T. Sea level rise impacts on wastewater treatment systems along the US coasts. Earth’s Future 6, 622–633 (2018).

    Article  ADS  Google Scholar 

  213. Connolly, C. T., Stahl, M. O., DeYoung, B. A. & Bostick, B. C. Surface flooding as a key driver of groundwater arsenic contamination in Southeast Asia. Environ. Sci. Technol. 56, 928–937 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  214. Graham, J. P. & Polizzotto, M. L. Pit latrines and their impacts on groundwater quality: a systematic review. Environ. Health Perspect. 121, 521–530 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Gowrisankar, G. et al. Chemical, microbial and antibiotic susceptibility analyses of groundwater after a major flood event in Chennai. Sci. Data 4, 1–13 (2017).

    Article  Google Scholar 

  216. Nicholls, R. J. et al. Coastal landfills and rising sea levels: a challenge for the 21st century. Front. Mar. Sci. 8, 710342 (2021).

    Article  Google Scholar 

  217. Xie, D., Zou, Q.-P., Mignone, A. & MacRae, J. D. Coastal flooding from wave overtopping and sea level rise adaptation in the northeastern USA. Coast. Eng. 150, 39–58 (2019).

    Article  Google Scholar 

  218. Hummel, M. A., Griffin, R., Arkema, K. & Guerry, A. D. Economic evaluation of sea-level rise adaptation strongly influenced by hydrodynamic feedbacks. Proc. Natl Acad. Sci. USA 118, e2025961118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yang, J., Graf, T. & Ptak, T. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: a three-dimensional modeling study. J. Contam. Hydrol. 177, 107–121 (2015).

    Article  PubMed  ADS  Google Scholar 

  220. Fletcher, C. H., Mullane, R. A. & Richmond, B. M. Beach loss along armored shorelines on Oahu, Hawaiian Islands. J. Coast. Res. 13, 209–215 (1997).

    Google Scholar 

  221. Figueroa, S. M., Lee, G. H., Chang, J. & Jung, N. W. Impact of estuarine dams on the estuarine parameter space and sediment flux decomposition: idealized numerical modeling study. J. Geophys. Res. Ocean. 127, e2021JC017829 (2022).

    Article  ADS  Google Scholar 

  222. Kidd, I. M., Davis, J. A. & Fischer, A. Total exclusion barrages as sea-level rise mitigators: the geomorphological trade-offs for new installations. Ocean Coast. Manag. 143, 122–135 (2017).

    Article  Google Scholar 

  223. Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C. & Haruyama, S. The combined impact on the flooding in Vietnam’s Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment. Estuar. Coast. Shelf Sci. 71, 110–116 (2007).

    Article  ADS  Google Scholar 

  224. Mueller, N. J. & Meindl, C. F. Vulnerability of Caribbean island cemeteries to sea level rise and storm surge. Coast. Manag. 45, 277–292 (2017).

    Article  Google Scholar 

  225. Williams, B. A. et al. Global rarity of intact coastal regions. Conserv. Biol. 36, e13874 (2022).

    Article  PubMed  Google Scholar 

  226. Kløve, B. et al. Groundwater dependent ecosystems. Part I: hydroecological status and trends. Environ. Sci. Policy 14, 770–781 (2011).

    Article  Google Scholar 

  227. Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).

    Article  ADS  Google Scholar 

  228. Taillie, P. J., Moorman, C. E., Smart, L. S. & Pacifici, K. Bird community shifts associated with saltwater exposure in coastal forests at the leading edge of rising sea level. PLoS ONE 14, e0216540 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Williams, K., Ewel, K. C., Stumpf, R. P., Putz, F. E. & Workman, T. W. Sea‐level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80, 2045–2063 (1999).

    Article  Google Scholar 

  230. Kirwan, M. L., Kirwan, J. L. & Copenheaver, C. A. Dynamics of an estuarine forest and its response to rising sea level. J. Coast. Res. 23, 457–463 (2007).

    Article  Google Scholar 

  231. Smart, L. S. et al. Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environ. Res. Lett. 15, 104028 (2020).

    Article  CAS  ADS  Google Scholar 

  232. Taillie, P. J., Moorman, C. E., Poulter, B., Ardón, M. & Emanuel, R. E. Decadal-scale vegetation change driven by salinity at leading edge of rising sea level. Ecosystems 22, 1918–1930 (2019).

    Article  CAS  Google Scholar 

  233. Ury, E. A., Yang, X., Wright, J. P. & Bernhardt, E. S. Rapid deforestation of a coastal landscape driven by sea‐level rise and extreme events. Ecol. Appl. 31, e02339 (2021).

    Article  PubMed  Google Scholar 

  234. White, E. E., Ury, E. A., Bernhardt, E. S. & Yang, X. Climate change driving widespread loss of coastal forested wetlands throughout the North American coastal plain. Ecosystems 25, 1–16 (2021).

    Google Scholar 

  235. Liu, X. et al. Effects of salinity and wet–dry treatments on C and N dynamics in coastal-forested wetland soils: implications of sea level rise. Soil Biol. Biochem. 112, 56–67 (2017).

    Article  CAS  Google Scholar 

  236. Eggleston, J. & McCoy, K. J. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeol. J. 23, 105–120 (2015).

    Article  ADS  Google Scholar 

  237. Kreuzwieser, J. & Gessler, A. Global climate change and tree nutrition: influence of water availability. Tree Physiol. 30, 1221–1234 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Davis, K., Santos, I. R., Perkins, A. K., Webb, J. R. & Gleeson, J. Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal. Estuar. Coast. Shelf Sci. 235, 106567 (2020).

    Article  CAS  Google Scholar 

  239. Kath, J. et al. Groundwater salinization intensifies drought impacts in forests and reduces refuge capacity. J. Appl. Ecol. 52, 1116–1125 (2015).

    Article  CAS  Google Scholar 

  240. Pezeshki, S., DeLaune, R. & Patrick, W. Jr Flooding and saltwater intrusion: potential effects on survival and productivity of wetland forests along the US Gulf Coast. For. Ecol. Manag. 33, 287–301 (1990).

    Article  Google Scholar 

  241. Guimond, J. A., Yu, X., Seyfferth, A. L. & Michael, H. A. Using hydrological–biogeochemical linkages to elucidate carbon dynamics in coastal marshes subject to relative sea level rise. Water Resour. Res. 56, e2019WR026302 (2020).

    Article  CAS  ADS  Google Scholar 

  242. Herbert, E. R. et al. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6, 1–43 (2015).

    Article  Google Scholar 

  243. Morina, J. C. & Franklin, R. B. Intensity and duration of exposure determine prokaryotic community response to salinization in freshwater wetland soils. Geoderma 428, 116138 (2022).

    Article  CAS  ADS  Google Scholar 

  244. Freeman, C. et al. US Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 4, eaao3270 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  245. Han, G. et al. Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements. Agric. For. Meteorol. 256, 292–303 (2018).

    Article  ADS  Google Scholar 

  246. Najjar, R. G. et al. The potential impacts of climate change on the mid-Atlantic coastal region. Clim. Res. 14, 219–233 (2000).

    Article  Google Scholar 

  247. Dale, L. L. et al. Migration and transformation of coastal wetlands in response to rising seas. Sci. Adv. 8, eabo5174 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Bishop, R. E. et al. ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J. Crustacean Biol. 35, 511–514 (2015).

    Article  Google Scholar 

  249. Gonzalez, B. C., Iliffe, T. M., Macalady, J. L., Schaperdoth, I. & Kakuk, B. Microbial hotspots in anchialine blue holes: initial discoveries from the Bahamas. Hydrobiologia 677, 149–156 (2011).

    Article  CAS  Google Scholar 

  250. Tillman, F. D., Oki, D. S., Johnson, A. G., Barber, L. B. & Beisner, K. R. Investigation of geochemical indicators to evaluate the connection between inland and coastal groundwater systems near Kaloko-Honokōhau National Historical Park, Hawai ‘i. Appl. Geochem. 51, 278–292 (2014).

    Article  CAS  ADS  Google Scholar 

  251. Calderón-Gutiérrez, F., Sánchez-Ortiz, C. A. & Huato-Soberanis, L. Ecological patterns in anchialine caves. PLoS ONE 13, e0202909 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Saccò, M. et al. Stygofaunal diversity and ecological sustainability of coastal groundwater ecosystems in a changing climate: the Australian paradigm. Freshw. Biol. 67, 2007–2023 (2022).

    Article  Google Scholar 

  253. van Hengstum, P. J., Cresswell, J. N., Milne, G. A. & Iliffe, T. M. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Sci. Rep. 9, 11907 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  254. Calderón Gutiérrez, F., Iliffe, T. M., Borda, E., Yáñez Mendoza, G. & Labonté, J. Response and resilience of karst subterranean estuary communities to precipitation impacts. Ecol. Evol. 13, e10415 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  255. KarisAllen, J. & Kurylyk, B. L. Drone-based characterization of intertidal spring cold-water plume dynamics postprint. Hydrol. Process. https://doi.org/10.1002/hyp.14258 (2021).

  256. Purkamo, L. et al. Impact of submarine groundwater discharge on biogeochemistry and microbial communities in pockmarks. Geochim. Cosmochim. Acta 334, 14–44 (2022).

    Article  CAS  ADS  Google Scholar 

  257. Liu, J. & Du, J. Submarine groundwater discharge impacts on marine aquaculture: a mini review and perspective. Curr. Opin. Environ. Sci. Health 26, 100325 (2022).

    Article  Google Scholar 

  258. Prouty, N. G. et al. Carbonate system parameters of an algal-dominated reef along West Maui. Biogeosciences 15, 2467–2480 (2018).

    Article  CAS  ADS  Google Scholar 

  259. Richardson, C. M., Dulai, H., Popp, B. N., Ruttenberg, K. & Fackrell, J. K. Submarine groundwater discharge drives biogeochemistry in two Hawaiian reefs. Limnol. Oceanogr. 62, S348–S363 (2017).

    Article  CAS  ADS  Google Scholar 

  260. Cyronak, T., Santos, I. R., Erler, D. V. & Eyre, B. D. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands). Biogeosciences 10, 2467–2480 (2013).

    Article  CAS  ADS  Google Scholar 

  261. Crook, E., Potts, D., Rebolledo-Vieyra, M., Hernandez, L. & Paytan, A. Calcifying coral abundance near low-pH springs: implications for future ocean acidification. Coral Reefs 31, 239–245 (2012).

    Article  ADS  Google Scholar 

  262. Wang, G. et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system. Environ. Sci. Technol. 48, 13069–13075 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  263. Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  264. Schönberg, C. H., Fang, J. K., Carreiro-Silva, M., Tribollet, A. & Wisshak, M. Bioerosion: the other ocean acidification problem. ICES J. Mar. Sci. 74, 895–925 (2017).

    Article  Google Scholar 

  265. Yang, G. et al. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands. Atmos. Environ. 152, 323–329 (2017).

    Article  CAS  ADS  Google Scholar 

  266. Lecher, A. L. & Mackey, K. R. Synthesizing the effects of submarine groundwater discharge on marine biota. Hydrology 5, 60 (2018).

    Article  Google Scholar 

  267. Amato, D. W., Bishop, J. M., Glenn, C. R., Dulai, H. & Smith, C. M. Impact of submarine groundwater discharge on marine water quality and reef biota of Maui. PLoS ONE 11, e0165825 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Smith, C. G. & Swarzenski, P. W. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol. Oceanogr. 57, 471–485 (2012).

    Article  CAS  ADS  Google Scholar 

  269. Garcés, E., Basterretxea, G. & Tovar-Sánchez, A. Changes in microbial communities in response to submarine groundwater input. Mar. Ecol. Prog. Ser. 438, 47–58 (2011).

    Article  ADS  Google Scholar 

  270. Montiel, D., Lamore, A., Stewart, J. & Dimova, N. Is submarine groundwater discharge (SGD) important for the historical fish kills and harmful algal bloom events of Mobile Bay? Estuar. Coast. 42, 470–493 (2019).

    Article  CAS  Google Scholar 

  271. Shoji, J. & Tominaga, O. The Water-Energy-Food Nexus 117–131 (Springer, 2018).

  272. Starke, C., Ekau, W. & Moosdorf, N. Enhanced productivity and fish abundance at a submarine spring in a coastal lagoon on Tahiti, French Polynesia. Front. Mar. Sci. 6, 809 (2020).

    Article  Google Scholar 

  273. Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  274. Crook, E. D., Cohen, A. L., Rebolledo-Vieyra, M., Hernandez, L. & Paytan, A. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc. Natl Acad. Sci. USA 110, 11044–11049 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  275. Aguilar, C. et al. Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics 20, 1–13 (2019).

    Article  Google Scholar 

  276. Adyasari, D. et al. Terrestrial nutrients and dissolved organic matter input to the coral reef ecosystem via submarine springs. ACS EST Water 1, 1887–1900 (2021).

    Article  CAS  Google Scholar 

  277. Jokiel, P., Hunter, C., Taguchi, S. & Watarai, L. Ecological impact of a fresh-water ‘reef kill’ in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12, 177–184 (1993).

    Article  ADS  Google Scholar 

  278. Shamberger, K. E., Lentz, S. J. & Cohen, A. L. Low and variable ecosystem calcification in a coral reef lagoon under natural acidification. Limnol. Oceanogr. 63, 714–730 (2018).

    Article  CAS  ADS  Google Scholar 

  279. Dias, M. et al. Oxidative stress on scleractinian coral fragments following exposure to high temperature and low salinity. Ecol. Indic. 107, 105586 (2019).

    Article  CAS  Google Scholar 

  280. Dulai, H., Smith, C. M., Amato, D. W., Gibson, V. & Bremer, L. L. Risk to native marine macroalgae from land‐use and climate change‐related modifications to groundwater discharge in Hawai‘i. Limnol. Oceanogr. Lett. 8, 141–153 (2023).

    Article  Google Scholar 

  281. Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).

    Article  Google Scholar 

  282. Parsons, M. L. et al. A multivariate assessment of the coral ecosystem health of two embayments on the lee of the island of Hawai ‘i. Mar. Pollut. Bull. 56, 1138–1149 (2008).

    Article  CAS  PubMed  Google Scholar 

  283. Costa, O. S. Jr, Nimmo, M. & Attrill, M. J. Coastal nutrification in Brazil: a review of the role of nutrient excess on coral reef demise. J. South Am. Earth Sci. 25, 257–270 (2008).

    Article  ADS  Google Scholar 

  284. Nordemar, I., Nyström, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).

    Article  CAS  Google Scholar 

  285. Serrano, X. M. et al. Effects of thermal stress and nitrate enrichment on the larval performance of two Caribbean reef corals. Coral Reefs 37, 173–182 (2018).

    Article  ADS  Google Scholar 

  286. Archibald, J. P., Santos, I. R. & Davis, K. L. Diel versus tidal cycles of chromophoric dissolved organic matter (CDOM) and radon in a coral reef in the Great Barrier Reef. Regional Stud. Mar. Sci. 29, 100659 (2019).

    Article  Google Scholar 

  287. Becker, D. M. et al. Chronic low-level nutrient enrichment benefits coral thermal performance in a fore reef habitat. Coral Reefs 40, 1637–1655 (2021).

    Article  Google Scholar 

  288. Dunn, J. G., Sammarco, P. W. & LaFleur, G. Jr Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: a controlled experimental approach. J. Exp. Mar. Biol. Ecol. 411, 34–44 (2012).

    Article  CAS  Google Scholar 

  289. Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  290. Dierssen, H. M., Smith, R. C. & Vernet, M. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc. Natl Acad. Sci. USA 99, 1790–1795 (2002).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  291. Pabi, S., van Dijken, G. L. & Arrigo, K. R. Primary production in the Arctic Ocean, 1998–2006. J. Geophys. Res. Oceans 113, JC004578 (2008).

    Article  Google Scholar 

  292. Moore, C. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  CAS  ADS  Google Scholar 

  293. Rozell, D. J. Overestimating coastal urban resilience: the groundwater problem. Cities 118, 103369 (2021).

    Article  Google Scholar 

  294. Michael, H. A., Post, V. E., Wilson, A. M. & Werner, A. D. Science, society, and the coastal groundwater squeeze. Water Resour. Res. 53, 2610–2617 (2017).

    Article  ADS  Google Scholar 

  295. Cui, D., Liang, S. & Wang, D. Observed and projected changes in global climate zones based on Köppen climate classification. Wiley Interdiscip. Rev. Clim. Change 12, e701 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We thank coastal groundwater community members for sharing their initial thoughts on climate change impacts with us (M. Saito, P. Clement, C. Shuler, S. Rahman, J. Cable, H. Bokuniewicz, C. Smith, A. Sawyer, G. Chaillou, W. Burnett, A. Wilson, K. Burnett, M. Savatier, T. McKenzie and A. Lecher) and S. Dykstra for their input. C.R.-G was supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) through the Ramon y Cajal contract (RYC2019-026758-I) with additional funding from the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S) funded by AEI 10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Contributions

C.M.R., K.L.D., C.R.-G., J.A.G., H.A.M., A.P., N.M. and A.P. all contributed to the discussion of content, writing and review/editing of the paper before submission.

Corresponding author

Correspondence to C. M. Richardson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Dongmei Han and Alicia Wilson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, C.M., Davis, K.L., Ruiz-González, C. et al. The impacts of climate change on coastal groundwater. Nat Rev Earth Environ 5, 100–119 (2024). https://doi.org/10.1038/s43017-023-00500-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00500-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing