Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Anthropogenic impacts on twentieth-century ENSO variability changes

Abstract

El Niño/Southern Oscillation (ENSO) sea surface temperature (SST) variability increased after 1960, influenced by more frequent strong El Niño and La Niña events. Whether such changes are linked to anthropogenic warming, however, is largely unknown. In this Perspective, we consider anthropogenic impacts on ENSO variability in several commonly used modelling designs, which collectively suggest a greenhouse warming-related effect on post-1960 ENSO SST variability. Specifically, a comparison of simulated ENSO SST variability between 1901–1960 and 1961–2020 indicates that more than three quarters of climate models produce an amplitude increase in post-1960 ENSO SST variability, translating into more frequent strong El Niño and La Niña events. Multiple large ensemble experiments further confirm that the simulated post-1960 ENSO amplitude increase (approximately 10%) is not solely due to internal variability. Moreover, multicentury-long simulations under a constant pre-industrial CO2 level suggest that the observed post-1960 ENSO variability is high, sitting in the highest 2.5 and 10 percentiles for eastern Pacific and central Pacific ENSO, respectively. Improvement in model ENSO physics, identification of consistent future and historical change in additional ENSO characteristics and single-forcing large-ensemble experiments are further needed to ascertain climate change impacts on the ENSO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed E-index and C-index from 1901 to 2020.
Fig. 2: Simulated increase in post-1960 El Niño/Southern Oscillation variability.
Fig. 3: Increased post-1960 El Niño/Southern Oscillation variability in butterfly-effect ensembles.
Fig. 4: High variability of the post-1960 El Niño/Southern Oscillation.
Fig. 5: Changes in ocean stratification and in El Niño/Southern Oscillation variability.
Fig. 6: Continued increase of El Niño/Southern Oscillation variability into the future.

Similar content being viewed by others

Data availability

Data relevant to the paper can be downloaded from 20CR v2c at https://portal.nersc.gov/project/20C_Reanalysis/; CERA-20C at https://apps.ecmwf.int/datsets/dat/cera20c-edmo/levtype=sfc/type=an/; ERA-20C at https://apps.ecmwf.int/datsets/data/era20c-moda/levtype=sfc/type=an/; ERSST v3b at https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v3.html; HadISST v1.1 at https://www.esrl.noaa.gov/psd/data/gridded/data.hadsst.html; COBE at https://psl.noaa.gov/data/gridded/data.cobe.html; ORA-s3 at http://apdrc.soest.hawaii.edu/datadoc/ecmwf_oras3.php; ORA-s4 at https://climatedataguide.ucar.edu/climate-data/oras4-ecmwf-ocean-reanalysis-and-derived-ocean-heat-content and 111 CMIP6 database at https://esgf-node.llnl.gov/projects/cmip6/.

Code availability

Codes for calculating EOF can be downloaded from: https://drive.google.com/open?id=1d2R8wKpFNW-vMIfoJsbqIGPIBd9Z_8rj.

References

  1. Kug, J. S., Jin, F. F. & An, S. I. L. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

    Article  Google Scholar 

  2. Kao, H. Y. & Yu, J. Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Clim. 22, 615–632 (2009).

    Article  Google Scholar 

  3. Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

    Article  Google Scholar 

  4. Takahashi, K. & Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dyn. 46, 1627–1645 (2016).

    Article  Google Scholar 

  5. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015).

    Article  Google Scholar 

  6. Lengaigne, M. & Vecchi, G. A. Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Clim. Dyn. 35, 299–313 (2010).

    Article  Google Scholar 

  7. Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern oscillation. Mon. Weather Rev. 115, 1606–1626 (1987).

    Article  Google Scholar 

  8. Bove, M. C., Eisner, J. B., Landsea, C. W., Niu, X. & O’Brien, J. J. Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Am. Meteorol. Soc. 79, 2477–2482 (1998).

    Article  Google Scholar 

  9. Bell, G. D. et al. Climate assessment for 1998. Bull. Am. Meteorol. Soc. 80, 1040 (1999).

    Article  Google Scholar 

  10. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).

    Article  Google Scholar 

  11. Cai, W. et al. Climate impacts of the El Niño-Southern oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).

    Article  Google Scholar 

  12. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  Google Scholar 

  13. Vincent, E. M. et al. Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Clim. Dyn. 36, 1881–1896 (2011).

    Article  Google Scholar 

  14. Cai, W. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012).

    Article  Google Scholar 

  15. Wang, G. et al. Future Southern ocean warming linked to projected ENSO variability. Nat. Clim. Change 12, 649–654 (2022).

    Article  Google Scholar 

  16. Cai, W. et al. Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes. Nat. Clim. Change 13, 235–239 (2023).

    Article  Google Scholar 

  17. Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ. 2, 680–698 (2021).

    Article  Google Scholar 

  18. Zhang, Q., Guan, Y. & Yang, H. ENSO amplitude change in observation and coupled models. Adv. Atmos. Sci. 25, 361–366 (2008).

    Article  Google Scholar 

  19. Kim, S. T. et al. Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Clim. Change 4, 786–790 (2014).

    Article  Google Scholar 

  20. Cai, W. et al. Changing El Niño-Southern oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).

    Article  Google Scholar 

  21. Grothe, P. R. et al. Enhanced El Niño-Southern oscillation variability in recent decades. Geophys. Res. Lett. 47, e2019GL083906 (2020).

    Article  Google Scholar 

  22. McGregor, S., Timmermann, A. & Timm, O. A unified proxy for ENSO and PDO variability since 1650. Clim. Past 6, 1–17 (2010).

    Article  Google Scholar 

  23. McGregor, S., Timmermann, A., England, M. H., Elison Timm, O. & Wittenberg, A. T. Inferred changes in El Niño-Southern oscillation variance over the past six centuries. Clim. Past 9, 2269–2284 (2013).

    Article  Google Scholar 

  24. Cobb, K. M. et al. Highly variable El Niño-Southern oscillation throughout the holocene. Science 339, 67–70 (2013).

    Article  Google Scholar 

  25. Karamperidou, C. et al. ENSO in a changing climate: challenges, paleo-perspectives, and outlook. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J., Santoso, A. & Cai, W.) (AGU Monograph, 2020).

  26. Liu, Y. et al. Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nat. Commun. 8, 15386 (2017).

    Article  Google Scholar 

  27. Freund, M. et al. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019).

    Article  Google Scholar 

  28. Collins, M. et al. The impact of global warming on the tropical Pacific ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    Article  Google Scholar 

  29. DiNezio, P. N. et al. Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim. 25, 7399–7420 (2012).

    Article  Google Scholar 

  30. Dommenget, D. & Vijayeta, A. Simulated future changes in ENSO dynamics in the framework of the linear recharge oscillator model. Clim. Dyn. 53, 4233–4248 (2019).

    Article  Google Scholar 

  31. Stevenson, S. et al. Will there be a significant change to El Niño in the twenty-first century? J. Clim. 25, 2129–2145 (2012).

    Article  Google Scholar 

  32. Beobide-Arsuaga, G., Bayr, T., Reintges, A. & Latif, M. Uncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 models. Clim. Dyn. 56, 3875–3888 (2021).

    Article  Google Scholar 

  33. Zheng, X. T., Hui, C. & Yeh, S. W. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability. Clim. Dyn. 50, 4019–4035 (2018).

    Article  Google Scholar 

  34. Maher, N., Matei, D., Milinski, S. & Marotzke, J. ENSO change in climate projections: forced response or internal variability? Geophys. Res. Lett. 45, 390–398 (2018).

    Article  Google Scholar 

  35. Gan, R., Liu, Q., Huang, G., Hu, K. & Li, X. Greenhouse warming and internal variability increase extreme and central Pacific El Niño frequency since 1980. Nat. Commun. 14, 394 (2023).

    Article  Google Scholar 

  36. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  37. Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Article  Google Scholar 

  38. Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    Article  Google Scholar 

  39. Cai, W. et al. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Clim. Change 12, 228–231 (2022).

    Article  Google Scholar 

  40. Kennedy, J. J. A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys. 52, 1–32 (2014).

    Article  Google Scholar 

  41. Gagan, M. K. Paleo-El Niño-Southern Oscillation (ENSO) Records. in Encyclopedia of Palaeoclimatology and Ancient Environments 721–728 (Springer, 2009).

  42. IPCC Climate Change: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  43. Geng, T. et al. Emergence of changing Central-Pacific and Eastern-Pacific El Niño-Southern Oscillation in a warming climate. Nat. Commun. 13, 6616 (2022).

    Article  Google Scholar 

  44. Santoso, A. et al. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504, 126 (2013).

    Article  Google Scholar 

  45. Power, S. B., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first century projections of El Niño and related precipitation variability. Nature 502, 541–545 (2013).

    Article  Google Scholar 

  46. Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 oC warming stabilization. Nat. Clim. Change 7, 568–572 (2017).

    Article  Google Scholar 

  47. Brown, J. R. et al. South Pacific convergence zone dynamics, variability and impacts in a changing climate. Nat. Rev. Earth Environ. 1, 530–543 (2020).

    Article  Google Scholar 

  48. Yun, K. S. et al. Increasing ENSO-rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2, 43 (2021).

    Article  Google Scholar 

  49. McPhaden, M. J., Santoso, A., & Cai, W. (eds) El Niño Southern Oscillation in a Changing Climate Vol. 253 (John Wiley & Sons, 2020).

  50. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Article  Google Scholar 

  51. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  52. Fredriksen, H.-B., Berner, J., Subramanian, A. C. & Capotondi, A. How does El Niño-Southern oscillation change under global warming — a first look at CMIP6. Geophys. Res. Lett. 47, e2020GL090640 (2020).

    Article  Google Scholar 

  53. Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Article  Google Scholar 

  54. Stevenson, S. L. Significant changes to ENSO strength and impacts in the twenty-first century: results from CMIP5. Geophys. Res. Lett. 39, L17703 (2012).

    Article  Google Scholar 

  55. Ng, B., Cai, W., Cowan, T. & Bi, D. Impacts of low-frequency internal climate variability and greenhouse warming on El Niño-Southern oscillation. J. Clim. 34, 2205–2218 (2021).

    Article  Google Scholar 

  56. Cai, W. et al. Butterfly effect and a self-modulating El Niño response to global warming. Nature 585, 68–73 (2020).

    Article  Google Scholar 

  57. Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, L01702 (2012).

    Article  Google Scholar 

  58. Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    Article  Google Scholar 

  59. Deser, C. et al. ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Clim. 25, 2622–2651 (2012).

    Article  Google Scholar 

  60. Hawkins, E., Smith, R. S., Gregory, J. M. & Stainforth, D. A. Irreducible uncertainty in near-term climate projections. Clim. Dyn. 46, 3807–3819 (2016).

    Article  Google Scholar 

  61. Machete, R. L. & Smith, L. A. Demonstrating the value of larger ensembles in forecasting physical systems. Tellus A Dyn. Meteorol. Oceanogr. 68, 28393 (2016).

    Article  Google Scholar 

  62. Bengtsson, L. & Hodges, K. I. Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability? Clim. Dyn. 52, 3553–3573 (2019).

    Article  Google Scholar 

  63. Ying, J. et al. Emergence of climate change in the tropical Pacific. Nat. Clim. Change 12, 356–364 (2022).

    Article  Google Scholar 

  64. Geng, T., Cai, W. & Wu, L. Two types of ENSO varying in tandem facilitated by nonlinear atmospheric convection. Geophys. Res. Lett. 47, e2020GL088784 (2020).

    Article  Google Scholar 

  65. Geng, T., Cai, W., Wu, L. & Yang, Y. Atmospheric convection dominates genesis of ENSO asymmetry. Geophys. Res. Lett. 46, 8387–8396 (2019).

    Article  Google Scholar 

  66. Zheng, X.-T., Xie, S.-P., Lv, L. H. & Zhou, Z. Q. Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. J. Clim. 29, 7265–7279 (2016).

    Article  Google Scholar 

  67. Hayashi, M., Jin, F.-F. & Stuecker, M. F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 11, 4230 (2020).

    Article  Google Scholar 

  68. Ying, J., Huang, P., Lian, T. & Chen, D. Intermodel uncertainty in the change of ENSO’s amplitude under global warming: role of the response of atmospheric circulation to SST anomalies. J. Clim. 32, 369–383 (2019).

    Article  Google Scholar 

  69. Kohyama, T., Hartmann, D. L. & Battisti, D. S. La Niña–like mean-state response to global warming and potential oceanic roles. J. Clim. 30, 4207–4225 (2017).

    Article  Google Scholar 

  70. Carréric, A. et al. Change in strong Eastern Pacific El Niño events dynamics in the warming climate. Clim. Dyn. 54, 901–918 (2020).

    Article  Google Scholar 

  71. Dewitte, B., Yeh, S.-W., Moon, B.-K., Cibot, C. & Terray, L. Rectification of the ENSO variability by interdecadal changes in the equatorial background mean state in a CGCM simulation. J. Clim. 20, 2002–2021 (2007).

    Article  Google Scholar 

  72. Thual, S., Dewitte, B., An, S.-I. & Ayoub, N. Sensitivity of ENSO to stratification in a recharge–discharge conceptual model. J. Clim. 4, 4331–4348 (2011).

    Google Scholar 

  73. Jia, F., Cai, W., Gan, B., Wu, L. & Di Lorenzo, E. Enhanced north Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nat. Clim. Change 11, 840–847 (2021).

    Article  Google Scholar 

  74. Balmaseda, M. A., Vidard, A. & Anderson, D. L. T. The ECMWF ocean analysis system: ORA-S3. Mon. Weath Rev. 136, 3018–3034 (2008).

    Article  Google Scholar 

  75. Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161 (2013).

    Article  Google Scholar 

  76. Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article  Google Scholar 

  77. Fang, X. & Mu, M. A three-region conceptual model for central Pacific El Niño including zonal advective feedback. J. Clim. 31, 4965–4979 (2018).

    Article  Google Scholar 

  78. Chen, N., Fang, X. & Yu, J. Y. A multiscale model for El Niño complexity. npj Clim. Atmos. Sci. 5, 16 (2022).

    Article  Google Scholar 

  79. Fang, X. & Chen, N. Quantifying the predictability of ENSO complexity using a statistically accurate multiscale stochastic model and information theory. J. Clim. 36, 2681–2702 (2023).

    Article  Google Scholar 

  80. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1535 pp. (Cambridge Univ. Press, 2013).

  81. Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model. Dev. 11, 369–408 (2018).

    Article  Google Scholar 

  82. Emile-Geay, J. et al. Past ENSO variability: reconstructions, models, and implications. In El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J., Santoso, A. & Cai, W.) (AGU Monograph, 2020).

  83. Carre, M., Sachs, J. P., Schauer, A. J., Rodriguez, W. E. & Ramos, F. C. Reconstructing El Niño‐Southern oscillation activity and ocean temperature seasonality from short‐lived marine mollusk shells from Peru. Palaeogeogr. Palaeoclimatol. Palaeoecol. 371, 45–53 (2013).

    Article  Google Scholar 

  84. Rein, B. How do the 1982/83 and 1997/98 El Niño’s rank in a geological record from Peru? Quat. Int. 161, 56–66 (2007).

    Article  Google Scholar 

  85. Frappier, A., Sahagian, D., Gonzalez, L. A. & Carpenter, S. J. El Niño events recorded by stalagmite carbon isotopes. Science 298, 565–565 (2002).

    Article  Google Scholar 

  86. Maher, N. et al. The future of the El Niño-Southern oscillation: using large ensembles to illuminate time-varying responses and inter-model differences. Earth Syst. Dyn. Discuss https://doi.org/10.5194/esd-2022-26 (2022).

    Article  Google Scholar 

  87. Bony, S. & Dufresne, J. L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

    Article  Google Scholar 

  88. Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    Article  Google Scholar 

  89. Laloyaux, P. et al. CERA-20C: a coupled reanalysis of the twentieth century. J. Adv. Model. Earth Syst. 10, 1172–1195 (2018).

    Article  Google Scholar 

  90. Poli, P. et al. ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29, 4083–4097 (2016).

    Article  Google Scholar 

  91. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  92. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  93. Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol. 25, 865–879 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the Science and Technology Innovation Project of Laoshan Laboratory (LSKJ202203300) and the Strategic Priority Research Programme of Chinese Academy of Sciences (XDB 40030000). T.G. is supported by the National Natural Science Foundation of China (NSFC) project (42206209, 42276006) and China National Postdoctoral Program for Innovative Talents (BX20220279). L.W., X.L. and B.G. are supported by the NSFC projects (41490643, 41490640, U1606402 and 41521091). W.C., G.W., B.N. and A.S. are supported by CSHOR, a joint research Center for Southern Hemisphere Oceans Research between QNLM and CSIRO. A.S., B.N. and G.W. are supported by the Australian Government’s National Environmental Science Program (NESP). M.C. was supported by a grant from the UK Natural Environment Research Council (NE/S004645/1). The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and the authors thank the climate modelling groups for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The authors are also grateful to various reanalysis groups for making the data sets available to us. PMEL contribution no. 4957.

Author information

Authors and Affiliations

Authors

Contributions

W.C. conceived the article and wrote the initial manuscript in discussion with T.G., B.N. and L.W. B.N. and T.G. performed analysis and generated final figures. All authors contributed to interpreting findings, discussion of the associated dynamics and improvement of this paper.

Corresponding authors

Correspondence to Wenju Cai or Lixin Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Xiang-Hui Fang, Ping Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Ng, B., Geng, T. et al. Anthropogenic impacts on twentieth-century ENSO variability changes. Nat Rev Earth Environ 4, 407–418 (2023). https://doi.org/10.1038/s43017-023-00427-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00427-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing