Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The seas around China in a warming climate

Abstract

Anthropogenic forcings have led to multifaceted changes in the seas around China, which include the Bohai, Yellow, East China and South China Seas, affecting the functions and services they provide. In this Review, we synthesize physical, biogeochemical and biological findings to understand how the seas around China have changed and are projected to change under a warming climate. The average surface temperature of these seas increased by 0.10–0.14 °C dec–1 over 1950–2021. Meanwhile, the annual frequency and average intensity of marine heatwaves increased by 1–2 dec–1 and 0.1–0.3 °C dec–1 since the 1980s, respectively. Terrestrial input has increased nutrient concentrations and composition changes in coastal waters. These warming and nutrient changes have increased the severity of hypoxia and acidification, leading to complex changes in primary productivity. Changes to marine organisms such as plankton, benthos and fish are also apparent, including the northward invasion of warm-water species and miniaturization. These observed changes are projected to persist into the future. These coupled physical–ecological changes highlight the need for strengthened multidisciplinary oceanographic research in the seas around China.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sea surface temperature increases in the seas around China.
Fig. 2: Observed and projected marine heatwaves in the seas around China.
Fig. 3: Observed changes in hypoxia and acidification.
Fig. 4: Changes in plankton communities.
Fig. 5: Historical changes in fishery catch.
Fig. 6: Sea surface temperature projections.
Fig. 7: Historical changes in the seas around China.

Similar content being viewed by others

Data availability

All the data used in this review are publicly available. The OISST data are available at https://www.ncdc.noaa.gov/oisst. The HadISST data are available at https://climatedataguide.ucar.edu/climate-data/sst-data-hadisst-v11?qt-climatedatasetmaintabs=4. The COBE SST version-2 data are available at https://ds.data.jma.go.jp/gmd/goos/data/rrtdb/jma-pro/cobe2_sst_glb_M.html. The ERSST version-5 data are available at https://climatedataguide.ucar.edu/climate-data/sst-data-noaa-extended-reconstruction-ssts-version-5-ersstv5. MODIS Chl-a concentration data are available at https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php. CMIP6 simulations and projections are available at https://esgf-node.llnl.gov/projects/cmip6/. Fisheries-related data are available at www.seaaroundus.org.

References

  1. Pauly, D. et al. Sea Around Us concepts, design and data. https://www.seaaroundus.org (2020).

  2. Wang, G. et al. Tropical cyclone genesis over the South China Sea. J. Mar. Sys. 68, 318–326 (2007).

    Article  Google Scholar 

  3. Ishii, M. et al. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int. J. Climatol. 25, 865–879 (2005).

    Article  Google Scholar 

  4. Wang, F. et al. The long-term variability of sea surface temperature in the seas east of China in the past 40 a. Acta Oceanol. Sin. 32, 48–53 (2013).

    Article  Google Scholar 

  5. Bao, B. & Ren, G. Climatological characteristics and long-term change of SST over the marginal seas of China. Cont. Shelf Res. 77, 96–106 (2014).

    Article  Google Scholar 

  6. Cai, R. et al. Robust surface warming in offshore china seas and its relationship to the East Asian monsoon wind field and ocean forcing on interdecadal time scales. J. Clim. 30, 8987–9005 (2017).

    Article  Google Scholar 

  7. Wu, L. et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Change 2, 161–166 (2012).

    Article  Google Scholar 

  8. Wu, C.-R. et al. Intrusion of the Kuroshio into the South and East China Seas. Sci. Rep. 7, 7895 (2017).

    Article  Google Scholar 

  9. Wei, Y. et al. Interannual to decadal variability of the Kuroshio current in the East China Sea from 1955 to 2010 as indicated by in-situ hydrographic data. J. Oceanogr. 69, 571–589 (2013).

    Article  Google Scholar 

  10. Huang, T.-H. et al. East China Sea increasingly gains limiting nutrient P from South China Sea. Sci. Rep. 9, 5648 (2019).

    Article  Google Scholar 

  11. Wei, Q. et al. Spatiotemporal variations in the summer hypoxia in the Bohai Sea (China) and controlling mechanisms. Mar. Pollut. Bull. 138, 125–134 (2019).

    Article  Google Scholar 

  12. Chi, L. et al. Distribution and key influential factors of dissolved oxygen off the Changjiang River estuary (CRE) and its adjacent waters in China. Mar. Pollut. Bull. 125, 440–450 (2017).

    Article  Google Scholar 

  13. Li, X.-L., Shi, H.-M., Xia, H.-Y., Zhou, Y.-P. & Qiu, Y.-W. Seasonal hypoxia and its potential forming mechanisms in the Mirs Bay, the northern South China Sea. Cont. Shelf Res. 80, 1–7 (2014).

    Article  Google Scholar 

  14. Cai, Y. et al. Stock distribution of a new record species Nemipterus mesoprion in offshore northern South China Sea [in Chinese]. South China Fish. Sci. 16, 516–519 (2020).

    Google Scholar 

  15. Jiao, N. et al. Carbon pools and fluxes in the China Seas and adjacent oceans. Sci. China Earth Sci. 61, 1535–1563 (2018).

    Article  Google Scholar 

  16. Jiao, N. et al. Deploying ocean negative carbon emissions to implement the carbon neutrality strategy [in Chinese]. Sci. Sin. Terrae 51, 632–643 (2021).

    Google Scholar 

  17. Wang, F. et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy [in Chinese]. Bull. Chin. Acad. Sci. 36, 241–251 (2021).

    Google Scholar 

  18. Cai, R., Tan, H. & Qi, Q. Impacts of and adaptation to inter-decadal marine climate change in coastal China seas. Int. J. Climatol. 36, 3770–3780 (2016).

    Article  Google Scholar 

  19. Tang, S.-M. et al. Response of phytoplankton in offshore China seas to climate change [in Chinese]. J. Appl. Oceanogr. 36, 455–465 (2017).

    Google Scholar 

  20. Li, X.-X. et al. Study on spatiotemporal changes of net primary productivity in Bohai Sea using MODIS data [in Chinese]. Ecol. Environ. Sci. 26, 785–793 (2017).

    Google Scholar 

  21. Luan, Q.-S. et al. Long-term changes within the phytoplankton community in the Yellow Sea (1985–2015) [in Chinese]. J. Fish. Sci. China 27, 1–11 (2020).

    Google Scholar 

  22. Yang, Q. et al. Zooplankton diversity and its variation in the northern Yellow Sea in the autumn and winter of 1959, 1982 and 2009. Acta Ecol. Sin. 32, 6747–6754 (2012).

    Article  Google Scholar 

  23. Xu, Z.-L. & Zhang, D. Dramatic declines in Euphausia pacifica abundance in the East China sea: response to recent regional climate change. Zool. Sci. 31, 135–142 (2014).

    Article  Google Scholar 

  24. Chen, B. et al. Impacts of climate changes on marine biodiversity [in Chinese]. J. Oceanogr. Taiwan. Strait. 28, 437–444 (2009).

    Google Scholar 

  25. Wu, Z. et al. The long-term spatiotemporal variability of sea surface temperature in the northwest Pacific and China offshore. Ocean. Sci. 16, 83–97 (2020).

    Article  Google Scholar 

  26. Gao, G. et al. Drivers of marine heatwaves in the East China Sea and the South Yellow sea in three consecutive summers during 2016–2018. J. Geophys. Res. Oceans 125, e2020JC016518 (2020).

    Article  Google Scholar 

  27. Yao, Y. & Wang, C. Variations in summer marine heatwaves in the South China Sea. J. Geophys. Res. Oceans 126, e2021JC017792 (2021).

    Article  Google Scholar 

  28. Choi, W. et al. Characteristics and mechanisms of marine heatwaves in the East Asian marginal seas: regional and seasonal differences. Remote Sens. 14, 3522 (2022).

    Article  Google Scholar 

  29. Yao, Y. et al. Marine heatwaves in China’s marginal seas and adjacent offshore waters: past, present, and future. J. Geophys. Res. Oceans 125, e2019JC015801 (2020).

    Article  Google Scholar 

  30. Li, L. et al. Behavior of arsenic in the coastal area of the Changjiang (Yangtze River) estuary: influences of water mass mixing, the spring bloom and hypoxia. Cont. Shelf Res. 80, 67–78 (2014).

    Article  Google Scholar 

  31. Chen, C.-C. et al. Hypoxia in autumn of the East China Sea. Mar. Pollut. Bull. 152, 110875 (2020).

    Article  Google Scholar 

  32. Jiang, Z. B. et al. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) estuary during the past 50 years. Water Res. 54, 1–11 (2014).

    Article  Google Scholar 

  33. Kang, B. et al. Climate change impacts on China’s marine ecosystems. Rev. Fish Biol. Fish. 31, 599–629 (2021).

    Article  Google Scholar 

  34. Zhang, J. et al. A comparative study on the macrobenthic community over a half century in the Yellow Sea, China. J. Oceanogr. 72, 189–205 (2016).

    Article  Google Scholar 

  35. Xu, Y. et al. Temporal variation of macrobenthic community zonation over nearly 60 years and the effects of latitude and depth in the southern Yellow Sea and East China Sea. Sci. Total Environ. 739, 139760 (2020).

    Article  Google Scholar 

  36. Zhang, X. et al. Potential influence of sea surface temperature on the interannual fluctuation of the catch and the distribution of chub macherel and round scad in the Minnan-Taiwan Bank fishing ground, China [in Chinese]. Mar. Sci. Bull. 24, 91–96 (2005).

    Google Scholar 

  37. Liang, C. et al. Impacts of ocean warming on China’s fisheries catches: an application of ‘mean temperature of the catch’ concept. Front. Mar. Sci. 5, 26 (2018).

    Article  Google Scholar 

  38. Singh, T. et al. Effects of moderate thermal anomalies on Acropora corals around Sesoko Island. Okinawa. PLoS ONE 14, e0210795 (2019).

    Article  Google Scholar 

  39. Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).

    Article  Google Scholar 

  40. Hansen, J. et al. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  41. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  Google Scholar 

  42. Lima, F. P. & Wethey, D. S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun. 3, 704 (2012).

    Article  Google Scholar 

  43. Zhang, L. et al. Modes and mechanisms of sea surface temperature low-frequency variations over the coastal China seas. J. Geophys. Res. 115, C08031 (2010).

    Google Scholar 

  44. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Oceans 108, 4407 (2003).

    Article  Google Scholar 

  45. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earths Future 1, 19–32 (2013).

    Article  Google Scholar 

  46. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  Google Scholar 

  47. Mantua, N. J. et al. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  48. Yeh, S.-W. & Kim, C.-H. Recent warming in the Yellow/East China Sea during winter and the associated atmospheric circulation. Cont. Shelf Res. 30, 1428–1434 (2010).

    Article  Google Scholar 

  49. Tang, Y. et al. Surface warming reacceleration in offshore China and its interdecadal effects on the East Asia–Pacific climate. Sci. Rep. 10, 14811 (2020).

    Article  Google Scholar 

  50. Yoon, J. & Yeh, S. W. Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon. J. Clim. 23, 4525–4537 (2010).

    Article  Google Scholar 

  51. Kim, J. W. et al. Combined effect of El Niño–Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Clim. Dyn. 42, 957–971 (2014).

    Article  Google Scholar 

  52. Andres, M. et al. Manifestation of the Pacific Decadal Oscillation in the Kuroshio. Geophys. Res. Lett. 36, L16602 (2009).

    Article  Google Scholar 

  53. Wang, Y. et al. Upper-ocean temperature trends in the Eastern China Seas during 1976–1996. J. Oceanol. Limnol. 36, 1527–1536 (2018).

    Article  Google Scholar 

  54. Oey, L.-Y. et al. Decadal warming of coastal China Seas and coupling with winter monsoon and currents. Geophys. Res. Lett. 40, 6288–6292 (2013).

    Article  Google Scholar 

  55. Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 15998 (2017).

    Article  Google Scholar 

  56. Guo, Y. et al. Interannual to interdecadal variability of the Southern Yellow Sea cold water mass and establishment of ‘forcing mechanism bridge’. J. Mar. Sci. Eng. 9, 1316 (2021).

    Article  Google Scholar 

  57. Park, K.-A. et al. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J. Mar. Syst. 143, 24–38 (2015).

    Article  Google Scholar 

  58. Sasaki, Y. N. & Umeda, C. Rapid warming of sea surface temperature along the Kuroshio and the China coast in the East China Sea during the 20th century. J. Clim. 34, 4803–4815 (2021).

    Article  Google Scholar 

  59. Tang, X. et al. Warming trend in northern East China Sea in recent four decades. Chin. J. Oceanol. Limnol. 27, 185–191 (2009).

    Article  Google Scholar 

  60. Li, Y. et al. Homogenization and trend analysis of 1960–2015 in situ sea surface temperature observations along the coast of China. Acta Oceanol. Sin. 40, 36–46 (2021).

    Article  Google Scholar 

  61. Li, A. et al. Long-term temperature variation of the Southern Yellow Sea cold water mass from 1976 to 2006. Chin. J. Oceanol. Limnol. 35, 1032–1044 (2017).

    Article  Google Scholar 

  62. Li, A. et al. Long-term variation in the salinity of the Southern Yellow Sea cold water mass, 1976–2006. J. Oceanogr. 73, 321–331 (2017).

    Article  Google Scholar 

  63. Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article  Google Scholar 

  64. Liao, E. et al. The coastal ocean response to the global warming acceleration and hiatus. Sci. Rep. 5, 16630 (2015).

    Article  Google Scholar 

  65. Yan, Y. et al. Record‐breaking sea surface temperatures in the Yellow and East China Seas. J. Geophys. Res. Oceans 125, e2019JC015883 (2020).

    Article  Google Scholar 

  66. Tan, H.-J. et al. Summer marine heatwaves in the South China Sea: trend, variability and possible causes. Adv. Clim. Chang. Res. 13, 323–332 (2022).

    Article  Google Scholar 

  67. Li, Y. et al. The 2016 record-breaking marine heatwave in the Yellow Sea and associated atmospheric circulation anomalies. Atmos. Res. 268, 106011 (2022).

    Article  Google Scholar 

  68. Wang, Q. et al. Properties and drivers of marine heat waves in the Northern South China Sea. J. Phys. Oceanogr. 52, 917–927 (2022).

    Article  Google Scholar 

  69. Chen, Y. et al. Extreme 2020 summer SSTs in the northern South China Sea: implications for the Beibu Gulf coral bleaching. J. Clim. 35, 1–45 (2022).

    Article  Google Scholar 

  70. Gordon, A. L. et al. The nascent Kuroshio of Lamon Bay. J. Geophys. Res. Oceans 119, 4251–4263 (2014).

    Article  Google Scholar 

  71. Nitani, H. in Kuroshio: Its Physical Aspects, 129–163 (Univ. Tokyo Press, 1972).

  72. Duan, J. et al. Multidecadal change of the Mindanao Current: is there a robust trend? Geophys. Res. Lett. 46, 6755–6764 (2019).

    Article  Google Scholar 

  73. Zhai, F. et al. Decadal variations of the North Equatorial Current in the Pacific at 137° E. J. Geophys. Res. Oceans 118, 4989–5006 (2013).

    Article  Google Scholar 

  74. Chen, Z. & Wu, L. Long-term change of the Pacific North Equatorial Current bifurcation in SODA. J. Geophys. Res. Oceans 117, C06016 (2012).

    Article  Google Scholar 

  75. Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).

    Article  Google Scholar 

  76. Nan, F. et al. Weakening of the Kuroshio intrusion into the South China Sea over the past two decades. J. Clim. 26, 8097–8110 (2013).

    Article  Google Scholar 

  77. Wu, C.-R. et al. Weakening of the Kuroshio intrusion into the South China Sea under the global warming hiatus. IEEE J. Sel. Top Appl. Earth Obs. Remote. Sens. 9, 5064–5070 (2016).

    Article  Google Scholar 

  78. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change. 4, 222–227 (2014).

    Article  Google Scholar 

  79. Qiu, B. & Chen, S. Multidecadal sea level and gyre circulation variability in the Northwestern Tropical Pacific Ocean. J. Phys. Oceanogr. 42, 193–206 (2012).

    Article  Google Scholar 

  80. Chang, Y. et al. Decreasing trend of Kuroshio intrusion and its effect on the chlorophyll-a concentration in the Luzon Strait, South China Sea. GIsci. Remote Sens. 59, 633–647 (2022).

    Article  Google Scholar 

  81. Sheremet, V. A. Hysteresis of a western boundary current leaping across a gap. J. Phys. Oceanogr. 31, 1247–1259 (2001).

    Article  Google Scholar 

  82. Zhou, C. et al. Increasing deep-water overflow from the Pacific into the South China Sea revealed by mooring observations. Nat. Commun. 14, 2013 (2023).

    Article  Google Scholar 

  83. Zhu, Y. et al. Weakening trend of Luzon Strait overflow transport in the past two decades. Geophys. Res. Lett. 49, e2021GL097395 (2022a).

    Article  Google Scholar 

  84. Hsin, Y.-C. Multidecadal variations of the surface Kuroshio between 1950s and 2000s and its impacts on surrounding waters. J. Geophys. Res. Oceans 120, 1792–1808 (2015).

    Article  Google Scholar 

  85. Wang, Y.-L. & Wu, C.-R. Discordant multi-decadal trend in the intensity of the Kuroshio along its path during 1993–2013. Sci. Rep. 8, 14633 (2018).

    Article  Google Scholar 

  86. Hsin, Y. C. et al. Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. J. Geophys. Res. Oceans 118, 4305–4316 (2013).

    Article  Google Scholar 

  87. Liu, Z. J. et al. Comprehensive observational features for the Kuroshio transport decreasing trend during a recent global warming hiatus. Geophys. Res. Lett. 48, e2021GL094169 (2021).

    Article  Google Scholar 

  88. Yang, H. & Wu, L. Trends of upper-layer circulation in the South China Sea during 1959–2008. J. Geophys. Res. Oceans 117, C08037 (2012).

    Article  Google Scholar 

  89. Zhu, Y. et al. Decadal weakening of abyssal South China Sea circulation. Geophys. Res. Lett. 49, e2022GL100582 (2022b).

    Article  Google Scholar 

  90. Zhang, C. et al. Enhancement of Zhe-Min coastal water in the Taiwan Strait in winter. J. Oceanogr. 76, 197–209 (2020).

    Article  Google Scholar 

  91. Jeong, J.-H. et al. Recent recovery of the Siberian high intensity. J. Geophys. Res. 116, D23102 (2011).

    Google Scholar 

  92. Kim, Y.-S., Jang, C.-J. & Yeh, S.-W. Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift. Cont. Shelf Res. 156, 43–54 (2018).

    Article  Google Scholar 

  93. Wang, Y. et al. Evolution of satellite derived chlorophyll-a trends in the Bohai and Yellow Seas during 2002–2018: comparison between linear and nonlinear trends. Estuar. Coast. Shelf Sci. 259, 107449 (2021).

    Article  Google Scholar 

  94. Kim, I.-N. et al. Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346, 1102–1106 (2014).

    Article  Google Scholar 

  95. Wang, J. et al. Long-term nutrient variations in the Bohai Sea over the past 40 years. J. Geophys. Res. Oceans 124, 703–722 (2019).

    Article  Google Scholar 

  96. Zheng, L. & Zhai, W. Excess nitrogen in the Bohai and Yellow Seas, China: distribution, trends, and source apportionment. Sci. Total Environ. 794, 148702 (2021).

    Article  Google Scholar 

  97. Moon, J.-Y. et al. Anthropogenic nitrogen is changing the East China and Yellow Seas from being N deficient to being P deficient. Limnol. Oceanogr. 66, 914–924 (2021).

    Article  Google Scholar 

  98. Malone, T. C. & Newton, A. The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Front. Mar. Sci. 7, 670 (2020).

    Article  Google Scholar 

  99. Zhang, J. et al. From the water sources of the Tibetan Plateau to the ocean: state of nutrients in the Changjiang linked to land use changes and climate variability. Sci. China Earth Sci. 65, 2127–2174 (2022).

    Article  Google Scholar 

  100. Kim, T.-W. et al. Increasing N abundance in the Northwestern Pacific ocean due to atmospheric nitrogen deposition. Science 334, 505–509 (2011).

    Article  Google Scholar 

  101. Liu, N. Review on the nutrients transport in Yangtze River with responses to the damming in the drainage basin in the past 50 years. Environ. Chem. 36, 1579–1587 (2017).

    Google Scholar 

  102. Niu, L. et al. Impact of anthropogenic forcing on the environmental controls of phytoplankton dynamics between 1974 and 2017 in the Pearl River estuary, China. Ecol. Indic. 116, 106484 (2020).

    Article  Google Scholar 

  103. Wei, Q. et al. Long-term variation of nutrients in the southern Yellow Sea. Cont. Shelf Res. 111, 184–196 (2015).

    Article  Google Scholar 

  104. Hu, Y. et al. Interannual variation of nutrients along a transect across the Kuroshio and shelf area in the East China Sea over 40 years. J. Oceanol. Limnol. 36, 62–76 (2018).

    Article  Google Scholar 

  105. Du, C. et al. Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model. Biogeosciences 10, 6419–6432 (2013).

    Article  Google Scholar 

  106. Yang, F. et al. Long-term variations and influence factors of nutrients in the western North Yellow Sea, China. Mar. Pollut. Bull. 135, 1026–1034 (2018).

    Article  Google Scholar 

  107. Li, H. et al. Changes in concentrations of oxygen, dissolved nitrogen, phosphate, and silicate in the southern Yellow Sea, 1980–2012: sources and seaward gradients. Estuar. Coast. Shelf Sci. 163, 44–55 (2015).

    Article  Google Scholar 

  108. Lin, C. et al. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000. J. Mar. Syst. 55, 223–234 (2005).

    Article  Google Scholar 

  109. Ning, X. et al. Long term changes in the ecosystem in the northern South China Sea during 1976–2004. Biogeosciences 6, 2227–2243 (2009).

    Article  Google Scholar 

  110. Xin, M. et al. Long-term changes in nutrient regimes and their ecological effects in the Bohai Sea, China. Mar. Pollut. Bull. 146, 562–573 (2019).

    Article  Google Scholar 

  111. Zhang, H. et al. Contribution of sediment oxygen demand to hypoxia development off the Changjiang estuary. Estuar. Coast. Shelf Sci. 192, 149–157 (2017).

    Article  Google Scholar 

  112. Chi, L. et al. Main factors dominating the development, formation and dissipation of hypoxia off the Changjiang estuary (CE) and its adjacent waters, China. Environ. Pollut. 265, 115066 (2020).

    Article  Google Scholar 

  113. Li, Z. et al. The sinking of the phytoplankton community and its contribution to seasonal hypoxia in the Changjiang (Yangtze River) estuary and its adjacent waters. Estuar. Coast. Shelf Sci. 208, 170–179 (2018).

    Article  Google Scholar 

  114. Wang, H. et al. Eutrophication-driven hypoxia in the East China Sea off the Changjiang estuary. Environ. Sci. Technol. 50, 2255–2263 (2016).

    Article  Google Scholar 

  115. Chi, L. et al. Heterogeneity of the sediment oxygen demand and its contribution to the hypoxia off the Changjiang estuary and its adjacent waters. Mar. Pollut. Bull. 172, 112920 (2022).

    Article  Google Scholar 

  116. Wei, Q. et al. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang estuary in summer. Sci. China Earth Sci 60, 360–381 (2017).

    Article  Google Scholar 

  117. Chen, X. et al. Tidal modulation of the hypoxia adjacent to the Yangtze estuary in summer. Mar. Pollut. Bull. 100, 453–463 (2015).

    Article  Google Scholar 

  118. Wei, X. et al. A model study of the effects of river discharges and winds on hypoxia in summer in the Pearl River estuary. Mar. Pollut. Bull. 113, 414–427 (2016).

    Article  Google Scholar 

  119. Guo, X. et al. Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River estuary? Sci. Total Environ. 719, 137450 (2020).

    Article  Google Scholar 

  120. Guo, J. et al. Hypoxia, acidification and nutrient accumulation in the Yellow Sea Cold Water of the South Yellow Sea. Sci. Total Environ. 745, 141050 (2020).

    Article  Google Scholar 

  121. Li, X. et al. Deep-learning-based information mining from ocean remote-sensing imagery. Natl Sci. Rev. 7, 1584–1605 (2020).

    Article  Google Scholar 

  122. Li, C. et al. Effects of warming, eutrophication and climate variability on acidification of the seasonally stratified North Yellow Sea over the past 40 years. Sci. Total Environ. 815, 152935 (2022).

    Article  Google Scholar 

  123. Qian, W. et al. Current status of emerging hypoxia in a eutrophic estuary: the lower reach of the Pearl River estuary, China. Estuar. Coast. Shelf Sci. 205, 58–67 (2018).

    Article  Google Scholar 

  124. Ni, X. et al. The impact of wind mixing on the variation of bottom dissolved oxygen off the Changjiang estuary during summer. J. Mar. Syst. 154, 122–130 (2016).

    Article  Google Scholar 

  125. Wang, B. et al. Annual cycle of hypoxia off the Changjiang (Yangtze River) estuary. Mar. Environ. Res. 77, 1–5 (2012).

    Article  Google Scholar 

  126. Wu, Y. et al. Increasing hypoxia in the Changjiang estuary during the last three decades deciphered from sedimentary redox-sensitive elements. Mar. Geol. 419, 106044 (2020).

    Article  Google Scholar 

  127. Zhao, J. et al. Sedimentary organic and inorganic records of eutrophication and hypoxia in and off the Changjiang estuary over the last century. Mar. Pollut. Bull. 99, 76–84 (2015).

    Article  Google Scholar 

  128. Yang, J. et al. Sedimentary processes dominate nitrous oxide production and emission in the hypoxic zone off the Changjiang River estuary. Sci. Total Environ. 827, 154042 (2022).

    Article  Google Scholar 

  129. Liu, J. et al. Sedimentary phosphorus cycling and budget in the seasonally hypoxic coastal area of Changjiang estuary. Sci. Total Environ. 713, 136389 (2020).

    Article  Google Scholar 

  130. Zhai, W. Exploring seasonal acidification in the Yellow Sea. Sci. China Earth Sci 61, 647–658 (2018).

    Article  Google Scholar 

  131. Wu, L. et al. Dissolved oxygen distributions, hypoxic and acidification characteristics, and their controlling factors in the southern Yellow Sea and off the Changjiang estuary. Chin. Environ. Sci. 41, 1311–1324 (2021).

    Google Scholar 

  132. Shi, Q. et al. Acidification process of Bohai Sea water in recent 36 years. Excellent Proceedings on Puhua Environmental Protection, Academic Annual Meeting of Chinese Society for Environmental Sciences 59–66 (Chinese Society for Environmental Sciences, Beijing, 2013).

  133. Liu, X. et al. Acidification and the factors in surface seawater of the East China Sea coast. Oceanol. Limnol. Sin. 48, 398–405 (2017).

    Google Scholar 

  134. Yang, X. et al. Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans. Environ. Sci. Technol. 52, 5590–5599 (2018).

    Article  Google Scholar 

  135. Xue, L. et al. Processes controlling sea surface pH and aragonite saturation state in a large northern temperate bay: contrasting temperature effects. J. Geophys. Res. Biogeosci. 125, e2020JG005805 (2020).

    Article  Google Scholar 

  136. Zhang, J. & Gao, X. Nutrient distribution and structure affect the acidification of eutrophic ocean margins: a case study in southwestern coast of the Laizhou Bay, China. Mar. Pollut. Bull. 111, 295–304 (2016).

    Article  Google Scholar 

  137. Liu, Q. et al. Carbon fluxes in the China Seas: an overview and perspective. Sci. China Earth Sci 61, 1564–1582 (2018).

    Article  Google Scholar 

  138. Liu, Q. et al. Partial pressure of CO2 and air–sea CO2 fluxes in the South China Sea: synthesis of an 18-year dataset. Prog. Oceanogr. 182, 102272 (2020).

    Article  Google Scholar 

  139. Zhai, W. et al. Seasonal variations of sea–air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences 10, 7775–7791 (2013).

    Article  Google Scholar 

  140. Cai, R. & Chen, X. A changing ocean and its impact on climate change in China. Resour. Environ. 30, 9–20 (2020).

    Google Scholar 

  141. Cai, W. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu. Rev. Mar. Sci. 3, 123–145 (2011).

    Article  Google Scholar 

  142. Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

    Article  Google Scholar 

  143. Riebesell, U. et al. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).

    Article  Google Scholar 

  144. Lønborg, C. et al. Impacts of global change on ocean dissolved organic carbon (DOC) cycling. Front. Mar. Sci. 7, 466 (2020).

    Article  Google Scholar 

  145. Dai, M. et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends. Annu. Rev. Earth Planet. Sci. 50, 593–626 (2022).

    Article  Google Scholar 

  146. Henson, S. A. et al. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7, 621–640 (2010).

    Article  Google Scholar 

  147. O’Reilly, J. E. & Werdell, P. J. Chlorophyll algorithms for ocean color sensors — OC4, OC5 & OC6. Remote. Sens. Environ. 229, 32–47 (2019).

    Article  Google Scholar 

  148. Qiao, Y. et al. Long-term changes in nutrients, chlorophyll a and their relationships in a semi-enclosed eutrophic ecosystem, Bohai Bay, China. Mar. Pollut. Bull. 117, 222–228 (2017).

    Article  Google Scholar 

  149. Fu, M. et al. Changes of nutrient concentrations and N:P:Si ratios and their possible impacts on the Huanghai Sea ecosystem. Acta Oceanol. Sin. 31, 101–112 (2012).

    Article  Google Scholar 

  150. Syndeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).

    Article  Google Scholar 

  151. Xiu, P. et al. Future changes in coastal upwelling ecosystems with global warming: the case of the California current system. Sci. Rep. 8, 2866 (2018).

    Article  Google Scholar 

  152. Yu, Y. et al. The variability of chlorophyll-a and its relationship with dynamic factors in the basin of the South China Sea. J. Mar. Syst. 200, 103230 (2019).

    Article  Google Scholar 

  153. Wang, Y. et al. Long-term nutrient variation trends and their potential impact on phytoplankton in the southern Yellow Sea, China. Acta Oceanol. Sin. 41, 54–67 (2022).

    Article  Google Scholar 

  154. Zhai, F. et al. Interannual–decadal variation in satellite-derived surface chlorophyll-a concentration in the Bohai Sea over the past 16 years. J. Mar. Syst. 215, 103496 (2021).

    Article  Google Scholar 

  155. Xiu, P. et al. On contributions by wind-induced mixing and eddy pumping to interannual chlorophyll variability during different ENSO phases in the northern South China Sea. Limnol. Ocean. 64, 503–514 (2019).

    Article  Google Scholar 

  156. Sun, X. et al. Long-term changes of phytoplankton community structure in the Jiaozhou Bay [in Chinese]. Oceanol. Limnol. Sin. 42, 639–646 (2011).

    Google Scholar 

  157. Lin, G. & Yang, Q. Interdecadal variation in distribution features of phytoplankton in the Taiwan Strait under global climate change [in Chinese]. Chin. J. Appl. Environ. Biol. 17, 615–623 (2011).

    Google Scholar 

  158. Jiang, Z. et al. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) estuary and adjacent East China Sea shelf. Cont. Shelf Res. 101, 71–84 (2015).

    Article  Google Scholar 

  159. Li, H. et al. Distribution of dissolved inorganic nutrients and dissolved oxygen in the high frequency area of harmful alga blooms in the East China Sea in spring. Environ. Sci. 34, 2159–2165 (2013).

    Google Scholar 

  160. Zhou, Y. et al. Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea. Sci. Total Environ. 574, 499–508 (2017).

    Article  Google Scholar 

  161. Luan, Q. et al. Long-term changes in the phytoplankton community in the Bohai Sea (1959~2015) [in Chinese]. Prog. Fish. Sci. 39, 9–18 (2018).

    Google Scholar 

  162. Litchman, E. et al. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170–1181 (2007).

    Article  Google Scholar 

  163. Sun, X. & Sun, S. Phytoplankton size structure and its temporal and spatial changes in Jiaozhou Bay [in Chinese]. Oceanol. Limnol. Sin. 43, 411–418 (2012).

    Google Scholar 

  164. Li, T. et al. Phytoplankton size classes changed oppositely over shelf and basin areas of the South China Sea during 2003–2018. Prog. Oceanogr. 191, 102496 (2021).

    Article  Google Scholar 

  165. Kodama, T. et al. Environmental factors controlling zooplankton accumulation in the near-surface layer in the western North Pacific marginal seas. J. Mar. Syst. 237, 103829 (2023).

    Article  Google Scholar 

  166. Sun, S. et al. Changes in the small-jellyfish community in recent decades in Jiaozhou Bay, China. J. Ocean. Limnol. 30, 12 (2012).

    Google Scholar 

  167. Wang, W. et al. Zooplankton community structure, abundance and biovolume in Jiaozhou Bay and the adjacent coastal Yellow Sea during summers of 2005–2012: relationships with increasing water temperature. J. Oceanol. Limnol. 36, 1655–1670 (2018).

    Article  Google Scholar 

  168. Xu, Y. et al. Relationships of interannual variability in SST and phytoplankton blooms with giant jellyfish (Nemopilema nomurai) outbreaks in the Yellow Sea and East China Sea. J. Oceanogr. 69, 511–526 (2013).

    Article  Google Scholar 

  169. Kitajima, S. et al. Temporal fluctuations in abundance and size of the giant jellyfish Nemopilema nomurai medusae in the northern East China Sea, 2006–2017. Mar. Biol. 167, (2020).

  170. Xing, Q. et al. The evolutions of the typical ecological hazards in the Bohai Sea. Coast. Sci. 4, 11–18 (2017).

    Google Scholar 

  171. Yang, L. et al. Zooplankton community variation and its relationship with environmental variables in Bohai Bay. J. Mar. Syst. 36, 93–101 (2018).

    Google Scholar 

  172. Garzke, J. et al. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance. Oecologia 177, 849–860 (2014).

    Article  Google Scholar 

  173. Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).

    Google Scholar 

  174. Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article  Google Scholar 

  175. Doney, S. C. et al. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).

    Article  Google Scholar 

  176. Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).

    Article  Google Scholar 

  177. Riedel, B. et al. Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level. Biogeosciences 11, 1491–1518 (2014).

    Article  Google Scholar 

  178. Yasuda, T. et al. Fishing ground hotspots reveal long-term variation in chub mackerel Scomber japonicus habitat in the East China Sea. Mar. Ecol. Prog. Ser. 501, 239–250 (2014).

    Article  Google Scholar 

  179. Xu, Y. et al. Seasonal and spatial variations of macrobenthic community structure and diversity in the south Yellow Sea. Aquat. Ecosyst. Health Manag. 19, 92–100 (2016).

    Article  Google Scholar 

  180. Zhang, J. et al. What has happened to the benthic mollusks of the Yellow Sea in the near half century? Comparison on molluscan biodiversity between 1959 and 2007. Cont. Shelf Res. 113, 21–29 (2016).

    Article  Google Scholar 

  181. Hu, L. & Dong, Y. Northward shift of a biogeographical barrier on China’s coast. Divers. Distrib. 28, 318–330 (2022).

    Article  Google Scholar 

  182. Wang, W. et al. Global warming and artificial shorelines reshape seashore biogeography. Glob. Ecol. Biogeogr. 29, 220–231 (2020).

    Article  Google Scholar 

  183. White, M. M. et al. Early exposure of bay scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS ONE 8, e61065 (2013).

    Article  Google Scholar 

  184. Sui, Y. et al. Defense responses to short-term hypoxia and seawater acidification in the thick shell mussel Mytilus coruscus. Front. Physiol. 8, 145 (2017).

    Article  Google Scholar 

  185. Meng, Y. et al. Calcium carbonate unit realignment under acidification: a potential compensatory mechanism in an edible estuarine oyster. Mar. Pollut. Bull. 139, 141–149 (2019).

    Article  Google Scholar 

  186. Tomasetti, S. J. et al. Warming and hypoxia reduce the performance and survival of northern bay scallops (Argopecten irradians irradians) amid a fishery collapse. Glob. Change Biol. 29, 2092–2107 (2023).

    Article  Google Scholar 

  187. Zhai, W. et al. Coastal acidification in summer bottom oxygen-depleted waters in northwestern–northern Bohai Sea from June to August in 2011. Chin. Sci. Bull. 57, 1062–1068 (2012).

    Article  Google Scholar 

  188. Dahlke, F. T. et al. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    Article  Google Scholar 

  189. Asch, R. G. et al. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Change Biol. 25, 2544–2559 (2019).

    Article  Google Scholar 

  190. Lindmark, M. et al. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. Glob. Change Biol. 28, 6239–6253 (2022).

    Article  Google Scholar 

  191. Sherman, K. et al. Accelerated warming and emergent trends in fisheries biomass yields of the world’s large marine ecosystems. Ambio 38, 215–224 (2009).

    Article  Google Scholar 

  192. Freitas, C. et al. Sea temperature effects on depth use and habitat selection in a marine fish community. J. Anim. Ecol. 90, 1787–1800 (2021).

    Article  Google Scholar 

  193. Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    Article  Google Scholar 

  194. Chen, C. Chemical and physical fronts in the Bohai, Yellow and East China Seas. J. Mar. Syst. 78, 394–410 (2009).

    Article  Google Scholar 

  195. Hu, W. et al. Effects of climate change in the seas of China: predicted changes in the distribution of fish species and diversity. Ecol. Indic. 134, 108489 (2022).

    Article  Google Scholar 

  196. Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).

    Article  Google Scholar 

  197. Sumaila, U. R. et al. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).

    Article  Google Scholar 

  198. Kang, B. et al. Fisheries in Chinese seas: what can we learn from controversial official fisheries statistics? Rev. Fish Biol. Fish. 28, 503–519 (2018).

    Article  Google Scholar 

  199. Du Pontavice, H. et al. Climate change undermines the global functioning of marine food webs. Glob. Change Biol. 26, 1306–1318 (2020).

    Article  Google Scholar 

  200. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  201. Song, C. et al. Evaluation and projection of SST in the China seas from CMIP5. Acta Oceanol. Sin. 38, 1–11 (2016).

    Google Scholar 

  202. Tan, H. et al. Projections of changes in marine environment in coastal China seas over the 21st century based on CMIP5 models. J. Oceanol. Limnol. 38, 1676–1691 (2020).

    Article  Google Scholar 

  203. Yu, X. et al. Future projection of East China Sea temperature by dynamic downscaling of the IPCC AR4 CCSM3 model result. Chin. J. Oceanol. Limnol. 30, 826–842 (2012).

    Article  Google Scholar 

  204. Qiu, Z. et al. Evaluation and projection of global marine heatwaves based on CMIP6 models. Deep. Sea Res. Part II Top. Stud. Oceanogr. 194, 104998 (2021).

    Article  Google Scholar 

  205. Frölicher, T. L. et al. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article  Google Scholar 

  206. Chen, C. et al. Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Clim. 32, 7437–7451 (2019).

    Article  Google Scholar 

  207. Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans 121, 4928–4945 (2016).

    Article  Google Scholar 

  208. Hu, S. et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 6, eaax7727 (2020).

    Article  Google Scholar 

  209. Peng, Q. et al. Surface warming–induced global acceleration of upper ocean currents. Sci. Adv. 8, eabj8394 (2022).

    Article  Google Scholar 

  210. Hao, J. et al. Long-term changes of cross-shelf transports in the Yellow and East China Seas under different greenhouse gases emission scenarios. Clim. Dyn. 59, 1451–1471 (2021).

    Article  Google Scholar 

  211. Kieran, P. H. et al. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38, L23602 (2011).

    Google Scholar 

  212. Wang, M. et al. Global change can make coastal eutrophication control in China more difficult. Earths Future 8, e2019EF001280 (2020).

    Article  Google Scholar 

  213. Wang, J. et al. Harmful algal blooms in Chinese coastal waters will persist due to perturbed nutrient ratios. Environ. Sci. Technol. Lett. 8, 276–284 (2021).

    Article  Google Scholar 

  214. Strokal, M. et al. Increasing eutrophication in the coastal seas of China from 1970 to 2050. Mar. Pollut. Bull. 85, 123–140 (2014).

    Article  Google Scholar 

  215. Boyce, D. G. et al. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    Article  Google Scholar 

  216. Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

    Article  Google Scholar 

  217. Chaudhary, C. et al. Global warming is causing a more pronounced dip in marine species richness around the Equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    Article  Google Scholar 

  218. Xu, Y. et al. Potential effects of climate change on the habitat suitability of macrobenthos in the Yellow Sea and East China Sea. Mar. Pollut. Bull. 174, 113238 (2022).

    Article  Google Scholar 

  219. Zhang, Z. et al. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze estuary, China. Divers. Distrib. 26, 126–137 (2020).

    Article  Google Scholar 

  220. Zhang, Z. et al. Does weighting presence records improve the performance of species distribution models? A test using fish larval stages in the Yangtze estuary. Sci. Total Environ. 741, 140393 (2020).

    Article  Google Scholar 

  221. Li, X. et al. Deep learning-based information mining from ocean remote sensing imagery. National Sci. Rev. 7, 1584-1605 (2020).

    Article  Google Scholar 

  222. Song, X. The importance of relative wind speed in estimating air–sea turbulent heat fluxes in bulk formulas: examples in the Bohai Sea. J. Atmos. Ocean. Technol. 37, 589–603 (2020).

    Article  Google Scholar 

  223. Zhang, R. et al. Cool skin effect and its impact on the computation of the latent heat flux in the South China Sea. J. Geophys. Res. Oceans 126, e2020JC016498 (2021).

    Article  Google Scholar 

  224. Yang, L. et al. Toward a mesoscale hydrological and marine meteorological observation network in the South China Sea. Bull. Am. Meteorol. Soc. 96, 1117–1135 (2015).

    Article  Google Scholar 

  225. Wang, X. et al. Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea. J. Geophys. Res. Oceans 122, 5088–5104 (2017).

    Article  Google Scholar 

  226. Harvey, B. P. et al. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 2782–2782 (2013).

    Article  Google Scholar 

  227. Han, W. et al. Sea level extremes and compounding marine heatwaves in coastal Indonesia. Nat. Commun. 13, 6410 (2022).

    Article  Google Scholar 

  228. Steckbauer, A. et al. Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast. Front. Mar. Sci. 2, 49 (2015).

    Article  Google Scholar 

  229. Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Article  Google Scholar 

  230. Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097 (2009).

    Article  Google Scholar 

  231. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article  Google Scholar 

  232. Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  Google Scholar 

  233. Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    Article  Google Scholar 

  234. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article  Google Scholar 

  235. Huang, B. et al. Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article  Google Scholar 

  236. China’s Ocean Survey Report (State Oceanic Administration, 1959).

  237. Tian, R. et al. Summer nutrient fronts in the Changjiang (Yantze River) Estuary. Estuar. Coast. Shelf Sci. 37, 27–41 (1993).

    Article  Google Scholar 

  238. Li, D. et al. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Sci. China Ser. D 32, 686–694 (2002).

    Google Scholar 

  239. Shi, J. et al. Bottom fine sediment boundary layer and transport processes at the mouth of the Changjiang Estuary, China. J. Hydrol. 327, 276–288 (2006).

    Article  Google Scholar 

  240. Chen, C. et al. Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Mar. Environ. Res. 64, 399–408 (2008).

    Article  Google Scholar 

  241. Zhang, Z. et al. Spatio-temporal variation, formation and transformation of the hypoxia area off the Yangtze River estuary. Mar. Environ. Sci. 31, 469–473 (2012).

    Google Scholar 

  242. Liu, H. et al. Study on the variation trend and influencing factors of summer hypoxia off the Yangtze River estuary. Mar. Environ. Sci. 40, 341–351 (2021).

    Google Scholar 

  243. Sun S. et al. in Processes and Changes of Aquatic Ecosystem (ed. Qin, B.) 300–346 (Higher Education Press, 2019).

  244. Wang, W. et al. Seasonal phenology of the heterotrophic dinoflagellate Noctiluca scintillans (Macartney) in Jiaozhou Bay and adjacent coastal Yellow Sea, China. J. Oceanol. Limnol. 36, 1280–1293 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (42090040), the Strategic Priority Research Program of Chinese Academy of Sciences grant (XDB42000000) and the National Key R&D Program of China (2017YFA0603200). Y.L. is supported by Shandong Provincial Natural Science Foundation (ZR2020JQ17). H.Z. is supported by the National Key Research and Development Project of China (2022YFE0112800). J.Z. is supported by Intergovernmental International Cooperation in Science and Technology Innovation (2021YFE0193700).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to writing and editing the article. F.W. and Y.L. led the overall concept design and coordinated the writing. X.T. and F.W. led the warming trend section. X.T. and Y.Y. led the marine heatwaves section. D.Y. and L.X. led the circulation changes section. X.L. led the nutrients, hypoxia and acidification sections. H.Y. led the carbon storage section. X.S. and Y.W. led the plankton section. J.Z. led the benthos section. H.Z. led the fishes and fishery resources section. Y.L. and X.T. led the projected changes section. F.W. and Y.L. led the summary and future perspectives section. Y.G. and Q.R. contributed to data processing and graphing. All authors contributed to writing and editing.

Corresponding authors

Correspondence to Fan Wang or Yuanlong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Shuyang Ma, Kitack Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Li, X., Tang, X. et al. The seas around China in a warming climate. Nat Rev Earth Environ 4, 535–551 (2023). https://doi.org/10.1038/s43017-023-00453-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00453-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing