Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The anthropogenic salt cycle

Abstract

Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural and anthropogenic salt cycles.
Fig. 2: Salt production and consumption trends.
Fig. 3: Global heterogeneity in environmental salinity.
Fig. 4: Sodium and chloride concentrations in rivers.

Similar content being viewed by others

References

  1. Jackson, R. B. & Jobbágy, E. G. From icy roads to salty streams. Proc. Natl Acad. Sci. USA 102, 14487–14488 (2005).

    Article  Google Scholar 

  2. Anning, D. W. & Flynn, M. E. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States (USGS, 2014).

  3. Dugan, H. A. & Arnott, S. E. The ecosystem implications of road salt as a pollutant of freshwaters. Wiley Interdiscip. Rev. Water 10, e1629 (2022).

    Article  Google Scholar 

  4. Cañedo-Argüelles, M. et al. Effects of potash mining on river ecosystems: an experimental study. Environ. Pollut. 224, 759–770 (2017).

    Article  Google Scholar 

  5. US Geological Survey. How large is a lifetime supply of minerals for the average person? USGS https://www.usgs.gov/faqs/how-large-a-lifetime-supply-minerals-average-person (2023).

  6. Grant, S. B. et al. Can common pool resource theory catalyze stakeholder-driven solutions to the freshwater salinization syndrome? Environ. Sci. Technol. 56, 13517–13527 (2022).

    Article  Google Scholar 

  7. Kaushal, S. S. et al. Five state factors control progressive stages of freshwater salinization syndrome. Limnol. Oceanogr. Lett. 8, 190–211 (2023).

    Article  Google Scholar 

  8. Kaushal, S. S. et al. Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154, 255–292 (2021).

    Article  Google Scholar 

  9. Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).

    Article  Google Scholar 

  10. Kaushal, S. S. et al. Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. Phil. Trans. R. Soc. B 374, 20180017 (2019).

    Article  Google Scholar 

  11. Kaushal, S. S. et al. Making ‘chemical cocktails’ — evolution of urban geochemical processes across the periodic table of elements. Appl. Geochem. 119, 104632 (2020).

    Article  Google Scholar 

  12. Bhide, S. V. et al. Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nat. Sustain. 4, 699–707 (2021).

    Article  Google Scholar 

  13. DeVilbiss, S. E., Steele, M. K., Krometis, L.-A. H. & Badgley, B. D. Freshwater salinization increases survival of Escherichia coli and risk of bacterial impairment. Water Res. 191, 116812 (2021).

    Article  Google Scholar 

  14. Johnsen, H. K., Rueslatten, H. G. & Hovland, M. T. The ‘global salt cycle’: formation of giant salt accumulations, a result of subduction, mantle upwelling, and rifting. Preprint at https://doi.org/10.20944/preprints202107.0377.v1 (2021).

  15. Kostick, D. S. Material flow of salt (USGS, 1993).

  16. Meybeck, M. in Treatise on Geochemistry Vol. 5 (eds Holland, H. D. & Turekian, K. K.) 207–223 (Elsevier, 2003).

  17. Anderson, N. L. & Knapp, R. An overview of some of the large scale mechanisms of salt dissolution in western Canada. Geophysics 58, 1375–1387 (1993).

    Article  Google Scholar 

  18. Anderson, R. Y. & Kirkland, D. W. Dissolution of salt deposits by brine density flow. Geology 8, 66 (1980).

    Article  Google Scholar 

  19. Jenyon, M. K. Seismic expression of salt dissolution-related features in the North Sea. Bull. Can. Pet. Geol. 36, 274–283 (1988).

    Google Scholar 

  20. Anderson, R. Y. Deep-seated salt dissolution in the Delaware Basin, Texas, and New Mexico. New Mexico Geol. Soc. 10, 133–145 (1981).

    Google Scholar 

  21. Cooper, A. H. in Geological Hazards in the UK: Their Occurrence, Monitoring and Mitigation Ch. 14 (eds Giles, D. P. & Griffiths, J. S.) (Geological Society of London, 2020).

  22. Smith, J. E. & Santamarina, J. C. Red sea evaporites: formation, creep and dissolution. Earth Sci. Rev. 232, 104115 (2022).

    Article  Google Scholar 

  23. Hudec, M. R. & Jackson, M. P. A. Terra infirma: understanding salt tectonics. Earth Sci. Rev. 82, 1–28 (2007).

    Article  Google Scholar 

  24. Hopmans, J. W. et al. in Advances in Agronomy Vol. 169 Ch. 1 (ed. Sparks, D. L.) 1–191 (Academic, 2021).

  25. Daliakopoulos, I. N. et al. The threat of soil salinity: a European scale review. Sci. Total Environ. 573, 727–739 (2016).

    Article  Google Scholar 

  26. White, P. J. & Broadley, M. R. Chloride in soils and its uptake and movement within the plant: a review. Ann. Bot. 88, 967–988 (2001).

    Article  Google Scholar 

  27. Ali, S. et al. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Env. Sci. Pollut. Res. 24, 12700–12712 (2017).

    Article  Google Scholar 

  28. Taylor, L. L. et al. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7, 171–191 (2009).

    Article  Google Scholar 

  29. Likens, G. E. et al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41, 89–173 (1998).

    Article  Google Scholar 

  30. Leri, A. C. & Myneni, S. C. B. Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Glob. Biogeochem. Cycles 24, GB4021 (2010).

    Article  Google Scholar 

  31. Sverdrup, H. Chemical weathering of soil minerals and the role of biological processes. Fungal Biol. Rev. 23, 94–100 (2009).

    Article  Google Scholar 

  32. Tripler, C. E., Kaushal, S. S., Likens, G. E. & Todd Walter, M. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).

    Article  Google Scholar 

  33. Elmore, A. J., Kaste, J. M., Okin, G. S. & Fantle, M. S. Groundwater influences on atmospheric dust generation in deserts. J. Arid Environ. 72, 1753–1765 (2008).

    Article  Google Scholar 

  34. Li, X., Chang, S. X. & Salifu, K. F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environ. Rev. 22, 41–50 (2014).

    Article  Google Scholar 

  35. Schlesinger, W. H. The formation of caliche in soils of the Mojave Desert, California. Geochim. Cosmochim. Acta 49, 57–66 (1985).

    Article  Google Scholar 

  36. Stallard, R. F. Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Annu. Rev. Earth Planet. Sci. 23, 11–39 (1995).

    Article  Google Scholar 

  37. Shields, G. A. & Mills, B. J. W. Evaporite weathering and deposition as a long-term climate forcing mechanism. Geology 49, 299–303 (2020).

    Article  Google Scholar 

  38. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  Google Scholar 

  39. Vodyanitskii, Yu. N. & Makarov, M. I. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: a review. Eurasian Soil Sci. 50, 1025–1032 (2017).

    Article  Google Scholar 

  40. Kaushal, S. S. et al. Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trends. Front. Environ. Sci. 11, 1122485 (2023).

    Article  Google Scholar 

  41. Domenico, P. A. & Robbins, G. A. The displacement of connate water from aquifers. Geol. Soc. Am. Bull. 96, 328–335 (1985).

    Article  Google Scholar 

  42. Yager, R. M., McCoy, K. J., Voss, C. I., Sanford, W. E. & Winston, R. B. The role of uplift and erosion in the persistence of saline groundwater in the shallow subsurface. Geophys. Res. Lett. 44, 3672–3681 (2017).

    Article  Google Scholar 

  43. Younger, P. L., Boyce, A. J. & Waring, A. J. Chloride waters of Great Britain revisited: from subsea formation waters to onshore geothermal fluids. Proc. Geol. Assoc. 126, 453–465 (2015).

    Article  Google Scholar 

  44. Stotler, R. L., Frape, S. K., Ruskeeniemi, T., Pitkänen, P. & Blowes, D. W. The interglacial–glacial cycle and geochemical evolution of Canadian and Fennoscandian Shield groundwaters. Geochim. Cosmochim. Acta 76, 45–67 (2012).

    Article  Google Scholar 

  45. Li, C., Gao, X., Li, S. & Bundschuh, J. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Env. Sci. Pollut. Res. 27, 41157–41174 (2020).

    Article  Google Scholar 

  46. Tosaki, Y. et al. Deep incursion of seawater into the Hiroshima Granites during the Holocene transgression: evidence from 36Cl age of saline groundwater in the Hiroshima area, Japan. Geochem. J. 51, 263–275 (2017).

    Article  Google Scholar 

  47. Manca, F., Capelli, G. & Tuccimei, P. Sea salt aerosol groundwater salinization in the Litorale Romano Natural Reserve (Rome, Central Italy). Env. Earth Sci. 73, 4179–4190 (2015).

    Article  Google Scholar 

  48. Mackenzie, F. T. & Garrels, R. M. Chemical mass balance between rivers and oceans. Am. J. Sci. 264, 507–525 (1966).

    Article  Google Scholar 

  49. Mackenzie, F. T. & Kump, L. R. Reverse weathering, clay mineral formation, and oceanic element cycles. Science 270, 586–586 (1995).

    Article  Google Scholar 

  50. Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    Article  Google Scholar 

  51. Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).

    Article  Google Scholar 

  52. Briggs, L. I. Evaporite facies. J. Sediment. Res. 28, 46–56 (1958).

    Google Scholar 

  53. Hovland, M., Rueslåtten, H. & Johnsen, H. K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review, part 2: application of a new salt-forming model on selected cases. Mar. Pet. Geol. 92, 128–148 (2018).

    Article  Google Scholar 

  54. Hovland, M., Rueslåtten, H. & Johnsen, H. K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: a review, part 1: towards a new understanding. Mar. Pet. Geol. 92, 987–1009 (2018).

    Article  Google Scholar 

  55. Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).

    Article  Google Scholar 

  56. Erickson, D. J. III & Duce, R. A. On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14079–14088 (1988).

    Article  Google Scholar 

  57. Kohfeld, K. E. & Harrison, S. P. DIRTMAP: the geological record of dust. Earth Sci. Rev. 54, 81–114 (2001).

    Article  Google Scholar 

  58. Lawrence, C. R. & Neff, J. C. The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem. Geol. 267, 46–63 (2009).

    Article  Google Scholar 

  59. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 1002 (2002).

    Article  Google Scholar 

  60. Feger, K. H. in Magnesium Deficiency in Forest Ecosystems (eds Hüttl, R. F. & Schaaf, W.) 67–99 (Springer, 1997).

  61. Middleton, N. J. Desert dust hazards: a global review. Aeolian Res. 24, 53–63 (2017).

    Article  Google Scholar 

  62. Skiles, S. M. et al. Implications of a shrinking Great Salt Lake for dust on snow deposition in the Wasatch Mountains, UT, as informed by a source to sink case study from the 13–14 April 2017 dust event. Environ. Res. Lett. 13, 124031 (2018).

    Article  Google Scholar 

  63. Fischer, H., Siggaard-Andersen, M.-L., Ruth, U., Röthlisberger, R. & Wolff, E. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys. 45, RG1002 (2007).

    Article  Google Scholar 

  64. Tjandraatmadja, G., Pollard, C., Sheedy, C. & Gozukra, Y. Sources of contaminants in domestic wastewater: nutrients and additional elements from household products (CSIRO, 2010).

  65. Diaper, C. et al. Sources of critical contaminants in domestic wastewater: contaminant loads from household appliances (CSIRO, 2008).

  66. US Geological Survey. Minerals Yearbook, Volume 1: Metals and Minerals (USGS, 2023).

  67. Kaushal, S. S. et al. Freshwater salinization syndrome alters retention and release of chemical cocktails along flowpaths: from stormwater management to urban streams. Freshw. Sci. 41, 420–441 (2022).

    Article  Google Scholar 

  68. Kaushal, S. S. et al. Increased river alkalinization in the Eastern U.S. Environ. Sci. Technol. 47, 10302–10311 (2013).

    Google Scholar 

  69. Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl Acad. Sci. USA 102, 13517–13520 (2005).

    Article  Google Scholar 

  70. Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. USA 114, 4453–4458 (2017).

    Article  Google Scholar 

  71. Drake, T. W. et al. Increasing alkalinity export from large Russian arctic rivers. Environ. Sci. Technol. 52, 8302–8308 (2018).

    Article  Google Scholar 

  72. Gomez, F. A., Wanninkhof, R., Barbero, L. & Lee, S.-K. Increasing river alkalinity slows ocean acidification in the Northern Gulf of Mexico. Geophys. Res. Lett. 48, e2021GL096521 (2021).

    Article  Google Scholar 

  73. Cai, W.-J. et al. A comparative overview of weathering intensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont. Shelf Res. 28, 1538–1549 (2008).

    Article  Google Scholar 

  74. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article  Google Scholar 

  75. Kaushal, S. S. et al. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl. Geochem. 83, 121–135 (2017).

    Article  Google Scholar 

  76. Ross, M. R. V., Nippgen, F., Hassett, B. A., McGlynn, B. L. & Bernhardt, E. S. Pyrite oxidation drives exceptionally high weathering rates and geologic CO2 release in mountaintop-mined landscapes. Glob. Biogeochem. Cycles 32, 1182–1194 (2018).

    Article  Google Scholar 

  77. Robinson, H. K. & Hasenmueller, E. A. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603–604, 94–108 (2017).

    Article  Google Scholar 

  78. Bester, M. L., Frind, E. O., Molson, J. W. & Rudolph, D. L. Numerical investigation of road salt impact on an urban wellfield. Groundwater 44, 165–175 (2006).

    Article  Google Scholar 

  79. Stets, E. G., Kelly, V. J. & Crawford, C. G. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification. Sci. Total Environ. 488–489, 280–289 (2014).

    Article  Google Scholar 

  80. Raymond, P. A., Oh, N.-H., Turner, R. E. & Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi river. Nature 451, 449–452 (2008).

    Article  Google Scholar 

  81. Yusta-García, R., Orta-Martínez, M., Mayor, P., González-Crespo, C. & Rosell-Melé, A. Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers. Environ. Pollut. 225, 370–380 (2017).

    Article  Google Scholar 

  82. Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H. & Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48, 8334–8348 (2014).

    Article  Google Scholar 

  83. Badaruddin, S., Werner, A. D. & Morgan, L. K. Water table salinization due to seawater intrusion. Water Resour. Res. 51, 8397–8408 (2015).

    Article  Google Scholar 

  84. Baraza, T. & Hasenmueller, E. A. Road salt retention and transport through vadose zone soils to shallow groundwater. Sci. Total Environ. 755, 142240 (2021).

    Article  Google Scholar 

  85. Robinson, H. K., Hasenmueller, E. A. & Chambers, L. G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 83, 72–85 (2017).

    Article  Google Scholar 

  86. Cao, T., Han, D. & Song, X. Past, present, and future of global seawater intrusion research: a bibliometric analysis. J. Hydrol. 603, 126844 (2021).

    Article  Google Scholar 

  87. Jasechko, S., Perrone, D., Seybold, H., Fan, Y. & Kirchner, J. W. Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat. Commun. 11, 3229 (2020).

    Article  Google Scholar 

  88. Panthi, J., Pradhanang, S. M., Nolte, A. & Boving, T. B. Saltwater intrusion into coastal aquifers in the contiguous United States — a systematic review of investigation approaches and monitoring networks. Sci. Total Environ. 836, 155641 (2022).

    Article  Google Scholar 

  89. Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209 (2018).

    Article  Google Scholar 

  90. US Food and Drug Administration. Sodium in your diet: use the nutrition facts label and reduce your intake (FDA, 2022).

  91. Tjandraatmadja, G., Pollard, C., Gozukara, Y. & Sheedy, C. Origins of priority contaminants in household wastewater — an experimental assessment (CSIRO, 2009).

  92. van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Datasets of the phosphorus content in laundry and dishwasher detergents. Data Brief 21, 2284–2289 (2018).

    Article  Google Scholar 

  93. Ivushkin, K. et al. Global mapping of soil salinity change. Remote Sens. Environ. 231, 111260 (2019).

    Article  Google Scholar 

  94. Food and Agriculture Organization of the United Nations. Saline soils and their management. FAO https://www.fao.org/3/x5871e/x5871e04.htm (2016).

  95. Mahajan, S. & Tuteja, N. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444, 139–158 (2005).

    Article  Google Scholar 

  96. Litalien, A. & Zeeb, B. Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 698, 134235 (2020).

    Article  Google Scholar 

  97. Jeppesen, E., Beklioğlu, M., Özkan, K. & Akyürek, Z. Salinization increase due to climate change will have substantial negative effects on inland waters: a call for multifaceted research at the local and global scale. Innovation 1, 100030 (2020).

    Google Scholar 

  98. Letolle, R., Aladin, N., Filipov, I. & Boroffka, N. G. O. The future chemical evolution of the Aral Sea from 2000 to the years 2050. Mitig. Adapt. Strateg. Glob. Change 10, 51–70 (2005).

    Article  Google Scholar 

  99. Darst, B. C. Development of the potash fertilizer industry. Fertil. Res. 28, 103–107 (1991).

    Article  Google Scholar 

  100. David, M. B., Mitchell, C. A., Gentry, L. E. & Salemme, R. K. Chloride sources and losses in two tile-drained agricultural watersheds. J. Environ. Qual. 45, 341–348 (2016).

    Article  Google Scholar 

  101. Drew, L. J., Langer, W. H. & Sachs, J. S. Environmentalism and natural aggregate mining. Nat. Resour. Res. 11, 19–28 (2002).

    Article  Google Scholar 

  102. Winkler, E. M. Weathering and weathering rates of natural stone. Environ. Geol. Water Sci. 9, 85–92 (1987).

    Article  Google Scholar 

  103. Abuduwaili, J., Liu, D. & Wu, G. Saline dust storms and their ecological impacts in arid regions: saline dust storms and their ecological impacts in arid regions. J. Arid Land 2, 144–150 (2010).

    Article  Google Scholar 

  104. Gholampour, A. et al. Characterization of saline dust emission resulted from Urmia Lake drying. J. Env. Health Sci. Eng. 13, 82 (2015).

    Article  Google Scholar 

  105. Neff, J. C. et al. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 1, 189–195 (2008).

    Article  Google Scholar 

  106. Goudie, A. S. & Middleton, N. J. The changing frequency of dust storms through time. Clim. Change 20, 197–225 (1992).

    Article  Google Scholar 

  107. Kolesar, K. R. et al. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application. Atmos. Environ. 177, 195–202 (2018).

    Article  Google Scholar 

  108. McNamara, S. M. et al. Observation of road salt aerosol driving inland wintertime atmospheric chlorine chemistry. ACS Cent. Sci. 6, 684–694 (2020).

    Article  Google Scholar 

  109. Kakavas, S. & Pandis, S. N. Effects of urban dust emissions on fine and coarse PM levels and composition. Atmos. Environ. 246, 118006 (2021).

    Article  Google Scholar 

  110. Parisi, A., Monno, V. & Fidelibus, M. D. Cascading vulnerability scenarios in the management of groundwater depletion and salinization in semi-arid areas. Int. J. Disaster Risk Reduct. 30, 292–305 (2018).

    Article  Google Scholar 

  111. Hintz, W. D. et al. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length. Ecol. Appl. 27, 833–844 (2017).

    Article  Google Scholar 

  112. Hintz, W. D., Jones, D. K. & Relyea, R. A. Evolved tolerance to freshwater salinization in zooplankton: life-history trade-offs, cross-tolerance and reducing cascading effects. Phil. Trans. R. Soc. B 374, 20180012 (2019).

    Article  Google Scholar 

  113. Moffett, E. R., Baker, H. K., Bonadonna, C. C., Shurin, J. B. & Symons, C. C. Cascading effects of freshwater salinization on plankton communities in the Sierra Nevada. Limnol. Oceanogr. Lett. 8, 30–37 (2023).

    Article  Google Scholar 

  114. Latham, J. & Smith, M. H. Effect on global warming of wind-dependent aerosol generation at the ocean surface. Nature 347, 372–373 (1990).

    Article  Google Scholar 

  115. Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 35, 47–72 (2007).

    Article  Google Scholar 

  116. Vengosh, A. Salinization and saline environments. Treatise Geochem. 9, 35 (2003).

    Google Scholar 

  117. Pereira, C. S., Lopes, I., Abrantes, I., Sousa, J. P. & Chelinho, S. Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach. Phil. Trans. R. Soc. B 374, 20180251 (2019).

    Article  Google Scholar 

  118. Hintz, W. D. et al. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc. Natl Acad. Sci. USA 119, e2115033119 (2022).

    Article  Google Scholar 

  119. Cunillera-Montcusí, D. et al. Freshwater salinisation: a research agenda for a saltier world. Trends Ecol. Evol. 37, 440–453 (2022).

    Article  Google Scholar 

  120. Cañedo-Argüelles, M. et al. Salinisation of rivers: an urgent ecological issue. Environ. Pollut. 173, 157–167 (2013).

    Article  Google Scholar 

  121. Kinsman‐Costello, L. et al. Mud in the city: effects of freshwater salinization on inland urban wetland nitrogen and phosphorus availability and export. Limnol. Oceanogr. Lett. 8, 112–130 (2023).

    Article  Google Scholar 

  122. Kaushal, S. S. Increased salinization decreases safe drinking water. Environ. Sci. Technol. 50, 2765–2766 (2016).

    Article  Google Scholar 

  123. Jardine, A., Speldewinde, P., Carver, S. & Weinstein, P. Dryland salinity and ecosystem distress syndrome: human health implications. Ecohealth 4, 10–17 (2007).

    Article  Google Scholar 

  124. Shammi, M., Rahman, Md. M., Bondad, S. & Bodrud-Doza, Md. Impacts of salinity intrusion in community health: a review of experiences on drinking water sodium from coastal areas of Bangladesh. Healthcare 7, 50 (2019).

    Article  Google Scholar 

  125. Khan, A. E. et al. Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: a case-control study. PLoS ONE 9, e108715 (2014).

    Article  Google Scholar 

  126. Small, I., van der Meer, J. & Upshur, R. E. Acting on an environmental health disaster: the case of the Aral Sea. Environ. Health Perspect. 109, 547–549 (2001).

    Article  Google Scholar 

  127. Jones, B. A. & Fleck, J. Shrinking lakes, air pollution, and human health: evidence from California’s Salton Sea. Sci. Total Environ. 712, 136490 (2020).

    Article  Google Scholar 

  128. Ghale, Y. A. G., Tayanc, M. & Unal, A. Dried bottom of Urmia Lake as a new source of dust in the northwestern Iran: understanding the impacts on local and regional air quality. Atmos. Environ. 262, 118635 (2021).

    Article  Google Scholar 

  129. Lazur, A., VanDerwerker, T. & Koepenick, K. Review of implications of road salt use on groundwater quality — corrosivity and mobilization of heavy metals and radionuclides. Water Air Soil Pollut. 231, 474 (2020).

    Article  Google Scholar 

  130. McNaboe, L. A., Robbins, G. A. & Dietz, M. E. Mobilization of radium and radon by deicing salt contamination of groundwater. Water Air Soil Pollut. 228, 94 (2017).

    Article  Google Scholar 

  131. Vinson, D. S. et al. Occurrence and mobilization of radium in fresh to saline coastal groundwater inferred from geochemical and isotopic tracers (Sr, S, O, H, Ra, Rn). Appl. Geochem. 38, 161–175 (2013).

    Article  Google Scholar 

  132. Tamamura, S. et al. Salinity dependence of 226Ra adsorption on montmorillonite and kaolinite. J. Radioanal. Nucl. Chem. 299, 569–575 (2014).

    Article  Google Scholar 

  133. Edwards, M. & Triantafyllidou, S. Chloride‐to‐sulfate mass ratio and lead leaching to water. J. Am. Water Work. Assoc. 99, 96–109 (2007).

    Article  Google Scholar 

  134. Likens, G. E., Driscoll, C. T. & Buso, D. C. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272, 244–246 (1996).

    Article  Google Scholar 

  135. Bai, J. et al. Nitrification potential of marsh soils from two natural saline–alkaline wetlands. Biol. Fertil. Soils 46, 525–529 (2010).

    Article  Google Scholar 

  136. Duan, S. & Kaushal, S. S. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences 12, 7331–7347 (2015).

    Article  Google Scholar 

  137. Van Vliet, M. T. H., Flörke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).

    Article  Google Scholar 

  138. Steffen, W. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  139. Weinberger, R., Lyakhovsky, V., Baer, G. & Begin, Z. B. Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: implications for effective viscosity of rock salt. Geochem. Geophys. Geosyst. 7, Q05014 (2006).

    Article  Google Scholar 

  140. Bruthans, J. et al. Holocene marine terraces on two salt diapirs in the Persian Gulf, Iran: age, depositional history and uplift rates. J. Quat. Sci. 21, 843–857 (2006).

    Article  Google Scholar 

  141. Weinberg, R. F. The upward transport of inclusions in Newtonian and power-law salt diapirs. Tectonophysics 228, 141–150 (1993).

    Article  Google Scholar 

  142. Wilkinson, B. H., McElroy, B. J., Kesler, S. E., Peters, S. E. & Rothman, E. D. Global geologic maps are tectonic speedometers — rates of rock cycling from area-age frequencies. Geol. Soc. Am. Bull. 121, 760–779 (2009).

    Article  Google Scholar 

  143. Stockmann, U., Minasny, B. & McBratney, A. B. How fast does soil grow? Geoderma 216, 48–61 (2014).

    Article  Google Scholar 

  144. Wu, C., Lin, Z. & Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 20, 10401–10425 (2020).

    Article  Google Scholar 

  145. Grythe, H., Ström, J., Krejci, R., Quinn, P. & Stohl, A. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 14, 1277–1297 (2014).

    Article  Google Scholar 

  146. National Atmospheric Deposition Program. National trends network gradient map. NADP https://nadp.slh.wisc.edu/maps-data/ntn-gradient-maps (2021).

  147. Likens, G. E. Biogeochemistry of a Forested Ecosystem 3rd edn (Springer, 2013).

  148. Schlesinger, W. H. Community structure, dynamics and nutrient cycling in the Okefenokee Cypress swamp-forest. Ecol. Monogr. 48, 43–65 (1978).

    Article  Google Scholar 

  149. Lucas, Y. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu. Rev. Earth Planet. Sci. 13, 135–163 (2001).

    Article  Google Scholar 

  150. van der Heijden, G. et al. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: results from an isotopic labeling study in a beech forest on base-poor soil. Biogeochemistry 122, 375–393 (2015).

    Article  Google Scholar 

  151. Rose, D. A., Konukcu, F. & Gowing, J. W. Effect of watertable depth on evaporation and salt accumulation from saline groundwater. Soil Res. 43, 565 (2005).

    Article  Google Scholar 

  152. Gran, M. et al. Dynamics of water vapor flux and water separation processes during evaporation from a salty dry soil. J. Hydrol. 396, 215–220 (2011).

    Article  Google Scholar 

  153. Yu, L. A global relationship between the ocean water cycle and near-surface salinity. J. Geophys. Res. 116, C10025 (2011).

    Article  Google Scholar 

  154. Qu, T., Gao, S. & Fukumori, I. What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett. 38, L07602 (2011).

    Article  Google Scholar 

  155. Milliman, J. D. & Droxler, A. W. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol. Rundsch. 85, 496–504 (1996).

    Article  Google Scholar 

  156. Krissansen-Totton, J. & Catling, D. C. A coupled carbon-silicon cycle model over Earth history: reverse weathering as a possible explanation of a warm mid-Proterozoic climate. Earth Planet. Sci. Lett. 537, 116181 (2020).

    Article  Google Scholar 

  157. Von Damm, K. L. et al. Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    Article  Google Scholar 

  158. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  159. Lake, R. A. & Lewis, E. L. Salt rejection by sea ice during growth. J. Geophys. Res. 75, 583–597 (1970).

    Article  Google Scholar 

  160. Dickson, R. R. & Brown, J. The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res. 99, 12319–12341 (1994).

    Article  Google Scholar 

  161. Worster, M. G. & Rees Jones, D. W. Sea-ice thermodynamics and brine drainage. Phil. Trans. R. Soc. A 373, 20140166 (2015).

    Article  Google Scholar 

  162. Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. Brine fluxes from growing sea ice. Geophys. Res. Lett. 38, L04501 (2011).

    Article  Google Scholar 

  163. Wakatsuchi, M. & Ono, N. Measurements of salinity and volume of brine excluded from growing sea ice. J. Geophys. Res. 88, 2943–2951 (1983).

    Article  Google Scholar 

  164. Gherardi, J.-M. et al. Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation. Earth Planet. Sci. Lett. 240, 710–723 (2005).

    Article  Google Scholar 

  165. Bresler, E. Transport of salts in soils and subsoils. Agric. Water Manag. 4, 35–62 (1981).

    Article  Google Scholar 

  166. Wagenet, R. J. in Chemical Mobility and Reactivity in Soil Systems Ch. 9 (eds Nelson, D. W., Elrick, D. E. & Tanji, K. K.) 123–140 (Wiley, 1983).

  167. Howe, J. A. & Smith, A. P. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J. et al.) 23–55 (Elsevier, 2021).

  168. Danielsen, S. W. & Kuznetsova, E. in Engineering Geology for Society and Territory Vol. 5 (eds Lollino, G. et al.) 41–44 (Springer, 2015).

  169. Fookes, P. G., Gourley, C. S. & Ohikere, C. Rock weathering in engineering time. Q. J. Eng. Geol. 21, 33–57 (1988).

    Article  Google Scholar 

  170. Kaonga, C. C., Kosamu, I. B. M. & Utembe, W. R. A review of metal levels in urban dust, their methods of determination, and risk assessment. Atmosphere 12, 891 (2021).

    Article  Google Scholar 

  171. Tegen, I., Lacis, A. & Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 380, 419–422 (1996).

    Article  Google Scholar 

  172. Willison, M. J., Clarke, A. G. & Zeki, E. M. Chloride aerosols in central northern England. Atmos. Environ. 23, 2231–2239 (1989).

    Article  Google Scholar 

  173. Thorslund, J., Bierkens, M. F. P., Oude Essink, G. H. P., Sutanudjaja, E. H. & van Vliet, M. T. H. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 12, 4232 (2021).

    Article  Google Scholar 

  174. Yakirevich, A. et al. Modeling the impact of solute recycling on groundwater salinization under irrigated lands: a study of the Alto Piura aquifer, Peru. J. Hydrol. 482, 25–39 (2013).

    Article  Google Scholar 

  175. Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).

    Article  Google Scholar 

  176. Hinckley, E.-L. S., Crawford, J. T., Fakhraei, H. & Driscoll, C. T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 13, 597–604 (2020).

    Article  Google Scholar 

  177. Page, K. L. et al. Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: a review. Soil Res. 47, 747–762 (2009).

    Article  Google Scholar 

  178. Thorslund, J. & van Vliet, M. T. H. A global dataset of surface water and groundwater salinity measurements from 1980–2019. Sci. Data 7, 231 (2020).

    Article  Google Scholar 

  179. United Nations Environment Programme. GEMStat database of the Global Environment Monitoring System for Freshwater (GEMS/Water) programme. GEMStat https://gemstat.org/data/data-portal (2018).

  180. Environment and Climate Change Canada. National long-term water quality monitoring data. ECCC https://data.ec.gc.ca/data/substances/monitor/national-long-term-water-qualitymonitoring-data (2022).

  181. US Geological Survey. USGS water data for the nation. USGS https://waterdata.usgs.gov/nwis (2021).

  182. Elvidge, C. D. et al. Global distribution and density of constructed impervious surfaces. Sensors 7, 1962–1979 (2007).

    Article  Google Scholar 

  183. Glicksman, R. L. & Earnhart, D. H. The comparative effectiveness of government interventions on environmental performance in the chemical industry. Stanf. Environ. Law J. 26, 317–372 (2007).

    Google Scholar 

  184. Schroeder, C. Foreword: a decade of change in regulating the chemical industry. Law Contemp. Probl. 46, 1–40 (1983).

    Google Scholar 

  185. Wetzel, R. G. Limnology: Lake and River Ecosystems (Gulf Professional, 2001).

  186. Olson, J. R. Predicting combined effects of land use and climate change on river and stream salinity. Phil. Trans. R. Soc. B 374, 20180005 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation GCR 2021089 and 2021015, Maryland Sea Grant SA75281870W and the Washington Metropolitan Council of Governments contract number 21-001.

Author information

Authors and Affiliations

Authors

Contributions

S.S.K., G.E.L., P.M.M., R.R.S., S.A.S., S.B.G., R.M.U. and M.A.R. contributed to writing of the paper. R.R.S., S.A.S., R.M.U., A.M.Y., C.M.M., J.E.R., S.V.B. and J.T.M. contributed to researching data. All the authors contributed to the discussion of content and review and editing of the manuscript.

Corresponding author

Correspondence to Sujay S. Kaushal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks William Hintz, Miguel Cañedo-Argüelles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GEMStat: https://gemstat.org

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, S.S., Likens, G.E., Mayer, P.M. et al. The anthropogenic salt cycle. Nat Rev Earth Environ 4, 770–784 (2023). https://doi.org/10.1038/s43017-023-00485-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00485-y

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene