Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Toward impact-based monitoring of drought and its cascading hazards

Abstract

Growth in satellite observations and modelling capabilities has transformed drought monitoring, offering near-real-time information. However, current monitoring efforts focus on hazards rather than impacts, and are further disconnected from drought-related compound or cascading hazards such as heatwaves, wildfires, floods and debris flows. In this Perspective, we advocate for impact-based drought monitoring and integration with broader drought-related hazards. Impact-based monitoring will go beyond top-down hazard information, linking drought to physical or societal impacts such as crop yield, food availability, energy generation or unemployment. This approach, specifically forecasts of drought event impacts, would accordingly benefit multiple stakeholders involved in drought planning, and risk and response management, with clear benefits for food and water security. Yet adoption and implementation is hindered by the absence of consistent drought impact data, limited information on local factors affecting water availability (including water demand, transfer and withdrawal), and impact assessment models being disconnected from drought monitoring tools. Implementation of impact-based drought monitoring thus requires the use of newly available remote sensors, the availability of large volumes of standardized data across drought-related fields, and the adoption of artificial intelligence to extract and synthesize physical and societal drought impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drought monitoring timeline.
Fig. 2: The European drought of 2003.
Fig. 3: Snow drought examples.
Fig. 4: Drought-related processes and cascading hazards.
Fig. 5: Snow drought impacts on the agriculture sector.

References

  1. Wilhite, D. A. Drought and Water Crises: Science, Technology, and Management Issues (CRC Press, 2005).

  2. Li, L. M. Fighting Famine in North China: State, Market, and Environmental Decline, 1690s–1990s (Stanford Univ. Press, 2007).

  3. Worster, D. Dust Bowl: The Southern Plains in the 1930s (Oxford Univ. Press, 2004).

  4. Van Dijk, A. I. et al. The Millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

    Article  Google Scholar 

  5. Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).

    Article  Google Scholar 

  6. Yuan, X. et al. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 10, 4661 (2019).

    Article  Google Scholar 

  7. Mishra, V., Aadhar, S. & Mahto, S. S. Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future flash droughts in India. npj Clim. Atmos. Sci. 4, 1 (2021).

    Article  Google Scholar 

  8. Hoffmann, D., Gallant, A. J. & Hobbins, M. Flash drought in CMIP5 models. J. Hydrometeorol. 22, 1439–1454 (2021).

    Google Scholar 

  9. Mishra, A. K. & Singh, V. P. A review of drought concepts. J. Hydrol. 391, 202–216 (2010).

    Article  Google Scholar 

  10. Heim, R. R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 83, 1149–1165 (2002).

    Article  Google Scholar 

  11. AghaKouchak, A. et al. Remote sensing of drought: progress, challenges and opportunities. Rev. Geophys. 53, 452–480 (2015).

    Article  Google Scholar 

  12. Wardlow, B., Anderson, M. & Verdin, J. Remote Sensing of Drought (CRC Press, 2012).

  13. Wilhite, D. Drought: A Global Assessment (Routledge, 2000).

  14. Entekhabi, D., Reichle, R. H., Koster, R. D. & Crow, W. T. Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 11, 832–840 (2010).

    Article  Google Scholar 

  15. Bachmair, S., Kohn, I. & Stahl, K. Exploring the link between drought indicators and impacts. Nat. Hazards Earth Syst. Sci. 15, 1381–1397 (2015).

    Article  Google Scholar 

  16. Hao, Z. & Singh, V. P. Drought characterization from a multivariate perspective: a review. J. Hydrol. 527, 668–678 (2015).

    Article  Google Scholar 

  17. Sheffield, J. & Wood, E. F. Drought: Past Problems and Future Scenarios (Routledge, 2012).

  18. Rebetez, M. et al. Heat and drought 2003 in Europe: a climate synthesis. Ann. For. Sci. 63, 569–577 (2006).

    Article  Google Scholar 

  19. Hanel, M. et al. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 8, 1–11 (2018).

    Article  Google Scholar 

  20. Peters-Lidard, C. D. et al. Advances in land surface models and indicators for drought monitoring and prediction. Bull. Am. Meteorol. Soc. 102, E1099–E1122 (2021).

    Article  Google Scholar 

  21. Hao, Z. & AghaKouchak, A. Multivariate standardized drought index: a parametric multi-index model. Adv. Water Resour. 57, 12–18 (2013).

    Article  Google Scholar 

  22. AghaKouchak, A. et al. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 48, 519–548 (2020).

    Article  Google Scholar 

  23. Zargar, A., Sadiq, R., Naser, B. & Khan, F. I. A review of drought indices. Environ. Rev. 19, 333–349 (2011).

    Article  Google Scholar 

  24. Mishra, A. K. & Singh, V. P. Drought modeling — a review. J. Hydrol. 403, 157–175 (2011).

    Article  Google Scholar 

  25. Steinemann, A. C., Hayes, M. J. & Cavalcanti, L. in Drought and Water Crises: Science, Technology, and Management Issues, 71–92 (2005).

  26. Svoboda, M. D. et al. Handbook of Drought Indicators and Indices (World Meteorological Organization, 2016).

  27. Parkash, V. & Singh, S. A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12, 3945 (2020).

    Article  Google Scholar 

  28. Kchouk, S., Melsen, L. A., Walker, D. W. & van Oel, P. R. A review of drought indices: predominance of drivers over impacts and the importance of local context. Preprint at https://doi.org/10.5194/nhess-2021-152 (2021).

  29. McKee, T., Doesken, N. & Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference of Applied Climatology, 179–184 (American Meteorological Society, 1993).

  30. Hayes, M., Svoboda, M., Wilhite, D. & Vanyarkho, O. Monitoring the 1996 drought using the Standardized Precipitation Index. Bull. Am. Meteor. Soc. 80, 429–438 (1999).

    Article  Google Scholar 

  31. Palmer, W. Meteorological Drought. Technical Report, Weather Bureau Research Paper 45 (US Department of Commerce, 1965).

  32. Farahmand, A., AghaKouchak, A. & Teixeira, J. A vantage from space can detect earlier drought onset: an approach using relative humidity. Sci. Rep. 5, 8553 (2015).

    Article  Google Scholar 

  33. Werick, W., Willeke, G., Guttman, N., Hosking, J. & Wallis, J. National drought atlas developed. Eos Trans. Am. Geophys. Union 75, 89 (1994).

    Article  Google Scholar 

  34. Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    Article  Google Scholar 

  35. Huning, L. S. & AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl Acad. Sci. USA 117, 19753–19759 (2020).

    Article  Google Scholar 

  36. Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A. & Herrero-Jiménez, C. M. Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index. Remote Sens. Environ. 177, 277–286 (2016).

    Article  Google Scholar 

  37. Mullapudi, A., Vibhute, A. D., Mali, S. & Patil, C. H. A review of agricultural drought assessment with remote sensing data: methods, issues, challenges and opportunities. Appl. Geomat. 15, 1–13 (2022).

    Article  Google Scholar 

  38. Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article  Google Scholar 

  39. Kumar, S. V. et al. Land information system: an interoperable framework for high resolution land surface modeling. Environ. Model. Softw. 21, 1402–1415 (2006).

    Article  Google Scholar 

  40. Rienecker, M. M. et al. Merra: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

    Article  Google Scholar 

  41. Xia, Y. et al. Continental-scale water and energy flux analysis and validation for the north american land data assimilation system project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. https://onlinelibrary.wiley.com/doi/abs/10.1029/2011JD016048 (2012).

  42. Aires, F., Weston, P., de Rosnay, P. & Fairbairn, D. Statistical approaches to assimilate ascat soil moisture information-I. Methodologies and first assessment. Q. J. R. Meteorol. Soc. 147, 1823–1852 (2021).

    Article  Google Scholar 

  43. Gelsthorpe, R., Schied, E. & Wilson, J. ASCAT-METOP’s advanced scatterometer. ESA Bull. 102, 19–27 (2000).

    Google Scholar 

  44. Kerr, Y. et al. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39, 1729–1735 (2001).

    Article  Google Scholar 

  45. Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).

    Article  Google Scholar 

  46. Dorigo, W. et al. ESA CCI soil moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).

    Article  Google Scholar 

  47. Fang, B. et al. A global 1-km downscaled SMAP soil moisture product based on thermal inertia theory. Vadose Zone J. 21, e20182 (2022).

    Article  Google Scholar 

  48. Abbaszadeh, P., Moradkhani, H. & Zhan, X. Downscaling SMAP radiometer soil moisture over the conus using an ensemble learning method. Water Resour. Res. 55, 324–344 (2019).

    Article  Google Scholar 

  49. Mishra, A., Vu, T., Veettil, A. V. & Entekhabi, D. Drought monitoring with Soil Moisture Active Passive (SMAP) measurements. J. Hydrol. 552, 620–632 (2017).

    Article  Google Scholar 

  50. Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).

    Article  Google Scholar 

  51. Entekhabi, D. et al. The Soil Moisture Active/Passive mission (SMAP). In Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008, vol. 3, III-1 (IEEE, 2008).

  52. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).

    Article  Google Scholar 

  53. Vicente-Serrano, S. M. et al. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1–27 (2012).

    Article  Google Scholar 

  54. Stephenson, N. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25, 855–870 (1998).

    Article  Google Scholar 

  55. Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).

    Article  Google Scholar 

  56. Otkin, J. A. et al. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc. 99, 911–919 (2018).

    Article  Google Scholar 

  57. Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).

    Article  Google Scholar 

  58. Chen, L. G. et al. Flash drought characteristics based on US drought monitor. Atmosphere 10, 498 (2019).

    Article  Google Scholar 

  59. Allen, R. G., Pereira, L. S., Howell, T. A. & Jensen, M. E. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 98, 921–929 (2011).

    Article  Google Scholar 

  60. Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K. & Brown, P. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 26, 139–168 (2007).

    Article  Google Scholar 

  61. Glenn, E. P., Nagler, P. L. & Huete, A. R. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv. Geophys. 31, 531–555 (2010).

    Article  Google Scholar 

  62. Farahani, H. J., Howell, T. A., Shuttleworth, W. J. & Bausch, W. C. Evapotranspiration: progress in measurement and modeling in agriculture. Trans. ASABE 50, 1627–1638 (2007).

    Article  Google Scholar 

  63. Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev. Geophys. https://doi.org/10.1029/2011RG000373 (2012).

  64. Yao, Y. et al. Satellite detection of increases in global land surface evapotranspiration during 1984–2007. Int. J. Digit. Earth 5, 299–318 (2012).

    Article  Google Scholar 

  65. Zhang, K., Kimball, J. S. & Running, S. W. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 3, 834–853 (2016).

    Article  Google Scholar 

  66. Pan, S. et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci. 24, 1485–1509 (2020).

    Article  Google Scholar 

  67. Anderson, W. et al. Towards an integrated soil moisture drought monitor for east Africa. Hydrol. Earth Syst. Sci. 16, 2893–2913 (2012).

    Article  Google Scholar 

  68. Andam-Akorful, S. A., Ferreira, V. G., Awange, J. L., Forootan, E. & He, X. F. Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa. Int. J. Climatol. 35, 3132–3145 (2015).

    Article  Google Scholar 

  69. Segura, C. Snow drought reduces water transit times in headwater streams. Hydrol. Proc. https://doi.org/10.1002/hyp.14437 (2021).

  70. Huning, L. S. & AghaKouchak, A. Mountain snowpack response to different levels of warming. Proc. Natl Acad. Sci. USA 115, 10932–10937 (2018).

    Article  Google Scholar 

  71. Milly, P. C. & Dunne, K. A. Colorado river flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367, 1252–1255 (2020).

    Article  Google Scholar 

  72. Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Chang. 10, 459–465 (2020).

    Article  Google Scholar 

  73. Harpold, A., Dettinger, M. & Rajagopal, S. Defining snow drought and why it matters. Eos https://doi.org/10.1029/2017EO068775 (2017).

  74. Dozier, J., Bair, E. H. & Davis, R. E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. WIREs Water 3, 461–474 (2016).

    Article  Google Scholar 

  75. Lettenmaier, D. P. et al. Inroads of remote sensing into hydrologic science during the WRR era. Water Resour. Res. 51, 7309–7342 (2015).

    Article  Google Scholar 

  76. Wrzesien, M. L. et al. Comparison of methods to estimate snow water equivalent at the mountain range scale: a case study of the California Sierra Nevada. J. Hydrometeorol. 18, 1101–1119 (2017).

    Article  Google Scholar 

  77. Wrzesien, M. L., Pavelsky, T. M., Durand, M. T., Dozier, J. & Lundquist, J. D. Characterizing biases in mountain snow accumulation from global data sets. Water Resour. Res. 55, 9873–9891 (2019).

    Article  Google Scholar 

  78. Girotto, M., Musselman, K. N. & Essery, R. L. H. Data assimilation improves estimates of climate-sensitive seasonal snow. Curr. Clim. Change Rep. 6, 81–94 (2020).

    Article  Google Scholar 

  79. Takala, M. et al. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ. 115, 3517–3529 (2011).

    Article  Google Scholar 

  80. Huning, L. S. & AghaKouchak, A. Approaching 80 years of snow water equivalent information by merging different data streams. Sci. Data 7, 333 (2020).

    Article  Google Scholar 

  81. Painter, T. H. et al. The airborne snow observatory: fusion of scanning LiDAR, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ. 184, 139–152 (2016).

    Article  Google Scholar 

  82. Dierauer, J. R., Allen, D. M. & Whitfield, P. H. Snow drought risk and susceptibility in the western United States and southwestern Canada. Water Resour. Res. 55, 3076–3091 (2019).

    Article  Google Scholar 

  83. Hatchett, B. J. & McEvoy, D. J. Exploring the origins of snow drought in the northern Sierra Nevada, California. Earth Interact. 22, 1–13 (2018).

    Article  Google Scholar 

  84. Siirila-Woodburn, E. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).

    Article  Google Scholar 

  85. Tourian, M. et al. A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sens. Environ. 156, 349–360 (2015).

    Article  Google Scholar 

  86. Muhammad, A., Kumar Jha, S. & Rasmussen, P. F. Drought characterization for a snow-dominated region of Afghanistan. J. Hydrol. Eng. 22, 05017014 (2017).

    Article  Google Scholar 

  87. Keyantash, J. & Dracup, J. An aggregate drought index: assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res. 40, W09304 (2004).

    Article  Google Scholar 

  88. Kao, S. & Govindaraju, R. A copula-based joint deficit index for droughts. J. Hydrol. 380, 121–134 (2010).

    Article  Google Scholar 

  89. AghaKouchak, A. A multivariate approach for persistence-based drought prediction: application to the 2010-2011 east africa drought. J. Hydrol. 526, 127–135 (2015).

    Article  Google Scholar 

  90. Markonis, Y. et al. The rise of compound warm-season droughts in Europe. Sci. Adv. 7, eabb9668 (2021).

    Article  Google Scholar 

  91. Wilhite, D. A. Drought. In Encyclopedia of world climatology (ed. Oliver, J. E.) 338 (Springer Science & Business Media).

  92. Hao, Z. & AghaKouchak, A. A nonparametric multivariate multi-index drought monitoring framework. J. Hydrometeorol. 15, 89–101 (2014).

    Article  Google Scholar 

  93. Tadesse, T., Brown, J. & Hayes, M. A new approach for predicting drought-related vegetation stress: integrating satellite, climate, and biophysical data over the US central plains. ISPRS J. Photogramm. Remote Sens. 59, 244–253 (2005).

    Article  Google Scholar 

  94. Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J. & Reed, B. C. The Vegetation Drought Response Index (VegDRI): a new integrated approach for monitoring drought stress in vegetation. Geosci. Remote Sens. 45, 16–46 (2008).

    Article  Google Scholar 

  95. Zhang, A. & Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 134, 12–23 (2013).

    Article  Google Scholar 

  96. Otkin, J. A., Anderson, M. C., Hain, C. & Svoboda, M. Examining the relationship between drought development and rapid changes in the evaporative stress index. J. Hydrometeorol. 15, 938–956 (2014).

    Article  Google Scholar 

  97. Parker, T., Gallant, A., Hobbins, M. & Hoffmann, D. Flash drought in Australia and its relationship to evaporative demand. Environ. Res. Lett. 16, 064033 (2021).

    Article  Google Scholar 

  98. Nguyen, H. et al. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 14, 064016 (2019).

    Article  Google Scholar 

  99. Chan, S. et al. Development and assessment of the smap enhanced passive soil moisture product. Remote Sens. Environ. 204, 931–941 (2018).

    Article  Google Scholar 

  100. Mukherjee, S. & Mishra, A. K. A multivariate flash drought indicator for identifying global hotspots and associated climate controls. Geophys. Res. Lett. 49, e2021GL096804 (2022).

    Article  Google Scholar 

  101. Anderson, M. C. et al. Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Clim. 24, 2025–2044 (2011).

    Article  Google Scholar 

  102. Hobbins, M. T. et al. The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand. J. Hydrometeorol. 17, 1745–1761 (2016).

    Article  Google Scholar 

  103. Crausbay, S. D. et al. Defining ecological drought for the twenty-first century. Bull. Am. Meteorol. Soc. 98, 2543–2550 (2017).

    Article  Google Scholar 

  104. Tucker, C. J. & Choudhury, B. J. Satellite remote sensing of drought conditions. Remote Sens. Environ. 23, 243–251 (1987).

    Article  Google Scholar 

  105. Singh, R. P., Roy, S. & Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 24, 4393–4402 (2003).

    Article  Google Scholar 

  106. Donohue, R. J., McVICAR, T. & Roderick, M. L. Climate-related trends in australian vegetation cover as inferred from satellite observations, 1981–2006. Glob. Change Biol. 15, 1025–1039 (2009).

    Article  Google Scholar 

  107. McVicar, T. R. & Jupp, D. L. The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agric. Syst. 57, 399–468 (1998).

    Article  Google Scholar 

  108. Silleos, N. G., Alexandridis, T. K., Gitas, I. Z. & Perakis, K. Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int. 21, 21–28 (2006).

    Article  Google Scholar 

  109. Wiegand, C., Richardson, A., Escobar, D. & Gerbermann, A. Vegetation indices in crop assessments. Remote Sens. Environ. 35, 105–119 (1991).

    Article  Google Scholar 

  110. Thiam, A. K. Geographic Information Systems and Remote Sensing Methods for Assessing and Monitoring Land Degradation in the Sahel Region: The Case of Southern Mauritania. PhD thesis, Clark Univ (1998).

  111. Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    Article  Google Scholar 

  112. Rouse, J., Haas, R., Schell, J., Deering, D. & Harlan, J. Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation (Texas A & M Univ. Remote Sensing Center, 1974).

  113. Kogan, F. & Sullivan, J. Development of global drought-watch system using NOAA/AVHRR data. Adv. Space Res. 13, 219–222 (1993).

    Article  Google Scholar 

  114. Wardlow, B. D. et al. in Drought and Water Crises (eds Wilhite, D. & Pulwarty, R. S.) 225–258 (CRC Press, 2018).

  115. Svoboda, M. D., Fuchs, B. A., Poulsen, C. C. & Nothwehr, J. R. The drought risk atlas: enhancing decision support for drought risk management in the United States. J. Hydrol. 526, 274–286 (2015).

    Article  Google Scholar 

  116. Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).

    Article  Google Scholar 

  117. US Drought Monitor Map Archive (National Drought Mitigation Center, 2022).

  118. NOAA. Global Drought Information System. https://gdis-noaa.hub.arcgis.com/.

  119. JRC European Commission. European Drought Observatory. https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000 (2021).

  120. International Water Management Institute. IWMI Drought Monitoring System. http://dms.iwmi.org/.

  121. Cammalleri, C. et al. A revision of the combined drought indicator (CDI) used in the European drought observatory (EDO). Nat. Hazards Earth Syst. Sci. 21, 481–495 (2021).

    Article  Google Scholar 

  122. Rojas, O. Country-level ASIS: An Agricultural Drought Monitoring System, 8 (FAO, 2016).

  123. Lawrimore, J., Heim Jr, R. R., Svoboda, M. D., Swail, V. & Englehart, P. J. Beginning a new era of drought monitoring across North America. Bull. Am. Meteorol. Soc. 83, 1191–1192 (2002).

    Article  Google Scholar 

  124. Stahl, K. et al. Impacts of European drought events: insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 16, 801–819 (2016).

    Article  Google Scholar 

  125. Blauhut, V., Gudmundsson, L. & Stahl, K. Towards pan-european drought risk maps: quantifying the link between drought indices and reported drought impacts. Environ. Res. Lett. 10, 014008 (2015).

    Article  Google Scholar 

  126. Ward, P. J. et al. The need to integrate flood and drought disaster risk reduction strategies. Water Secur. 11, 100070 (2020).

    Article  Google Scholar 

  127. Monitoring Drought. Drought.gov https://www.drought.gov/what-is-drought/monitoring-drought (2023).

  128. Mishra, A. K. & Singh, V. P. A review of drought concepts. J. Hydrol. 391, 202–216 (2010).

    Article  Google Scholar 

  129. AghaKouchak, A. et al. Remote sensing of drought: progress, challenges and opportunities. Rev. Geophys. 53, 452–480 (2015).

    Article  Google Scholar 

  130. Hatchett, B. J. & McEvoy, D. J. Exploring the origins of snow drought in the northern Sierra Nevada, California. Earth Interact. 22, 1–13 (2018).

    Article  Google Scholar 

  131. Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2, 800–819 (2021).

    Article  Google Scholar 

  132. Hatchett, B. J., Rhoades, A. M. & McEvoy, D. J. Monitoring the daily evolution and extent of snow drought. Nat. Hazards Earth Syst. Sci. 22, 869–890 (2022).

    Article  Google Scholar 

  133. Vautard, R. et al. Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett. https://doi.org/10.1029/2006gl028001 (2007).

  134. Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    Article  Google Scholar 

  135. Fischer, E. M., Seneviratne, S. I., Lüthi, D. & Schär, C. Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. https://doi.org/10.1029/2006GL029068 (2007).

  136. Su, H., Yang, Z.-L., Dickinson, R. E. & Wei, J. Spring soil moisture-precipitation feedback in the southern Great Plains: how is it related to large-scale atmospheric conditions? Geophys. Res. Lett. 41, 1283–1289 (2014).

    Article  Google Scholar 

  137. Shah, J. et al. Increasing footprint of climate warming on flash droughts occurrence in Europe. Environ. Res. Lett. 17, 064017 (2022).

    Article  Google Scholar 

  138. Christian, J. I. et al. Global distribution, trends, and drivers of flash drought occurrence. Nat. Commun. 12, 6330 (2021).

    Article  Google Scholar 

  139. Mukherjee, S. & Mishra, A. K. Increase in compound drought and heatwaves in a warming world. Geophys. Res. Lett. 48, e2020GL090617 (2021).

    Article  Google Scholar 

  140. D’Ippoliti, D. et al. The impact of heat waves on mortality in 9 European cities: results from the Euroheat project. Environ. Health 9, 37 (2010).

    Article  Google Scholar 

  141. Mitchell, D. et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 11, 074006 (2016).

    Article  Google Scholar 

  142. Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. 3, e1700066 (2017).

    Article  Google Scholar 

  143. Lu, Y., Hu, H., Li, C. & Tian, F. Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China. Sci. Rep. 8, 16700 (2018).

    Article  Google Scholar 

  144. Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12, 064008 (2017).

    Article  Google Scholar 

  145. Sutanto, S. J., Vitolo, C., Di Napoli, C., D’Andrea, M. & Van Lanen, H. A. J. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 134, 105276 (2020).

    Article  Google Scholar 

  146. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    Article  Google Scholar 

  147. Alizadeh, M. R. et al. Warming enabled upslope advance in western US forest fires. Proc. Natl Acad. Sci. USA 118, e2009717118 (2021).

    Article  Google Scholar 

  148. Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

    Article  Google Scholar 

  149. Romano, N. & Ursino, N. Forest fire regime in a Mediterranean ecosystem: unraveling the mutual interrelations between rainfall seasonality, soil moisture, drought persistence, and biomass dynamics. Fire 3, 49 (2020).

    Article  Google Scholar 

  150. Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 27, 1–2 (2021).

    Article  Google Scholar 

  151. Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).

    Article  Google Scholar 

  152. Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: a pantropical synthesis. Annu. Rev. Earth Planet. Sci.47 (2019).

  153. Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).

    Article  Google Scholar 

  154. Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).

    Article  Google Scholar 

  155. Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y. & Luce, C. H. A review of the relationships between drought and forest fire in the United States. Glob. Change Biol. 22, 2353–2369 (2016).

    Article  Google Scholar 

  156. Vahedifard, F., Robinson, J. D. & AghaKouchak, A. Can protracted drought undermine the structural integrity of California’s earthen levees? J. Geotech. Geoenviron. Eng. 142, 02516001 (2016).

    Article  Google Scholar 

  157. Salimi, K., Cerato, A. B., Vahedifard, F. & Miller, G. A. Tensile strength of compacted clays during desiccation under elevated temperatures. Geotech. Test. J. 44, 20200114 (2021).

    Article  Google Scholar 

  158. Tang, C.-S. et al. Desiccation cracking of soils: a review of investigation approaches, underlying mechanisms, and influencing factors. Earth Sci. Rev. 216, 103586 (2021).

    Article  Google Scholar 

  159. Abdollahi, M., Vahedifard, F. & Tracy, F. T. Post-wildfire stability of unsaturated hillslopes against rainfall-triggered landslides. Earth’s Future 11, e2022EF003213 (2023).

    Article  Google Scholar 

  160. Van Baars, S. The horizontal failure mechanism of the Wilnis peat dyke. Géotechnique 55, 319–323 (2005).

    Article  Google Scholar 

  161. Vahedifard, F. et al. Lessons from the Oroville dam. Science 355, 1139–1140 (2017).

    Article  Google Scholar 

  162. Mishra, A., Alnahit, A. & Campbell, B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: a review and analysis. J. Hydrol. 596, 125707 (2021).

    Article  Google Scholar 

  163. Mosley, L. M. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Sci. Rev. 140, 203–214 (2015).

    Article  Google Scholar 

  164. Zhou, Y., Michalak, A. M., Beletsky, D., Rao, Y. R. & Richards, R. P. Record-breaking Lake Erie hypoxia during 2012 drought. Environ. Sci. Technol. 49, 800–807 (2015).

    Article  Google Scholar 

  165. Hohner, A. K., Cawley, K., Oropeza, J., Summers, R. S. & Rosario-Ortiz, F. L. Drinking water treatment response following a Colorado wildfire. Water Res. 105, 187–198 (2016).

    Article  Google Scholar 

  166. Hohner, A. K., Rhoades, C. C., Wilkerson, P. & Rosario-Ortiz, F. L. Wildfires alter forest watersheds and threaten drinking water quality. Acc. Chem. Res. 52, 1234–1244 (2019).

    Article  Google Scholar 

  167. Pulwarty, R., Erian, W. & Vogt, J. Drought: From Risk to Resilience. Tech. Rep., UNDRR GAR Special Report on Drought, 120–161 (UN Press, 2020).

  168. Kuwayama, Y., Thompson, A., Bernknopf, R., Zaitchik, B. & Vail, P. Estimating the impact of drought on agriculture using the U.S. Drought Monitor. Am. J. Agric. Econ. 101, 193–210 (2019).

    Article  Google Scholar 

  169. Madadgar, S., AghaKouchak, A., Farahmand, A. & Davis, S. J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 44, 7799–7807 (2017).

    Article  Google Scholar 

  170. Anderson, M. C. et al. The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts. Remote Sens. Environ. 174, 82–99 (2016).

    Article  Google Scholar 

  171. Coughlan de Perez, E. et al. Forecast-based financing: an approach for catalyzing humanitarian action based on extreme weather and climate forecasts. Nat. Hazards Earth Syst. Sci. 15, 895–904 (2015).

    Article  Google Scholar 

  172. Funk, C. et al. Recognizing the famine early warning systems network: over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Am. Meteorol. Soc. 100, 1011–1027 (2019).

    Article  Google Scholar 

  173. Merz, B. et al. Impact forecasting to support emergency management of natural hazards. Rev. Geophys. 58, e2020RG000704 (2020).

    Article  Google Scholar 

  174. Sutanto, S. J., van der Weert, M., Wanders, N., Blauhut, V. & Van Lanen, H. A. Moving from drought hazard to impact forecasts. Nat. Commun. 10, 4945 (2019).

    Article  Google Scholar 

  175. Stagge, J. H., Kohn, I., Tallaksen, L. M. & Stahl, K. Modeling drought impact occurrence based on meteorological drought indices in Europe. J. Hydrol. 530, 37–50 (2015).

    Article  Google Scholar 

  176. Qin, Y. et al. Snowmelt risk telecouplings for irrigated agriculture. Nat. Clim. Change 12, 1007–1015 (2022).

    Article  Google Scholar 

  177. Smith, K. H. et al. Local observers fill in the details on drought impact reporter maps. Bull. Am. Meteorol. Soc. 95, 1659–1662 (2014).

    Article  Google Scholar 

  178. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article  Google Scholar 

  179. Biswas, N. K., Hossain, F., Bonnema, M., Lee, H. & Chishtie, F. Towards a global reservoir assessment tool for predicting hydrologic impacts and operating patterns of existing and planned reservoirs. Environ. Model. Softw. 140, 105043 (2021).

    Article  Google Scholar 

  180. Zhou, T., Nijssen, B., Gao, H. & Lettenmaier, D. P. The contribution of reservoirs to global land surface water storage variations. J. Hydrometeorol. 17, 309 – 325 (2016).

    Article  Google Scholar 

  181. Gao, H., Birkett, C. & Lettenmaier, D. P. Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. https://doi.org/10.1029/2012WR012063 (2012).

  182. Carroll, M., Townshend, J., DiMiceli, C., Noojipady, P. & Sohlberg, R. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2, 291–308 (2009).

    Article  Google Scholar 

  183. Islam, A., Bala, S. & Haque, M. Flood inundation map of Bangladesh using MODIS time-series images. J. Flood Risk Manag. 3, 210–222 (2010).

    Article  Google Scholar 

  184. Wang, Y., Sun, G., Liao, M. & Gong, J. Using modis images to examine the surface extents and variations derived from the dem and laser altimeter data in the Danjiangkou reservoir, China. Int. J. Remote Sens. 29, 293–311 (2008).

    Article  Google Scholar 

  185. Bonnema, M. & Hossain, F. Inferring reservoir operating patterns across the Mekong basin using only space observations. Water Resour. Res. 53, 3791–3810 (2017).

    Article  Google Scholar 

  186. Gao, H. Satellite remote sensing of large lakes and reservoirs: from elevation and area to storage. WIREs Water 2, 147–157 (2015).

    Article  Google Scholar 

  187. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article  Google Scholar 

  188. Zhao, G. & Gao, H. Automatic correction of contaminated images for assessment of reservoir surface area dynamics. Geophys. Res. Lett. 45, 6092–6099 (2018).

    Article  Google Scholar 

  189. Marston, L. T. et al. Water-use data in the United States: challenges and future directions. JAWRA Journal of the American Water Resources Association (2022).

  190. Chinnasamy, C. V. et al. Characterization of municipal water uses in the contiguous United States. Water Resour. Res. 57, e2020WR028627 (2021).

    Article  Google Scholar 

  191. Marston, L. Water use in a changing world. Nat. Clim. Change 12, 317–319 (2022).

    Article  Google Scholar 

  192. Buurman, J., Mens, M. J. & Dahm, R. J. Strategies for urban drought risk management: a comparison of 10 large cities. Int. J. Water Resour. Dev. 33, 31–50 (2017).

    Article  Google Scholar 

  193. Chuah, C. J., Ho, B. H. & Chow, W. T. Trans-boundary variations of urban drought vulnerability and its impact on water resource management in Singapore and Johor, Malaysia. Environ. Res. Lett. 13, 074011 (2018).

    Article  Google Scholar 

  194. Kreibich, H. et al. The challenge of unprecedented floods and droughts in risk management. Nature 608, 80–86 (2022).

    Article  Google Scholar 

  195. AghaKouchak, A. et al. Anthropogenic drought: definition, challenges, and opportunities. Rev. Geophys. 59, e2019RG000683 (2021).

  196. AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T. & Lund, J. Recognize anthropogenic drought. Nature 524, 409–4011 (2015).

    Article  Google Scholar 

  197. Bouwer, L. M. Have disaster losses increased due to anthropogenic climate change? Bull. Am. Meteorol. Soc. 92, 39–46 (2011).

    Article  Google Scholar 

  198. Kreibich, H. et al. How to improve attribution of changes in drought and flood impacts. Hydrol. Sci. J. 64, 1–18 (2019).

    Article  Google Scholar 

  199. Kreibich, H. et al. Costing natural hazards. Nat. Clim. Change 4, 303–306 (2014).

    Article  Google Scholar 

  200. Findlay, A. & Wake, B. 10 years of nature climate change. Nat. Clim. Change 11, 286–291 (2021).

    Article  Google Scholar 

  201. Mehran, A., Mazdiyasni, O. & AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: linking climate variability, local resilience, and demand. J. Geophys. Res. https://doi.org/10.1002/2015JD023147 (2015).

  202. Liu, S., Shi, H. & Sivakumar, B. Socioeconomic drought under growing population and changing climate: a new index considering the resilience of a regional water resources system. J. Geophys. Res. Atmos. 125, e2020JD033005 (2020).

    Article  Google Scholar 

  203. Rajsekhar, D., Singh, V. P. & Mishra, A. K. Multivariate drought index: an information theory based approach for integrated drought assessment. J. Hydrol. 526, 164–182 (2015).

    Article  Google Scholar 

  204. Biancamaria, S. et al. Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3, 6–19 (2009).

    Article  Google Scholar 

  205. Durand, M. et al. The Surface Water and Ocean Topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE 98, 766–779 (2010).

    Article  Google Scholar 

  206. Lee, H. et al. Characterization of surface water storage changes in Arctic lakes using simulated SWOT measurements. Int. J. Remote Sens. 31, 3931–3953 (2010).

    Article  Google Scholar 

  207. Baru, C. in Encyclopedia of Big Data (eds Schintler, L. A. & McNeely, C. L) (Springer, 2017).

  208. Deng, L., Hinton, G. & Kingsbury, B. New types of deep neural network learning for speech recognition and related applications: an overview. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 8599–8603 (IEEE, 2013).

  209. Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012).

    Article  Google Scholar 

  210. Dahl, G. E., Sainath, T. N. & Hinton, G. E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 8609–8613 (IEEE, 2013).

  211. Kasun, L. L. C. et al. Representational Learning with Extreme Learning Machine for Big Data. IEEE Intell. Syst. 28, 31–34 (2013).

    Google Scholar 

  212. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  213. Karpatne, A. et al. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).

    Article  Google Scholar 

  214. Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating scientific knowledge with machine learning for engineering and environmental systems. ACM Comput. Surv. 55, 1–37 (2021).

    Article  Google Scholar 

  215. Daw, A., Karpatne, A., Watkins, W. D., Read, J. S. & Kumar, V. in Knowledge-Guided Machine Learning, 353–372 (Chapman and Hall/CRC, 2017).

  216. Liu, L. et al. KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments. Geosci. Model Dev. 15, 2839–2858 (2022).

    Article  Google Scholar 

  217. Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In Proc. of the 25th International Conference on Machine Learning, 1096–1103 (Association for Computing Machinery, 2008).

  218. Bruhwiler, K. et al. Lightweight, embeddings based storage and model construction over satellite data collections. In 2020 IEEE International Conference on Big Data (Big Data), 246–255 (IEEE, 2020).

  219. Meehl, G. A., Boer, G. J., Covey, C., Latif, M. & Stouffer, R. J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 81, 313–318 (2000).

    Article  Google Scholar 

  220. Wood, A. & Lettenmaier, D. An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett. https://doi.org/10.1029/2008GL034648 (2008).

Download references

Acknowledgements

This work was supported by the National Oceanic and Atmospheric Administration grants NA19OAR4310294, National Science Foundation (NSF) grant OAC-1931335, NAS Agreement 2000013232 and NASA Award NNX15AC27G. A.G.P. was supported by the US Department of Energy, Office of Science, Office of Biological & Environmental Research (BER), Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program under award number DE-SC0022070 and NSF IA 1947282 and by the National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF under Cooperative Agreement no. 1852977. P.J.W. received support from the MYRIAD-EU project, which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101003276. A.M. was supported by the US National Science Foundation (NSF) award # 1653841.

Author information

Authors and Affiliations

Authors

Contributions

A.A. conceived and designed the article and prepared the first draft. M.Sadegh, A.G.P., A.M., L.S.H. and C.A.L. participated in initial discussions and provided feedback on the draft. L.H., M.Sadegh, A. Mehran, A. Mishra, Y.Q., Y.M., M.A., R.O., F.V. and S.P. contributed materials or figures for the first draft. C.A.L., Y.Z., S.J., A.H., S.J.D., H.K., P.J.W., M.H., M.Svoboda, and R.P. edited and/or offered comments and suggestions throughout the process.

Corresponding author

Correspondence to Amir AghaKouchak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth and Environment thanks Jianjun Wu, Vimal Mishra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AghaKouchak, A., Huning, L.S., Sadegh, M. et al. Toward impact-based monitoring of drought and its cascading hazards. Nat Rev Earth Environ 4, 582–595 (2023). https://doi.org/10.1038/s43017-023-00457-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00457-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing