Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Causal inference for time series

A Publisher Correction to this article was published on 18 July 2023

This article has been updated

Abstract

Many research questions in Earth and environmental sciences are inherently causal, requiring robust analyses to establish whether and how changes in one variable cause changes in another. Causal inference provides the theoretical foundations to use data and qualitative domain knowledge to quantitatively answer these questions, complementing statistics and machine learning techniques. However, there is still a broad language gap between the methodological and domain science communities. In this Technical Review, we explain the use of causal inference frameworks with a focus on the challenges of time series data. Domain-adapted explanations, method guidance and practical case studies provide an accessible summary of methods for causal discovery and causal effect estimation. Examples from climate and biogeosciences illustrate typical challenges, such as contemporaneous causation, hidden confounding and non-stationarity, and some strategies to address these challenges. Integrating causal thinking into data-driven science will facilitate process understanding and more robust machine learning and statistical models for Earth and environmental sciences, enabling the tackling of many open problems with relevant environmental, economic and societal implications.

Key points

  • Causal inference provides a framework that integrates statistical and machine learning methods to answer causal questions from data.

  • A causal inference analysis enables research questions to be framed as causal questions and transparently lay out the underlying assumptions used to answer these.

  • Causal discovery can be used to learn causal graphs from data to explore and cross-check qualitative causal knowledge.

  • Causal effect estimation allows quantitative causal questions to be answered using a combination of qualitative causal knowledge, statistical or machine learning models and data.

  • Case studies on climate and biogeosciences exemplify the use of causal inference methods and illustrate typical challenges, such as contemporaneous causation, hidden confounding and non-stationarity.

  • Future developments require more interactions between method and domain sciences to better integrate causal thinking into data-driven science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Foundations of causal inference.
Fig. 2: QAD-based causal inference method-selection flow chart.
Fig. 3: Causal inference analysis of the Walker Circulation.
Fig. 4: Non-linear causal effects of temperature on ecosystem respiration.

Similar content being viewed by others

Data availability

The original ERA5 reanalysis data for the climate example can be downloaded from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5/ or through the KNMI Climate Explorer (https://climexp.knmi.nl) that we also used to extract regional averages.

Code availability

The case studies can be reproduced with Python code provided at https://github.com/jakobrunge/tigramite/blob/master/tutorials/case_studies/, which also includes the data.

The causal inference software packages mentioned in Table 2 are as follows: TETRAD: Java package covering constraint-based, score-based and asymmetry-based causal discovery, as well as causal effect estimation, also for time series, GUI available (https://github.com/cmu-phil/tetrad); causal-learn: Python reimplementation and extension of TETRAD, see above (https://github.com/cmu-phil/causal-learn); pcalg: R package covering constraint-based, score-based and asymmetry-based causal discovery, as well as causal effect estimation (https://CRAN.R-project.org/package=pcalg); Tigramite: Python package covering constraint-based causal discovery and causal effect estimation methods specifically adapted to time series (https://github.com/jakobrunge/tigramite); MXM: R package covering constraint-based causal discovery (https://CRAN.R-project.org/package=MXM); bnlearn/dbnlearn: R package covering constraint and score-based causal discovery (https://CRAN.R-project.org/package=bnlearn), also for time series (https://CRAN.R-project.org/package=dbnlearn); PyWhy: Python package for causal machine learning (https://github.com/py-why); InvariantCausalPrediction: R package covering (sequential) invariant causal prediction (https://cran.r-project.org/package=seqICP); rEDM: R-package for convergent cross mapping (https://cran.r-project.org/web/packages/rEDM/index.html); statsmodels: Python time series modelling package (https://www.statsmodels.org/stable/index.html); Causalnex: Python package for continuous optimization structure learning (https://github.com/quantumblacklabs/causalnex); dagitty: Web-based tool for causal effect estimation via adjustment (http://dagitty.net); CausalFusion: Web-based tool with focus on causal effect estimation and full coverage of do-calculus (https://www.causalfusion.net); Linearmodels: Python modelling package (https://github.com/bashtage/linearmodels); econML: Python package for machine learning-based estimation of causal effects (https://github.com/microsoft/EconML).

Change history

References

  1. Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis Vol. 2 (Cambridge Univ. Press, 2021).

  2. Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  3. Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction Vol. 2 (Springer, 2009).

  4. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  5. Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015).

    Google Scholar 

  6. Murphy, K. P. Probabilistic Machine Learning: An Introduction (MIT Press, 2022).

  7. Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Google Scholar 

  8. Camps-Valls, G., Tuia, D., Zhu, X. X. & Reichstein, M. (eds) Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences (Wiley, 2021).

  9. Pearl, J. Causal inference in statistics: an overview. Stat. Surv. 3, 96–146 (2009).

    Google Scholar 

  10. Runge, J. et al. Inferring causation from time series in earth system sciences. Nat. Commun. 10, 1–13 (2019).

    Google Scholar 

  11. Diaz, E., Adsuara, J., Moreno-Martinez, A., Piles, M. & Camps-Valls, G. Inferring causal relations from observational long-term carbon and water fluxes records. Sci. Rep. 12, 1610 (2022).

    Google Scholar 

  12. Ebert-Uphoff, I. & Deng, Y. Causal discovery in the geosciences — using synthetic data to learn how to interpret results. Comput. Geosci. 99, 50–60 (2017).

    Google Scholar 

  13. Niemeijer, D. & de Groot, R. S. Framing environmental indicators: moving from causal chains to causal networks. Environ. Dev. Sustain. 10, 89–106 (2008).

    Google Scholar 

  14. Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).

    Google Scholar 

  15. Fan, J., Wang, Y., Rosenfeld, D. & Liu, X. Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J. Atmos. Sci. 73, 4221–4252 (2016).

    Google Scholar 

  16. Ebert-Uphoff, I. & Deng, Y. Causal discovery for climate research using graphical models. J. Clim. 25, 5648–5665 (2012).

    Google Scholar 

  17. Runge, J., Petoukhov, V. & Kurths, J. Quantifying the strength and delay of climatic interactions: the ambiguities of cross correlation and a novel measure based on graphical models. J. Clim. 27, 720–739 (2014).

    Google Scholar 

  18. Kretschmer, M., Coumou, D., Donges, J. F. & Runge, J. Using causal effect networks to analyze different arctic drivers of midlatitude winter circulation. J. Clim. 29, 4069–4081 (2016).

    Google Scholar 

  19. Di Capua, G. et al. Tropical and mid-latitude teleconnections interacting with the indian summer monsoon rainfall: a theory-guided causal effect network approach. Earth Syst. Dyn. 11, 17–34 (2020).

    Google Scholar 

  20. Kretschmer, M. et al. Quantifying causal pathways of teleconnections. Bull. Am. Meteorol. Soc. 102, E2247–E2263 (2021).

    Google Scholar 

  21. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019).

    Google Scholar 

  22. Karmouche, S. et al. Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6. Earth Syst. Dynam. 14, 309–344 (2023).

    Google Scholar 

  23. Kretschmer, M., Runge, J. & Coumou, D. Early prediction of extreme stratospheric polar vortex states based on causal precursors. Geophys. Res. Lett. 44, 8592–8600 (2017).

    Google Scholar 

  24. Runge, J., Donner, R. V. & Kurths, J. Optimal model-free prediction from multivariate time series. Phys. Rev. E 91, 052909 (2015).

    Google Scholar 

  25. Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    Google Scholar 

  26. Eyring, V. et al. Earth system model evaluation tool (ESMValTool) v2.0 — an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of earth system models in CMIP. Geosci. Model Dev. 13, 3383–3438 (2020).

    Google Scholar 

  27. Nowack, P., Runge, J., Eyring, V. & Haigh, J. D. Causal networks for climate model evaluation and constrained projections. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  28. Bindoff, N. L. et al. Detection and Attribution of Climate Change: From Global to Regional (Cambridge Univ. Press, 2013).

  29. Pearl, J., Glymour, M. & Jewell, N. P. Causal Inference in Statistics: A Primer (Wiley, 2016).

  30. Pearl, J. & Mackenzie, D. The Book of Why: The New Science of Cause and Effect (Basic Books, 2018).

  31. Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction, and Search (MIT Press, 2000).

    Google Scholar 

  32. Peters, J., Janzing, D. & Schölkopf, B. Elements of Causal Inference: Foundations and Learning Algorithms (MIT Press, 2017).

  33. Pearl, J. Causality: Models, Reasoning, and Inference 2nd edn (Cambridge Univ. Press, 2009).

  34. Rubin, D. B. Bayesian inference for causal effects: the role of randomization. Ann. Stat. 6, 34–58 (1978).

    Google Scholar 

  35. Rubin, D. B. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688 (1974).

    Google Scholar 

  36. Imbens, G. W. & Rubin, D. B. Causal Inference in Statistics, Social, and Biomedical Sciences (Cambridge Univ. Press, 2015).

  37. Hernan, M. & Robins, J. Causal Inference: What If (Chapman & Hill/CRC, 2020).

  38. Bollen, K. A. Structural Equations with Latent Variables (Wiley, 1989).

    Google Scholar 

  39. Bareinboim, E., Correa, J. D., Ibeling, D. & Icard, T. On Pearl’s Hierarchy and the Foundations of Causal Inference 1st edn 507–556 (Association for Computing Machinery, 2022).

  40. Dahlhaus, R. & Eichler, M. Causality and graphical models in time series analysis. Oxford Stat. Sci. Ser. 27, 115-137 (2003).

    Google Scholar 

  41. Runge, J., Heitzig, J., Petoukhov, V. & Kurths, J. Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett. 108, 258701 (2012).

    Google Scholar 

  42. Bongers, S., Forré, P., Peters, J. & Mooij, J. M. Foundations of structural causal models with cycles and latent variables. Ann. Stat. 49, 2885–2915 (2021).

    Google Scholar 

  43. Forré, P. & Mooij, J. M. Causal calculus in the presence of cycles, latent confounders and selection bias. In Proc. 35th Conf. Uncertainty in Artificial Intelligence (UAI-18) (eds Adams, R. P. & Gogate, V.) (AUAI Press, 2019).

  44. Forré, P. & Mooij, J. M. Constraint-based causal discovery for non-linear structural causal models with cycles and latent confounders. In Proc. 34th Conf. Uncertainty in Artificial Intelligence (UAI-18) (eds Globerson, A. & Silva, R.) (AUAI Press, 2018).

  45. Verma, T. & Pearl, J. Equivalence and synthesis of causal models. In Proc. 6th Annual Conf. Uncertainty in Artificial Intelligence (UAI ’90) (eds Bonissone, P. P. et al.) 255–270 (Elsevier Science, 1990).

  46. Verma, T. Graphical aspects of causal models. Technical Report R-191 (UCLA Cognitive Systems Laboratory, 1993).

  47. Bareinboim, E., Correa, J. D., Ibeling, D. & Icard, T. On Pearl’s hierarchy and the foundations of causal inference. In Probabilistic and Causal Inference: The Works of Judea Pearl Ch. VI (eds Geffner, H. et al.) 507–556 (ACM Books, 2022).

  48. Bareinboim, E. & Pearl, J. Causal inference and the data-fusion problem. Proc. Natl Acad. Sci. USA 113, 7345–7352 (2016).

    Google Scholar 

  49. Runge, J. et al. Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun. 6, 1–10 (2015).

    Google Scholar 

  50. Mogensen, S. W. Equality constraints in linear hawkes processes. In Proc. First Conf. Causal Learning and Reasoning Vol. 177 of Proc. Machine Learning Research (eds Schölkopf, B. et al.) 576–593 (PMLR, 2022).

  51. Schölkopf, B. et al. Toward causal representation learning. Proc. IEEE 109, 612–634 (2021).

    Google Scholar 

  52. Varando, G., Fernández-Torres, M.-Á., Muñoz-Marí, J. & Camps-Valls, G. in UAI 2022 Workshop on Causal Representation Learning (eds Bengio, Y. & von Kügelen, J.) (openreview.net, 2022).

  53. Donges, J. F., Zou, Y., Marwan, N. & Kurths, J. Complex networks in climate dynamics. Eur. Phys. J. Spec. Top. 174, 157–179 (2009).

    Google Scholar 

  54. Boers, N. et al. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, 373–377 (2019).

    Google Scholar 

  55. Ludescher, J. et al. Network-based forecasting of climate phenomena. Proc. Natl Acad. Sci. USA 118, e1922872118 (2021).

    Google Scholar 

  56. Halpern, J. Y. Actual Causality (MIT Press, 2016).

  57. Hannart, A., Pearl, J., Otto, F. E., Naveau, P. & Ghil, M. Causal counterfactual theory for the attribution of weather and climate-related events. Bull. Am. Meteorol. Soc. 97, 99–110 (2016).

    Google Scholar 

  58. VanderWeele, T. Explanation in Causal Inference: Methods for Mediation and Interaction (Oxford Univ. Press, 2015).

  59. Correa, J., Lee, S. & Bareinboim, E. Nested counterfactual identification from arbitrary surrogate experiments. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021) Vol. 34 (eds Ranzato, M. et al.) 6856–6867 (Curran Associates, Inc., 2021).

  60. Angrist, J. D. & Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion (Princeton Univ. Press, 2009).

  61. Mooij, J. M., Magliacane, S. & Claassen, T. Joint causal inference from multiple contexts. J. Mach. Learn. Res. 21, 1–108 (2020).

    Google Scholar 

  62. Huang, B. et al. Causal discovery from heterogeneous/nonstationary data. J. Mach. Learn. Res. 21, 1–53 (2020).

    Google Scholar 

  63. Mohan, K. & Pearl, J. Graphical models for processing missing data. J. Am. Stat. Assoc. 116, 1023–1037 (2021).

    Google Scholar 

  64. Hamilton, J. D. State-space models. Handb. Econom. 4, 3039–3080 (1994).

    Google Scholar 

  65. Berk, R., Brown, L., Buja, A., Zhang, K. & Zhao, L. Valid post-selection inference. Ann. Stat. 41, 802–837 (2013).

    Google Scholar 

  66. Rinaldo, A., Wasserman, L. & G’Sell, M. Bootstrapping and sample splitting for high-dimensional, assumption-lean inference. Ann. Stat. 47, 3438–3469 (2019).

    Google Scholar 

  67. Heinze-Deml, C., Maathuis, M. H. & Meinshausen, N. Causal structure learning. Annu. Rev. Stat. Appl. 5, 371–391 (2018).

    Google Scholar 

  68. Peters, J., Bühlmann, P. & Meinshausen, N. Causal inference by using invariant prediction: identification and confidence intervals. J. R. Stat. Soc. B Stat. Methodol. 78, 947–1012 (2016).

    Google Scholar 

  69. Heinze-Deml, C., Peters, J. & Meinshausen, N. Invariant causal prediction for nonlinear models. J. Causal Inference https://doi.org/10.1515/jci-2017-0016 (2018).

  70. Pfister, N., Bühlmann, P. & Peters, J. Invariant causal prediction for sequential data. J. Am. Stat. Assoc. 114, 1264–1276 (2019).

    Google Scholar 

  71. Daniušis, P. et al. Inferring deterministic causal relations. In Proc. 26th Conf. on Uncertainty in Artificial Intelligence (eds Grunwald, P. & Spirtes, P.) 143–150 (PMLR, 2010).

  72. Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496–500 (2012).

    Google Scholar 

  73. Ye, H., Deyle, E. R., Gilarranz, L. J. & Sugihara, G. Distinguishing time-delayed causal interactions using convergent cross mapping. Sci. Rep. 5, 1–9 (2015).

    Google Scholar 

  74. Verma, T. & Pearl, J. Causal Networks: Semantics and Expressiveness. In Uncertainty in Artificial Intelligence Vol. 9 of Machine Intelligence and Pattern Recognition (eds Shachter, R. D. et al.) 69–76 (North-Holland, 1990).

  75. Geiger, D., Verma, T. & Pearl, J. Identifying independence in Bayesian networks. Networks 20, 507–534 (1990).

    Google Scholar 

  76. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).

    Google Scholar 

  77. Runge, J. Causal network reconstruction from time series: from theoretical assumptions to practical estimation. Chaos 28, 075310 (2018).

    Google Scholar 

  78. Spirtes, P. & Glymour, C. An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9, 62–72 (1991).

    Google Scholar 

  79. Spirtes, P., Meek, C. & Richardson, T. in Proc. 11th Conf. Uncertainty in Artificial Intelligence (UAI’95) (eds Besnard, P. & Hanks, S.) 499–506 (Morgan Kaufmann, 1995).

  80. Zhang, J. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artif. Intel. 172, 1873–1896 (2008).

    Google Scholar 

  81. Entner, D. & Hoyer, P. O. On causal discovery from time series data using fci. In Proc. 5th European Workshop on Probabilistic Graphical Models (eds Myllymäki, P. et al.) 121–128 (Helsinki Institute for Information Technology, 2010).

  82. Runge, J. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. In Proc. 36th Conf. Uncertainty in Artificial Intelligence (UAI) Vol. 124 of Proc. Machine Learning Research (eds Peters, J. & Sontag, D.) 1388–1397 (PMLR, 2020).

  83. Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021) Vol. 33 (eds Larochelle, H. et al.) 12615–12625 (Curran Associates, 2020).

  84. Runge, J. Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. In Int. Conf. Artificial Intelligence and Statistics Vol. 84 of Proc. Machine Learning Research (eds Storkey, A. & Perez-Cruz, F.) 938–947 (PMLR, 2018).

  85. Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica: J. Econom. Society 37, 424-438 (1969).

    Google Scholar 

  86. Barrett, A. B., Barnett, L. & Seth, A. K. Multivariate Granger causality and generalized variance. Phys. Rev. E 81, 41907 (2010).

    Google Scholar 

  87. Baek, E. & Brock, W. A general test for nonlinear granger causality: bivariate model. Working paper, Iowa State Univ. and Univ. of Wisconsin at Madison (1992).

  88. Hiemstra, C. & Jones, J. D. Testing for linear and nonlinear Granger causality in the stock price–volume relation. J. Finance 49, 1639–1664 (1994).

    Google Scholar 

  89. Diks, C. & Panchenko, V. A new statistic and practical guidelines for nonparametric Granger causality testing. J. Econ. Dyn. Control 30, 1647–1669 (2006).

    Google Scholar 

  90. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 85, 461 (2000).

    Google Scholar 

  91. Smirnov, D. A. Generative formalism of causality quantifiers for processes. Phys. Rev. E 105, 034209 (2022).

    Google Scholar 

  92. Sun, J., Taylor, D. & Bollt, E. M. Causal network inference by optimal causation entropy. SIAM J. Appl. Dyn. Syst. 14, 73–106 (2015).

    Google Scholar 

  93. Triacca, U. Is Granger causality analysis appropriate to investigate the relationship between atmospheric concentration of carbon dioxide and global surface air temperature? Theor. Appl. Climatol. 81, 133–135 (2005).

    Google Scholar 

  94. Bueso, D., Camps-Valls, G. & Piles, M. Explicit Granger causality in Kernel Hilbert spaces. Phys. Rev. E 102, 062201 (2020).

    Google Scholar 

  95. McGraw, M. C. & Barnes, E. A. Memory matters: a case for Granger causality in climate variability studies. J. Clim. 31, 3289–3300 (2018).

    Google Scholar 

  96. Papagiannopoulou, C. et al. A non-linear Granger-causality framework to investigate climate–vegetation dynamics. Geosci. Model Dev. 10, 1945–1960 (2017).

    Google Scholar 

  97. Shimizu, S., Hoyer, P. O., Hyväinen, A. & Kerminen, A. A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006).

    Google Scholar 

  98. Hoyer, P. O. et al. Causal discovery of linear acyclic models with arbitrary distributions. In Proc. 24th Conf. Uncertainty in Artificial Intelligence (UAI’08) (eds McAllester, D. & Myllymaki, P.) 282–289 (AUAI Press, 2008).

  99. Hyvärinen, A., Zhang, K., Shimizu, S. & Hoyer, P. O. Estimation of a structural vector autoregression model using non-Gaussianity. J. Mach. Learn. Res. 11, 1709–1731 (2010).

    Google Scholar 

  100. Hoyer, P., Janzing, D., Mooij, J. M., Peters, J. & Schölkopf, B. Nonlinear causal discovery with additive noise models. In Advances in Neural Information Processing Systems Vol. 21 (eds Koller, D. et al.) (Curran Associates, 2008).

  101. Peters, J., Janzing, D. & Schölkopf, B. Causal inference on time series using restricted structural equation models. In Advances in Neural Information Processing Systems Vol. 26 (eds Burges, C. et al.) (Curran Associates, 2013).

  102. Zhang, K. & Hyvärinen, A. On the identifiability of the post-nonlinear causal model. In Proc. 25th Conf. Uncertainty in Artificial Intelligence (UAI ’09) (ed. McAllester, D.) 647–655 (AUAI, 2009).

  103. Gnecco, N., Meinshausen, N., Peters, J. & Engelke, S. Causal discovery in heavy-tailed models. Ann. Stat. 49, 1755–1778 (2021).

    Google Scholar 

  104. Peters, J., Mooij, J. M., Janzing, D. & Schölkopf, B. Causal discovery with continuous additive noise models. J. Mach. Learn. Res. 15, 2009–2053 (2014).

    Google Scholar 

  105. Pérez-Suay, A. & Camps-Valls, G. Sensitivity maps of the Hilbert–Schmidt independence criterion. Appl. Soft Comput. 70, 1054–1063 (2018).

    Google Scholar 

  106. Pérez-Suay, A. & Camps-Valls, G. Causal inference in geoscience and remote sensing from observational data. IEEE Trans. Geosci. Remote Sens. 57, 1502–1513 (2019).

    Google Scholar 

  107. Chickering, D. M. Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2, 445–498 (2002).

    Google Scholar 

  108. Chickering, D. M. Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002).

    Google Scholar 

  109. Chickering, M. Statistically efficient greedy equivalence search. In Proc. 36th Conf. Uncertainty in Artificial Intelligence (UAI) Vol. 124 of Proc. Machine Learning Research (eds Peters, J. & Sontag, D.) 241–249 (PMLR, 2020).

  110. Tsamardinos, I., Brown, L. E. & Aliferis, C. F. The max–min hill-climbing Bayesian network structure learning algorithm. Machine learning 65, 31–78 (2006).

    Google Scholar 

  111. Liu, J. & Niyogi, D. Identification of linkages between urban heat island magnitude and urban rainfall modification by use of causal discovery algorithms. Urban Clim. 33, 100659 (2020).

    Google Scholar 

  112. Mäkelä, J. et al. Incorporating expert domain knowledge into causal structure discovery workflows. Biogeosciences 19, 2095–2099 (2022).

    Google Scholar 

  113. Zheng, X., Aragam, B., Ravikumar, P. K. & Xing, E. P. DAGs with NO TEARS: Continuous optimization for structure learning. In Advances in Neural Information Processing Systems Vol. 31 (eds Bengio, S. et al.) (Curran Associates, 2018).

  114. Zheng, X., Dan, C., Aragam, B., Ravikumar, P. & Xing, E. Learning sparse nonparametric DAGs. In Proc. 23rd Int. Conf. Artificial Intelligence and Statistics Vol. 108 of Proc. Machine Learning Research (eds Chiappa, S. & Calandra, R.) 3414–3425 (PMLR, 2020).

  115. Lorch, L., Rothfuss, J., Schölkopf, B. & Krause, A. Dibs:Differentiable bayesian structure learning. In Advances in Neural Information Processing Systems Vol. 34 (eds Ranzato, M. et al.) 24111–24123 (Curran Associates, 2021).

  116. Pamfil, R. et al. DYNOTEARS: Struc-ture learning from time-series data. In Proc. 23rd Int. Conf. Artificial Intelligence and Statistics Vol. 108 of Proc. Machine Learning Research (eds Chiappa, S. & Calandra, R.) 1595–1605 (PMLR, 2020).

  117. Pearl, J. Direct and indirect effects. In UAI’01: Proc. 17th Conf. Uncertainty in Artificial Intelligence (eds Breese, J. & Koller, D.) 411-420 (Morgan Kaufmann, 2001).

  118. Fisher, R. A. The Design of Experiments (Hafner, 1935).

  119. Gryspeerdt, E., Quaas, J. & Bellouin, N. Constraining the aerosol influence on cloud fraction. J. Geophys. Res. Atmos. 121, 3566–3583 (2016).

    Google Scholar 

  120. Pearl, J. Causal diagrams for empirical research. Biometrika 82, 669–688 (1995).

    Google Scholar 

  121. Huang, Y. & Valtorta, M. Pearl’s calculus of intervention is complete. In Proc. 22nd Conf. Uncertainty in Artificial Intelligence (UAI’06) (eds Dechter, R. & Richardson, T.) 217–224 (AUAI Press, 2006).

  122. Shpitser, I. & Pearl, J. Identification of conditional interventional distributions. In Proc. 22nd Conf. Uncertainty in Artificial Intelligence (UAI’06) (eds Dechter, R. & Richardson, T.) 437–444 (AUAI Press, 2006).

  123. Shpitser, I. & Pearl, J. Complete identification methods for the causal hierarchy. J. Mach. Learn. Res. 9, 1941–1979 (2008).

    Google Scholar 

  124. Maathuis, M. H. & Colombo, D. A generalized back-door criterion. Ann. Stat. 43, 1060–1088 (2015).

    Google Scholar 

  125. Chernozhukov, V. et al. Double/debiased machine learning for treatment and structural parameters: double/debiased machine learning. Econom. J. 21, C1–C68 (2018).

    Google Scholar 

  126. Jung, Y., Tian, J. & Bareinboim, E. Estimating identifiable causal effects through double machine learning. In Proc. 35th AAAI Conf. Artificial Intelligence Vol. 35 (eds Honavar, V. & Spaan, M.) 12113–12122 (AAAI Press, 2021).

  127. Shpitser, I., VanderWeel, T. & Robins, J. M. On the validity of covariate adjustment for estimating causal effects. In UAI’10: Proc. 26th Conf. Uncertainty in Artificial Intelligence (eds Grunwald, P. & Spirtes, P.) 527–536 (AUAI, 2010).

  128. Henckel, L., Perković, E. & Maathuis, M. H. et al. Graphical criteria for efficient total effect estimation via adjustment in causal linear models. J. R. Stat. Soc. B 84, 579–599 (2022).

    Google Scholar 

  129. Rotnitzky, A. & Smucler, E. Efficient adjustment sets for population average causal treatment effect estimation in graphical models. J. Mach. Learn. Res. 21, 1–86 (2020).

    Google Scholar 

  130. Runge, J. Necessary and sufficient graphical conditions for optimal adjustment sets in causal graphical models with hidden variables. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021) (eds Ranzato, M. et al.) (Curran Associates, 2021).

  131. Sargan, J. D. The estimation of economic relationships using instrumental variables. Econometrica 26, 393-415 (1958).

    Google Scholar 

  132. Bareinboim, E. & Pearl, J. Controlling selection bias in causal inference. In Proc. 15th Int. Conf. Artificial Intelligence and Statistics Vol. 22 of Proc. Machine Learning Research (eds Lawrence, N. D. & Girolami, M.) 100–108 (PMLR, 2012).

  133. Bareinboim, E., Tian, J. & Pearl, J. Recovering from selection bias in causal and statistical inference. In Proceedings of the AAAI Conference on Artificial Intelligence. Vol 28(1) (AAAI Press, 2014).

  134. Correa, J., Tian, J. & Bareinboim, E. Generalized adjustment under confounding and selection biases. In Proc. AAAI Conf. Artificial Intelligence Vol. 32 (eds McIlraith, S. & Weinberger, K.) (AAAI Press, 2018).

  135. Correa, J. D., Tian, J. & Bareinboim, E. Identification of causal effects in the presence of selection bias. In Proc. AAAI Conf. Artificial Intelligence Vol. 33 (eds Van Hentenryck, P. & Zhou, Z.-H.) 2744–2751 (AAAI Press, 2019).

  136. Mohan, K., Pearl, J. & Tian, J. Graphical models for inference with missing data. In Advances in Neural Information Processing Systems Vol. 26 (eds Burges, C. et al.) (Curran Associates, 2013).

  137. Shpitser, I., Mohan, K. & Pearl, J. Missing data as a causal and probabilistic problem. In Proc. 31st Conf. Uncertainty in Artificial Intelligence (UAI’15) (eds Meila, M. & Heskes, T.) 802–811 (AUAI Press, 2015).

  138. Wright, S. Correlation and causation. J. Agric. Res. 20, 557–585 (1921).

    Google Scholar 

  139. Nandy, P., Maathuis, M. H. & Richardson, T. S. Estimating the effect of joint interventions from observational data in sparse high-dimensional settings. Ann. Stat. 45, 647–674 (2017).

    Google Scholar 

  140. Guo, F. R. Efficient least squares for estimating total effects under linearity and causal sufficiency. J. Mach. Learn. Res. 23, 1–41 (2022).

    Google Scholar 

  141. Robins, J. M. & Greenland, S. Identifiability and exchangeability for direct and indirect effects. Epidemiology 143–155 (1992).

  142. VanderWeele, T. & Vansteelandt, S. Mediation analysis with multiple mediators. Epidemiol. Methods 2, 95–115 (2014).

    Google Scholar 

  143. Walker, G. T. Correlation in seasonal variations of weather, VIII: a preliminary study of world weather. Mem. Indian Meteorol. Dep. 24, 75–131 (1923).

    Google Scholar 

  144. Bjerknes, J. Atmospheric teleconnections from the equatorial pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Google Scholar 

  145. Lau, K.-M. & Yang, S. Walker Circulation. In Encycl. Atmos. Sci. 2nd edn (eds Pyle, J & Zhang, F.) 177-181 (Elsevier, 2015).

  146. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  147. Bell, B. et al. The ERA5 global reanalysis: preliminary extension to 1950. Q. J. R. Meteorol. Soc. 147, 4186–4227 (2021).

    Google Scholar 

  148. Gushchina, D., Zheleznova, I., Osipov, A. & Olchev, A. Effect of various types of ENSO events on moisture conditions in the humid and subhumid tropics. Atmosphere 11, 1354 (2020).

    Google Scholar 

  149. Krich, C. et al. Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach. Biogeosciences 17, 1033–1061 (2020).

    Google Scholar 

  150. Pastorello, G. et al. The FLUXNET2015 dataset and the oneflux processing pipeline for eddy covariance data. Scientific data 7, 1–27 (2020).

    Google Scholar 

  151. Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).

    Google Scholar 

  152. Jia, X. et al. Seasonal and interannual variations in ecosystem respiration in relation to temperature, moisture, and productivity in a temperate semi-arid shrubland. Sci. Total Environ. 709, 136210 (2020).

    Google Scholar 

  153. Harris, N. & Drton, M. PC algorithm for nonparanormal graphical models. J. Mach. Learn. Res. 14, 3365−3383 (2013).

    Google Scholar 

  154. Liu, H., Lafferty, J. & Wasserman, L. The nonparanormal: semiparametric estimation of high dimensional undirected graphs. J. Mach. Learn. Res. 10, 2295−2328 (2009).

    Google Scholar 

  155. Liu, H., Han, F., Yuan, M., Lafferty, J. & Wasserman, L. High-dimensional semiparametric Gaussian Copula graphical models. Ann. Stat. 40, 2293–2326 (2012).

    Google Scholar 

  156. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  157. Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018).

    Google Scholar 

Download references

Acknowledgements

J.R. received funding from the European Research Council (ERC) Starting Grant CausalEarth under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 948112), the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003469 (XAIDA), the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 860100 (IMIRACLI) and the Helmholtz AI project CausalFlood (grant no. ZT-I-PF-5-11). G.C.-V. and V.E. acknowledge funding from the ERC Synergy Grant USMILE under the European Union’s Horizon 2020 research and innovation programme (grant agreement 855187), and G.C.-V. thanks the Fundación BBVA for support with the project ‘Causal inference in the human-biosphere coupled system (SCALE)’. The authors thank R. Herman, M. Reichstein, E. Bareinboim, E. Galytska and S. Karmouche for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

J.R. envisaged and drafted the outline of the paper. J.R. and G.C.-V. wrote the Introduction; A.G and G.C.-V. wrote ‘Foundations of causal inference’; J.R. wrote ‘Framing causal research questions’; A.G., J.R. and G.V. wrote ‘Causal discovery’; A.G. wrote ‘Causal effect estimation’; J.R. wrote ‘Example case studies’; and J.R., G.C.-V. and V.E. wrote ‘Recommendations and future perspectives’. All authors discussed the content and contributed to editing the manuscript. All data analyses, Python scripts, Table 1 and all figures were created by J.R.; Table 2 was created by J.R., A.G. and G.V.

Corresponding author

Correspondence to Jakob Runge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Jarmo Mäkelä, Daniel Hagan, Allison Goodwell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Runge, J., Gerhardus, A., Varando, G. et al. Causal inference for time series. Nat Rev Earth Environ 4, 487–505 (2023). https://doi.org/10.1038/s43017-023-00431-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00431-y

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene