Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prediction and projection of heatwaves

Abstract

Heatwaves constitute a major threat to human health and ecosystems. Projected increases in heatwave frequency and severity thus lead to the need for prediction to enhance preparedness and minimize adverse impacts. In this Review, we document current capabilities for heatwave prediction at daily to decadal timescales and outline projected changes under anthropogenic warming. Various local and remote drivers and feedbacks influence heatwave development. On daily timescales, extratropical atmospheric blocking and global land–atmosphere coupling are most pertinent, and on subseasonal to seasonal timescales, soil moisture and ocean surface anomalies contribute. Knowledge of these drivers allows heatwaves to be skilfully predicted at daily to weekly lead times. Predictions are challenging beyond timescales of a few weeks, but tendencies for above-average temperatures can be estimated. Further into the future, heatwaves are anticipated to become more frequent, persistent and intense in nearly all inhabited regions, with trends amplified by soil drying in some areas, especially the mid-latitudes. There is also an increased occurrence of humid heatwaves, especially in southern Asia. A better understanding of the relevant drivers and their model representation, including atmospheric dynamics, atmospheric and soil moisture, and surface cover should be prioritized to improve heatwave prediction and projection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summer temperatures under climate change.
Fig. 2: Schematic representation of processes contributing to mid-latitude summer heatwaves.
Fig. 3: Predictors for heatwaves over timescales from days to centuries.
Fig. 4: Subseasonal predictability of concurrent heatwaves in June 2021.
Fig. 5: Occurrence of very hot days under different warming levels.

Similar content being viewed by others

References

  1. Albergel, C. et al. Monitoring and forecasting the impact of the 2018 summer heatwave on vegetation. Remote Sens. 11, 520 (2019).

    Article  Google Scholar 

  2. Brás, T. A., Seixas, J., Carvalhais, N. & Jägermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 16, 065012 (2021).

  3. Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).

    Article  Google Scholar 

  4. Nguyen, M., Wang, X. & Chen, D. An Investigation of Extreme Heatwave Events and their Effects on Building & Infrastructure. CSIRO Climate Adaption Flagship Working Paper Series no. 9 (CSIRO, 2010).

  5. Auffhammer, M., Baylis, P. & Hausman, C. H. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl Acad. Sci. USA 114, 1886–1891 (2017).

    Article  Google Scholar 

  6. Bloomfield, H., Suitters, C. & Drew, D. Meteorological drivers of European power system stress. J. Renew. Energy https://doi.org/10.1155/2020/5481010 (2020).

    Article  Google Scholar 

  7. Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 3 (IPCC, WMO, 2018).

  8. Overland, J. E. & Wang, M. The 2020 Siberian heat wave. Int. J. Climatol. https://doi.org/10.1002/joc.6850 (2020).

  9. Campbell, S., Remenyi, T. A., White, C. J. & Johnston, F. H. Heatwave and health impact research: a global review. Health Place 53, 210–218 (2018).

    Article  Google Scholar 

  10. Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398, 698–708 (2021).

    Article  Google Scholar 

  11. Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6, eaaw1838 (2020).

    Article  Google Scholar 

  12. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

  13. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  14. Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

    Article  Google Scholar 

  15. AghaKouchak, A., Cheng, L., Mazdiyasni, O. & Farahmand, A. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys. Res. Lett. 41, 8847–8852 (2014).

    Article  Google Scholar 

  16. Libonati, R. et al. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal. Environ. Res. Lett. 17, 015005 (2022).

    Article  Google Scholar 

  17. Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article  Google Scholar 

  18. Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P. & Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 17, 4815–4830 (2020).

    Article  Google Scholar 

  19. Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2021).

  20. Perkins-Kirkpatrick, S. & Lewis, S. Increasing trends in regional heatwaves. Nat. Commun. 11, 1–8 (2020).

    Article  Google Scholar 

  21. Jyoteeshkumar Reddy, P., Perkins-Kirkpatrick, S. E. & Sharples, J. J. Intensifying Australian heatwave trends and their sensitivity to observational data. Earth’s Future 9, e2020EF001924 (2021).

    Article  Google Scholar 

  22. Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).

    Article  Google Scholar 

  23. Emerton, R. et al. Predicting the unprecedented: forecasting the June 2021 Pacific Northwest heatwave. Weather https://doi.org/10.1002/wea.4257 (2022).

  24. Lewis, S. C. & Karoly, D. J. Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys. Res. Lett. 40, 3705–3709 (2013).

    Article  Google Scholar 

  25. Van Oldenborgh, G. J. et al. Human contribution to the record-breaking June 2019 heat wave in France (World Weather Attribution, 2019); https://www.worldweatherattribution.org/wp-content/uploads/WWA-Science_France_heat_June_2019.pdf

  26. Vautard, R. et al. Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environ. Res. Lett. 15, 094077 (2020).

    Article  Google Scholar 

  27. Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Change 166, 1–18 (2021).

    Article  Google Scholar 

  28. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).

    Article  Google Scholar 

  29. Yiou, P. et al. Analyses of the northern European summer heatwave of 2018. Bull. Am. Meteorol. Soc. 101, S35–S40 (2020).

    Article  Google Scholar 

  30. Casanueva, A. et al. Overview of existing heat-health warning systems in Europe. Int. J. Environ. Res. Public Health 16, 2657 (2019).

    Article  Google Scholar 

  31. Kotharkar, R. & Ghosh, A. Progress in extreme heat management and warning systems: a systematic review of heat-health action plans (1995–2020). Sustain. Cities Soc. 76, 103487 (2022).

    Article  Google Scholar 

  32. White, C. J. et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 24, 315–325 (2017).

    Article  Google Scholar 

  33. Merz, B. et al. Impact forecasting to support emergency management of natural hazards. Rev. Geophys. 58, 1–52 (2020).

    Article  Google Scholar 

  34. Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article  Google Scholar 

  35. Benthuysen, J. A., Oliver, E. C. J., Chen, K. & Wernberg, T. Editorial: advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7, 1301 (2020).

    Article  Google Scholar 

  36. Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Article  Google Scholar 

  37. Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).

    Article  Google Scholar 

  38. Sousa, P. M., Trigo, R. M., Barriopedro, D., Soares, P. M. & Santos, J. A. European temperature responses to blocking and ridge regional patterns. Clim. Dyn. 50, 457–477 (2018).

    Article  Google Scholar 

  39. Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052261 (2012).

  40. Schaller, N. et al. Influence of blocking on Northern European and western Russian heatwaves in large climate model ensembles. Environ. Res. Lett. 13, 054015 (2018).

    Article  Google Scholar 

  41. Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).

    Google Scholar 

  42. Röthlisberger, M. & Martius, O. Quantifying the local effect of Northern Hemisphere atmospheric blocks on the persistence of summer hot and dry spells. Geophys. Res. Lett. 46, 10101–10111 (2019).

    Article  Google Scholar 

  43. Zschenderlein, P., Fink, A. H., Pfahl, S. & Wernli, H. Processes determining heat waves across different European climates. Q. J. R. Meteorol. Soc. 145, 2973–2989 (2019).

    Article  Google Scholar 

  44. Stefanon, M., D’Andrea, F. & Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 7, 014023 (2012).

    Article  Google Scholar 

  45. Loikith, P. C. & Broccoli, A. J. Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Clim. 25, 7266–7281 (2012).

    Article  Google Scholar 

  46. Namias, J. Anatomy of Great Plains protracted heat waves (especially the 1980 U.S. summer drought). Mon. Weather Rev. 110, 824–838 (1982).

    Article  Google Scholar 

  47. Parker, T. J., Berry, G. J. & Reeder, M. J. The structure and evolution of heat waves in southeastern Australia. J. Clim. 27, 5768–5785 (2014).

    Article  Google Scholar 

  48. Chen, R. & Lu, R. Comparisons of the circulation anomalies associated with extreme heat in different regions of Eastern China. J. Clim. 28, 5830–5844 (2015).

    Article  Google Scholar 

  49. Silva, W. L., Nascimento, M. X. & Menezes, W. F. Atmospheric blocking in the South Atlantic during the summer 2014: a synoptic analysis of the phenomenon. Atmos. Clim. Sci. 05, 386–393 (2015).

    Google Scholar 

  50. Coelho, C. A. S. et al. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim. Dyn. 46, 3737–3752 (2015).

    Article  Google Scholar 

  51. Rodrigues, R. R. & Woollings, T. Impact of atmospheric blocking on South America in austral summer. J. Clim. 30, 1821–1837 (2017).

    Article  Google Scholar 

  52. Finke, K. et al. Revisiting remote drivers of the 2014 drought in South-Eastern Brazil. Clim. Dyn. 55, 3197–3211 (2020).

    Article  Google Scholar 

  53. Marengo, J. A. et al. The heat wave of October 2020 in central South America. Int. J. Climatol. https://doi.org/10.1002/joc.7365 (2021).

  54. Röthlisberger, M., Sprenger, M., Flaounas, E., Beyerle, U. & Wernli, H. The substructure of extremely hot summers in the Northern Hemisphere. Weather Clim. Dyn. 1, 45–62 (2020).

    Article  Google Scholar 

  55. Wehner, M., Stone, D., Krishnan, H., Achuta Rao, K. & Castillo, F. The deadly combination of heat and humidity in India and Pakistan in summer 2015. Bull. Am. Meteorol. Soc. 97, s81–s86 (2016).

  56. Luo, M., Lau, N.-C. & Liu, Z. Different mechanisms for daytime, nighttime, and compound heatwaves in southern China. Weather Clim. Extremes 36, 100449 (2022).

    Article  Google Scholar 

  57. Binder, H. et al. Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic Warm Event. Geophys. Res. Lett. 44, 12,028–12,036 (2017).

    Article  Google Scholar 

  58. Hermann, M., Papritz, L. & Wernli, H. A Lagrangian analysis of the dynamical and thermodynamic drivers of large-scale Greenland melt events during 1979–2017. Weather Clim. Dyn. 1, 497–518 (2020).

    Article  Google Scholar 

  59. Turner, J. et al. An extreme high temperature event in coastal east Antarctica associated with an atmospheric river and record summer downslope winds. Geophys. Res. Lett. 49, e2021GL097108 (2022).

    Article  Google Scholar 

  60. Bieli, M., Pfahl, S. & Wernli, H. A Lagrangian investigation of hot and cold temperature extremes in Europe. Q. J. R. Meteorol. Soc. 141, 98–108 (2015).

    Article  Google Scholar 

  61. Quinting, J. F. & Reeder, M. J. Southeastern Australian heat waves from a trajectory viewpoint. Mon. Weather Rev. 145, 4109–4125 (2017).

    Article  Google Scholar 

  62. Trigo, R. M., Trigo, I. F., DaCamara, C. C. & Osborn, T. J. Climate impact of the European winter blocking episodes from the NCEP/NCAR Reanalyses. Clim. Dyn. 23, 17–28 (2004).

    Article  Google Scholar 

  63. Galarneau, T. J., Hamill, T. M., Dole, R. M. & Perlwitz, J. A multiscale analysis of the extreme weather events over Western Russia and Northern Pakistan during July 2010. Mon. Weather Rev. 140, 1639–1664 (2012).

    Article  Google Scholar 

  64. Schneidereit, A. et al. Large-scale flow and the long-lasting blocking high over Russia: summer 2010. Mon. Weather Rev. 140, 2967–2981 (2012).

    Article  Google Scholar 

  65. Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 12, 712 (2019).

    Article  Google Scholar 

  66. Madonna, E., Wernli, H., Joos, H. & Martius, O. Warm conveyor belts in the ERA-Interim Dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Clim. https://doi.org/10.1175/JCLI-D-12-00720.1 (2014).

  67. Browning, K. A. in Extratropical Cyclones, 129–153 (American Meteorological Society, 1990).

  68. Pfahl, S., Schwierz, C., Croci-Maspoli, M., Grams, C. M. & Wernli, H. Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci. 8, 610–615 (2015).

    Article  Google Scholar 

  69. Steinfeld, D. & Pfahl, S. The role of latent heating in atmospheric blocking dynamics: a global climatology. Clim. Dyn. 53, 6159–6180 (2019).

    Article  Google Scholar 

  70. Zschenderlein, P., Pfahl, S., Wernli, H. & Fink, A. H. A Lagrangian analysis of upper-tropospheric anticyclones associated with heat waves in Europe. Weather Clim. Dyn. 1, 191–206 (2020).

    Article  Google Scholar 

  71. Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 3220 (2015).

    Article  Google Scholar 

  72. Ratnam, J. V., Behera, S. K., Ratna, S. B., Rajeevan, M. & Yamagata, T. Anatomy of Indian heatwaves. Sci. Rep. 6, 24395–11 (2016).

    Article  Google Scholar 

  73. Branstator, G. Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Clim. 15, 1893–1910 (2002).

    Article  Google Scholar 

  74. Davies, H. C. Weather chains during the 2013/2014 winter and their significance for seasonal prediction. Nat. Geosci. 8, 833–837 (2015).

    Article  Google Scholar 

  75. O’Reilly, C. H., Woollings, T., Zanna, L. & Weisheimer, A. The impact of tropical precipitation on summertime Euro-Atlantic circulation via a circumglobal wave train. J. Clim. 31, 6481–6504 (2018).

    Article  Google Scholar 

  76. Röthlisberger, M. et al. Recurrent synoptic-scale Rossby wave patterns and their effect on the persistence of cold and hot spells. J. Clim. 32, 3207–3226 (2019).

    Article  Google Scholar 

  77. Teng, H., Branstator, G., Wang, H., Meehl, G. A. & Washington, W. M. Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci. 6, 1056–1061 (2013).

    Article  Google Scholar 

  78. Jiménez-Esteve, B. & Domeisen, D. I. The role of atmospheric dynamics and large-scale topography in driving heatwaves. Q. J. R. Meteorol. Soc. 148, 2344–2367 (2022).

  79. Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013).

    Article  Google Scholar 

  80. Petoukhov, V. et al. Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc. Natl Acad. Sci. USA 113, 6862–6867 (2016).

    Article  Google Scholar 

  81. Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017).

  82. Wirth, V., Riemer, M., Chang, E. K. M. & Martius, O. Rossby wave packets on the midlatitude waveguide — a review. Mon. Weather Rev. 146, 1965–2001 (2018).

    Article  Google Scholar 

  83. Fragkoulidis, G., Wirth, V., Bossmann, P. & Fink, A. H. Linking Northern Hemisphere temperature extremes to Rossby wave packets. Q. J. R. Meteorol. Soc. 144, 553–566 (2018).

    Article  Google Scholar 

  84. Röthlisberger, M., Pfahl, S. & Martius, O. Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett. 43, 10,989–10,997 (2016).

    Article  Google Scholar 

  85. Hirschi, M. et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2010).

    Article  Google Scholar 

  86. Quesada, B., Vautard, R., Yiou, P., Hirschi, M. & Seneviratne, S. I. Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Clim. Change 2, 736–741 (2012).

    Article  Google Scholar 

  87. Miralles, D., Teuling, A. & Heerwaarden, C. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    Article  Google Scholar 

  88. Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M. & Seneviratne, S. I. Identifying key driving processes of major recent heat waves. J. Geophys. Res. Atmos. 124, 11746–11765 (2019).

    Article  Google Scholar 

  89. Mueller, B. & Seneviratne, S. I. Hot days induced by precipitation deficits at the global scale. Proc. Natl Acad. Sci. USA 109, 12398–12403 (2012).

    Article  Google Scholar 

  90. Nissan, H., Burkart, K., Coughlan de Perez, E., Van Aalst, M. & Mason, S. Defining and predicting heat waves in Bangladesh. J. Appl. Meteorol. Climatol. 56, 2653–2670 (2017).

    Article  Google Scholar 

  91. Fischer, E., Seneviratne, S., Vidale, P., Lüthi, D. & Schär, C. Soil moisture: atmosphere interactions during the 2003 European summer heat wave. J. Clim. 20, 5081–5099 (2007).

    Article  Google Scholar 

  92. Haarsma, R. J., Selten, F., Hurk, B. v., Hazeleger, W. & Wang, X. Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys. Res. Lett. https://doi.org/10.1029/2008GL036617 (2009).

  93. Zampieri, M. et al. Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J. Clim. 22, 4747–4758 (2009).

    Article  Google Scholar 

  94. Orth, R., Dutra, E. & Pappenberger, F. Improving weather predictability by including land surface model parameter uncertainty. Mon. Weather Rev. 144, 1551–1569 (2016).

    Article  Google Scholar 

  95. Seneviratne, S. I. et al. Impact of soil moisture-climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).

    Article  Google Scholar 

  96. Schwingshackl, C., Hirschi, M. & Seneviratne, S. I. A theoretical approach to assess soil moisture–climate coupling across CMIP5 and GLACE-CMIP5 experiments. Earth Syst. Dyn. 9, 1217–1234 (2018).

    Article  Google Scholar 

  97. Jia, G. et al. in Special Report on Climate Change and Land (eds Shukla, P.R. et al.) Ch. 2, 131–247 (IPCC, in the press).

  98. Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

    Article  Google Scholar 

  99. Lejeune, Q., Davin, E. L., Gudmundsson, L., Winckler, J. & Seneviratne, S. I. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat. Clim. Change 8, 386–390 (2018).

    Article  Google Scholar 

  100. Schwaab, J. et al. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. 10, 14153–9 (2020).

    Article  Google Scholar 

  101. Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Article  Google Scholar 

  102. Thiery, W. et al. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 11, 290–7 (2020).

    Article  Google Scholar 

  103. Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).

    Article  Google Scholar 

  104. Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

    Article  Google Scholar 

  105. Vogel, M. M., Zscheischler, J. & Seneviratne, S. I. Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe. Earth Syst. Dyn. 9, 1107–1125 (2018).

    Article  Google Scholar 

  106. Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. NY Acad. Sci. 1436, 19–35 (2019).

    Article  Google Scholar 

  107. Guillod, B. P., Orlowsky, B., Miralles, D. G., Teuling, A. J. & Seneviratne, S. I. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 6, 1–6 (2015).

    Article  Google Scholar 

  108. Roundy, J. K., Ferguson, C. R. & Wood, E. F. Impact of land–atmospheric coupling in CFSv2 on drought prediction. Clim. Dyn. 43, 421–434 (2014).

    Article  Google Scholar 

  109. Black, E. & Sutton, R. The influence of oceanic conditions on the hot European summer of 2003. Clim. Dyn. 28, 53–66 (2007).

    Article  Google Scholar 

  110. Duchez, A. et al. Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett. 11, 074004–10 (2016).

    Article  Google Scholar 

  111. McKinnon, K. A., Rhines, A., Tingley, M. P. & Huybers, P. Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat. Geosci. 9, 389–394 (2016).

    Article  Google Scholar 

  112. Vijverberg, S., Schmeits, M., Van der Wiel, K. & Coumou, D. Subseasonal statistical forecasts of eastern us hot temperature events. Mon. Weather Rev. 148, 4799–4822 (2020).

    Article  Google Scholar 

  113. Arblaster, J. M. & Alexander, L. V. The impact of the El Niño–Southern Oscillation on maximum temperature extremes. Geophys. Res. Lett. 39, L20702 (2012).

  114. Luo, M. & Lau, N.-C. Summer heat extremes in northern continents linked to developing ENSO events. Environ. Res. Lett. 15, 074042 (2020).

    Article  Google Scholar 

  115. Luo, M. & Lau, N.-C. Amplifying effect of ENSO on heat waves in China. Clim. Dyn. 52, 3277–3289 (2019).

    Article  Google Scholar 

  116. Naveena, N., Satyanarayana, G. C., Rao, K. K., Umakanth, N. & Srinivas, D. Heat wave characteristics over India during ENSO events. J. Earth Syst. Sci. 130, 1–16 (2021).

    Article  Google Scholar 

  117. Loikith, P. C. & Broccoli, A. J. The influence of recurrent modes of climate variability on the occurrence of winter and summer extreme temperatures over North America. J. Clim. 27, 1600–1618 (2014).

    Article  Google Scholar 

  118. Martija-Díez, M., Rodríguez-Fonseca, B. & López-Parages, J. ENSO Influence on Western European summer and fall temperatures. J. Clim. 34, 8013–8031 (2021).

    Google Scholar 

  119. Loughran, T. F., Pitman, A. J. & Perkins-Kirkpatrick, S. E. The El Niño–Southern Oscillation’s effect on summer heatwave development mechanisms in Australia. Clim. Dyn. 52, 6279–6300 (2019).

    Article  Google Scholar 

  120. Reddy, P. J., Perkins-Kirkpatrick, S. E. & Sharples, J. J. Interactive influence of ENSO and IOD on contiguous heatwaves in Australia. Environ. Res. Lett. 17, 014004 (2021).

    Article  Google Scholar 

  121. Lee, Y.-Y. & Grotjahn, R. Evidence of specific MJO phase occurrence with summertime California Central Valley extreme hot weather. Adv. Atmos. Sci. 36, 589–602 (2019).

  122. Hsu, P.-C., Qian, Y., Liu, Y., Murakami, H. & Gao, Y. Role of abnormally enhanced MJO over the Western Pacific in the formation and subseasonal predictability of the record-breaking northeast Asian heatwave in the summer of 2018. J. Clim. 33, 3333–3349 (2020).

    Article  Google Scholar 

  123. Lopez, H. et al. East Asian monsoon as a modulator of US Great Plains heat waves. J. Geophys. Res. Atmos. 124, 6342–6358 (2019).

    Article  Google Scholar 

  124. García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. & Fischer, E. M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40, 267–306 (2010).

    Article  Google Scholar 

  125. Black, E., Blackburn, M., Harrison, G., Hoskins, B. & Methven, J. Factors contributing to the summer 2003 European heatwave. Weather 59, 217–223 (2004).

    Article  Google Scholar 

  126. Feudale, L. & Shukla, J. Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophys. Res. Lett. https://doi.org/10.1029/2006GL027991 (2007).

  127. Feudale, L. & Shukla, J. Influence of sea surface temperature on the European heat wave of 2003 summer. Part II: a modeling study. Clim. Dyn. 36, 1705–1715 (2011).

    Article  Google Scholar 

  128. Grotjahn, R. et al. North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 46, 1151–1184 (2015).

    Article  Google Scholar 

  129. Sutton, R. Attributing extreme weather to climate change is not a done deal. Nature 561, 177–177 (2018).

    Article  Google Scholar 

  130. Garfinkel, C. I., White, I., Gerber, E. P., Jucker, M. & Erez, M. The building blocks of Northern Hemisphere wintertime stationary waves. J. Clim. https://doi.org/10.1175/JCLI-D-19-0181.1 (2020).

  131. Drouard, M., Kornhuber, K. & Woollings, T. Disentangling dynamic contributions to summer 2018 anomalous weather over Europe. Geophys. Res. Lett. 46, 12537–12546 (2019).

    Article  Google Scholar 

  132. Grazzini, F. & Vitart, F. Atmospheric predictability and Rossby wave packets. Q. J. R. Meteorol. Soc. 141, 2793–2802 (2015).

    Article  Google Scholar 

  133. Beverley, J. D. The Northern Hemisphere circumglobal teleconnection in a seasonal forecast model and its relationship to European summer forecast skill. Clim. Dyn. 52, 3759–3771 (2019).

    Article  Google Scholar 

  134. Tian, D., Wood, E. F. & Yuan, X. CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrol. Earth Sys. Sci. 21, 1477–1490 (2017).

    Article  Google Scholar 

  135. Guigma, K. H., MacLeod, D., Todd, M. & Wang, Y. Prediction skill of Sahelian heatwaves out to subseasonal lead times and importance of atmospheric tropical modes of variability. Clim. Dynam. 57, 537–556 (2021).

  136. Coughlan de Perez, E. et al. Global predictability of temperature extremes. Environ. Res. Lett. 13, 054017 (2018).

  137. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  138. Lorenz, E. N. The predictability of a flow which possesses many scales of motion. Tellus 21, 289–307 (1969).

  139. Hoskins, B. Predictability beyond the deterministic limit. WMO Bull. 61, 33–36 (2012).

  140. Vitart, F. & Robertson, A. W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Clim. Atmos. Sci. 1, 3 (2018).

    Article  Google Scholar 

  141. Domeisen, D. I. et al. Advances in the subseasonal prediction of extreme events: relevant case studies across the globe. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-20-0221.1 (2022).

  142. Vitart, F. et al. Sub-seasonal to Seasonal Prediction of Weather Extremes Ch. 17 (Elsevier, 2019).

  143. Mandal, R. et al. Real time extended range prediction of heat waves over India. Sci. Rep. 9, 9008 (2019).

    Article  Google Scholar 

  144. Magnusson, L., Emerton, R. & Simmons, A. Spring heatwave in India and Pakistan ECMWF Newsletter 172 (European Centre for Medium Range Weather Forecasts, 2022).

  145. Wulff, C. O. & Domeisen, D. I. V. Higher subseasonal predictability of extreme hot European summer temperatures as compared to average summers. Geophys. Res. Lett. 46, 11520–11529 (2019).

    Article  Google Scholar 

  146. Lavaysse, C., Naumann, G., Alfieri, L., Salamon, P. & Vogt, J. Predictability of the European heat and cold waves. Clim. Dyn. 52, 2481–2495 (2019).

    Article  Google Scholar 

  147. Koster, R. D. et al. Contribution of land surface initialization to subseasonal forecast skill: first results from a multi-model experiment. Geophys. Res. Lett. https://doi.org/10.1029/2009GL041677 (2010).

  148. Vitart, F. & Balmaseda, M. Impact of sea surface temperature biases on extended-range forecasts (European Centre for Medium Range Weather Forecasts, 2018).

  149. Beverley, J. et al. Dynamical mechanisms linking Indian monsoon precipitation and the circumglobal teleconnection. Clim. Dynam. 57, 2615–2636 (2021).

  150. Cassou, C., Terray, L. & Phillips, A. Tropical Atlantic influence on European heat waves. J. Clim. 18, 2805–2811 (2005).

    Article  Google Scholar 

  151. Liu, Q., Zhou, T., Mao, H. & Fu, C. Decadal variations in the relationship between the Western Pacific subtropical high and summer heat waves in east China. J. Clim. 32, 1627–1640 (2019).

    Article  Google Scholar 

  152. Lim, E.-P. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).

    Article  Google Scholar 

  153. Miralles, D. G. et al. El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Clim. Change 4, 1–5 (2013).

    Google Scholar 

  154. Ardilouze, C. et al. Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability. Clim. Dyn. 49, 3959–3974 (2017).

    Article  Google Scholar 

  155. Weisheimer, A., Doblas-Reyes, F. J., Jung, T. & Palmer, T. N. On the predictability of the extreme summer 2003 over Europe. Geophys. Res. Lett. 38, L05704 (2011).

    Article  Google Scholar 

  156. Luo, L. & Zhang, Y. Did we see the 2011 summer heat wave coming? Geophys. Res. Lett. https://doi.org/10.1029/2012GL051383 (2012).

  157. Pepler, A. S., Díaz, L. B., Prodhomme, C., Doblas-Reyes, F. J. & Kumar, A. The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes. Weather Clim. Extremes 9, 68–77 (2015).

    Article  Google Scholar 

  158. Prodhomme, C. et al. Seasonal prediction of European summer heatwaves. Clim. Dynam. 58, 2149–2166 (2021).

  159. Doblas Reyes, F. J. & Hagedorn, R. Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025061 (2006).

  160. Ardilouze, C., Batté, L., Déqué, M., van Meijgaard, E. & van den Hurk, B. Investigating the impact of soil moisture on European summer climate in ensemble numerical experiments. Clim. Dyn. 52, 4011–4026 (2019).

    Article  Google Scholar 

  161. Hauser, M., Orth, R. & Seneviratne, S. I. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett. 43, 2819–2826 (2016).

    Article  Google Scholar 

  162. Eade, R., Hamilton, E., Smith, D., Graham, R. & Scaife, A. Forecasting the number of extreme daily events out to a decade ahead. J. Geophys. Res. https://doi.org/10.1029/2012JD018015 (2012).

  163. Hanlon, H., Hegerl, G., Tett, S. & Smith, D. Can a decadal forecasting system predict temperature extreme indices? J. Clim. 26, 3728–3744 (2013).

    Article  Google Scholar 

  164. IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  165. Dosio, A. Projection of temperature and heat waves for Africa with an ensemble of cordex regional climate models. Clim. Dyn. 49, 493–519 (2017).

    Article  Google Scholar 

  166. Perkins-Kirkpatrick, S. & Gibson, P. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 7, 1–12 (2017).

    Article  Google Scholar 

  167. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article  Google Scholar 

  168. Wartenburger, R. et al. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model Dev. Discussions 10, 3609–3634 (2017).

    Article  Google Scholar 

  169. Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010).

    Article  Google Scholar 

  170. Ballester, J., Giorgi, F. & Rodó, X. Changes in European temperature extremes can be predicted from changes in PDF central statistics. Clim. Change 98, 277–284 (2010).

    Article  Google Scholar 

  171. Suarez-Gutierrez, L., Müller, W. A., Li, C. & Marotzke, J. Dynamical and thermodynamical drivers of variability in European summer heat extremes. Clim. Dynam. 54, 4351–4366 (2020).

  172. Rogers, C. D., Kornhuber, K., Perkins-Kirkpatrick, S. E., Loikith, P. C. & Singh, D. Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J. Clim. 35, 1063–1078 (2022).

    Article  Google Scholar 

  173. Fischer, E. M. & Schär, C. Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim. Dyn. 33, 917 (2009).

  174. Seneviratne, S. I., Koster, R. D. & Guo, Z. Soil moisture memory in AGCM simulations: analysis of Global Land–atmosphere Coupling Experiment (GLACE) data. J. Hydrometeorol. 7, 1090–1112 (2006).

    Article  Google Scholar 

  175. Cattiaux, J., Douville, H., Schoetter, R., Parey, S. & Yiou, P. Projected increase in diurnal and interdiurnal variations of European summer temperatures. Geophys. Res. Lett. 42, 899–907 (2015).

    Article  Google Scholar 

  176. Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

    Article  Google Scholar 

  177. Li, C. et al. Changes in annual extremes of daily temperature and precipitation in CMIP6 models. J. Clim. 34, 3441–3460 (2021).

    Article  Google Scholar 

  178. Harrington, L. J. et al. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. Environ. Res. Lett. 11, 055007 (2016).

    Article  Google Scholar 

  179. Almazroui, M. et al. Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Systems and Environment 5, 481–497 (2021).

    Article  Google Scholar 

  180. Freychet, N., Hegerl, G., Mitchell, D. & Collins, M. Future changes in the frequency of temperature extremes may be underestimated in tropical and subtropical regions. Commun. Earth Environ. 2, 1–8 (2021).

    Article  Google Scholar 

  181. Cowan, T. et al. More frequent, longer, and hotter heat waves for Australia in the twenty-first century. J. Clim. 27, 5851–5871 (2014).

    Article  Google Scholar 

  182. Vogel, M. M., Zscheischler, J., Fischer, E. M. & Seneviratne, S. I. Development of future heatwaves for different hazard thresholds. J. Geophys. Res. Atmos. 125, e2019JD032070 (2020).

    Article  Google Scholar 

  183. Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).

    Article  Google Scholar 

  184. Philip, S. Y. et al. Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021 (World Weather Attribution, 2021); https://www.worldweatherattribution.org/wp-content/uploads/NW-US-extreme-heat-2021-scientific-report-WWA.pdf

  185. Zachariah, M. et al. Without human-caused climate change temperatures of 40°C in the UK would have been extremely unlikely (World Weather Attribution, 2022); https://www.worldweatherattribution.org/wp-content/uploads/UK-heat-scientific-report.pdf

  186. Sherwood, S. & FU, Q. Climate change. A drier future? Science 343, 737–739 (2014).

    Article  Google Scholar 

  187. Byrne, M. P. & O’Gorman, P. A. Land–ocean warming contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J. Clim. 26, 4000–4016 (2013).

    Article  Google Scholar 

  188. Brogli, R., Kröner, N., Sørland, S. L., Lüthi, D. & Schär, C. The role of Hadley circulation and lapse-rate changes for the future European summer climate. J. Clim. 32, 385–404 (2019).

    Article  Google Scholar 

  189. Bladé, I., Liebmann, B., Fortuny, D. & van Oldenborgh, G. J. Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Clim. Dyn. 39, 709–727 (2012).

    Article  Google Scholar 

  190. Shepherd, T. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

  191. Shepherd, T. G. Climate science: the dynamics of temperature extremes. Nature 522, 425–427 (2015).

    Article  Google Scholar 

  192. Harvey, B., Cook, P., Shaffrey, L. & Schiemann, R. The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos. 125, e2020JD032701 (2020).

    Article  Google Scholar 

  193. Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).

    Article  Google Scholar 

  194. Nabizadeh, E., Lubis, S. & Hassanzadeh, P. The 3D structure of Northern Hemisphere blocking events: climatology, role of moisture, and response to climate change. J. Clim. https://doi.org/10.1175/JCLI-D-21-0141.1 (2021).

  195. Dunn Sigouin, E. & Son, S.-W. Northern Hemisphere blocking frequency and duration in the CMIP5 models. J. Geophys. Res. Atmos. 118, 1179–1188 (2013).

    Article  Google Scholar 

  196. Davini, P. & D’Andrea, F. From CMIP3 to CMIP6: Northern Hemisphere atmospheric blocking simulation in present and future climate. J. Clim. 33, 10021–10038 (2020).

    Article  Google Scholar 

  197. Gillett, N. P. & Fyfe, J. C. Annular mode changes in the CMIP5 simulations. Geophys. Res. Lett. 40, 1189–1193 (2013).

    Article  Google Scholar 

  198. Hanna, E., Cropper, T. E., Hall, R. J. & Cappelen, J. Greenland Blocking Index 1851–2015: a regional climate change signal. Int. J. Climatol. 36, 4847–4861 (2016).

    Article  Google Scholar 

  199. Hanna, E., Fettweis, X. & Hall, R. J. Brief communication: recent changes in summer Greenland blocking captured by none of the CMIP5 models. Cryosphere 12, 3287–3292 (2018).

    Article  Google Scholar 

  200. Masato, G., Hoskins, B. J. & Woollings, T. Winter and summer Northern Hemisphere blocking in CMIP5 Models. J. Clim. 26, 7044–7059 (2013).

    Article  Google Scholar 

  201. Barnes, E. A., Dunn Sigouin, E., Masato, G. & Woollings, T. Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett. 41, 638–644 (2014).

    Article  Google Scholar 

  202. Schwartz, C., Garfinkel, C. I., Yadav, P., Chen, W. & Domeisen, D. Stationary waves and upward troposphere-stratosphere coupling in S2S models. Weather Clim. Dynam. 3, 679–692 (2022).

    Article  Google Scholar 

  203. Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).

    Article  Google Scholar 

  204. Neelin, J. D., Langenbrunner, B., Meyerson, J. E., Hall, A. & Berg, N. California winter precipitation change under global warming in the Coupled Model Intercomparison Project Phase 5 Ensemble. J. Clim. 26, 6238–6256 (2013).

    Article  Google Scholar 

  205. Schiemann, R. et al. The resolution sensitivity of Northern Hemisphere blocking in four 25-km atmospheric global circulation models. J. Clim. 30, 337–358 (2017).

    Article  Google Scholar 

  206. Schiemann, R. et al. Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution. Weather Clim. Dyn. 1, 277–292 (2020).

    Article  Google Scholar 

  207. Birch, C. et al. Future changes in African heatwaves and their drivers at the convective scale. J. Clim. 35, 5981–6006 (2022).

  208. Dwyer, I. J., Barry, S. J., Megiddo, I. & White, C. J. Evaluations of heat action plans for reducing the health impacts of extreme heat: methodological developments (2012–2021) and remaining challenges. Int. J. Biometeorol. 66, 1915–1927 (2022).

  209. Hazeleger, W. et al. Tales of future weather. Nat. Clim. Change 5, 107–113 (2015).

    Article  Google Scholar 

  210. Wehrli, K., Hauser, M. & Seneviratne, S. I. Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels. Earth Syst. Dyn. 11, 855–873 (2020).

    Article  Google Scholar 

  211. Zappa, G. & Shepherd, T. G. Storylines of atmospheric circulation change for European Regional Climate Impact Assessment. J. Clim. 30, 6561–6577 (2017).

    Article  Google Scholar 

  212. Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).

    Article  Google Scholar 

  213. Sillmann, J. & Sippel, S. Climate extremes and their implications for impact and risk assessment: a short introduction. In Climate Extremes and Their Implications for Impact and Risk Assessment (eds Sillmann, J. et al.) 1–9 (Elsevier, 2020).

  214. Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A https://doi.org/10.1098/rspa.2019.0013 (2019).

  215. Gessner, C., Fischer, E. M., Beyerle, U. & Knutti, R. Very rare heat extremes: quantifying and understanding using ensemble reinitialization. J. Clim. 34, 6619–6634 (2021).

    Google Scholar 

  216. Yiou, P. & Jézéquel, A. Simulation of extreme heat waves with empirical importance sampling. Geosci. Model Dev. Discussions 13, 763–781 (2020).

    Article  Google Scholar 

  217. Ragone, F. & Bouchet, F. Rare event algorithm study of extreme warm summers and heatwaves over Europe. Geophys. Res. Lett. 48, e2020GL091197 (2021).

    Article  Google Scholar 

  218. Runge, J. Causal network reconstruction from time series: from theoretical assumptions to practical estimation. Chaos 28, 075310 (2018).

    Article  Google Scholar 

  219. Runge, J., Nowack, P., Kretschmer, M., Flaxman, S. & Sejdinovic, D. Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. https://doi.org/10.1126/sciadv.aau4996 (2019).

  220. Di Capua, G. et al. Dominant patterns of interaction between the tropics and mid-latitudes in boreal summer: causal relationships and the role of timescales. Weather Clim. Dyn. 1, 519–539 (2020).

    Article  Google Scholar 

  221. Kretschmer, M., Runge, J. & Coumou, D. Early prediction of extreme stratospheric polar vortex states based on causal precursors. Geophys. Res. Lett. 44, 8592–8600 (2017).

    Article  Google Scholar 

  222. van Straaten, C., Whan, K., Coumou, D., van den Hurk, B. & Schmeits, M. Using explainable machine learning forecasts to discover subseasonal drivers of high summer temperatures in western and central Europe. Mon. Weather Rev. 150, 1115–1134 (2022).

    Article  Google Scholar 

  223. Benet, E. W. et al. Sub-seasonal prediction of central European summer heatwaves with linear and random forest machine learning models. EarthArXiv preprint at https://doi.org/10.31223/X5663G (2022).

  224. Chattopadhyay, A., Nabizadeh, E. & Hassanzadeh, P. Analog forecasting of extreme-causing weather patterns using deep learning. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2019MS001958 (2020).

  225. Hazeleger, W., Jones, C., McGrath, R. & Hesselbjerg-Christensen, J. EC-Earth: a seamless prediction approach to Earth System modelling. IOP Conf. Ser. Earth Environ. Sci. 6, 052002 (2009).

    Article  Google Scholar 

  226. Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A. & Rodwell, M. J. Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull. Am. Meteorol. Soc. 89, 459–470 (2008).

    Article  Google Scholar 

  227. Meehl, G. A. et al. Initialized Earth System prediction from subseasonal to decadal timescales. Nat. Rev. Earth Environ. 2, 340–357 (2021).

    Article  Google Scholar 

  228. Ford, T. W., Dirmeyer, P. A. & Benson, D. O. Evaluation of heat wave forecasts seamlessly across subseasonal timescales. npj Clim. Atmos. Sci. 1, 20 (2018).

    Article  Google Scholar 

  229. Merryfield, W. J. et al. Current and emerging developments in subseasonal to decadal prediction. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-19-0037.1 (2020).

  230. Leach, N. J., Weisheimer, A., Allen, M. R. & Palmer, T. Forecast-based attribution of a winter heatwave within the limit of predictability. Proc. Natl Acad. Sci. USA 118, e2112087118 (2021).

    Article  Google Scholar 

  231. Wulff, C. O., Vitart, F. & Domeisen, D. I. Influence of trends on subseasonal temperature prediction skill. Q. J. R. Meteorol. Soc. 148, 1280–1299 (2022).

    Article  Google Scholar 

  232. Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    Article  Google Scholar 

  233. Salagnac, J.-L. Lessons from the 2003 heat wave: a French perspective. Build. Res. Inf. 35, 450–457(2011).

  234. Wouters, H. et al. Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity. Sci. Adv. 8, eabe6653 (2022).

    Article  Google Scholar 

  235. Fahad, S. et al. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.0 (2017).

  236. Vicedo-Cabrera, A. M. et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change 150, 391–402 (2018).

    Article  Google Scholar 

  237. Vitart, F. et al. The Subseasonal to Seasonal (S2S) Prediction Project database. Bull. Am. Meteorol. Soc. 98, 163–173 (2017).

    Article  Google Scholar 

  238. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 64, 29 (2020).

    Google Scholar 

  239. Gutiérrez, J. et al. Atlas. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (IPCC, Cambridge Univ. Press, 2021); http://interactive-atlas.ipcc.ch/

  240. Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).

    Article  Google Scholar 

  241. Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Progr. Oceanogr. 141, 227–238 (2016).

    Article  Google Scholar 

  242. Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2, 851–870 (2011).

    Article  Google Scholar 

  243. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Article  Google Scholar 

  244. Russo, S. et al. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 119, 12–500 (2014).

    Article  Google Scholar 

  245. Schoetter, R., Cattiaux, J. & Douville, H. Changes of Western European heat wave characteristics projected by the CMIP5 ensemble. Clim. Dyn. 45, 1601–1616 (2015).

    Article  Google Scholar 

  246. Feron, S. et al. Observations and projections of heat waves in South America. Sci. Rep. 9, 1–15 (2019).

    Article  Google Scholar 

  247. Russo, S., Sillmann, J. & Fischer, E. M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10, 124003 (2015).

    Article  Google Scholar 

  248. Perkins, S. E., Argueeso, D. & White, C. J. Relationships between climate variability, soil moisture, and Australian heatwaves. J. Geophys. Res. Atmos. 120, 8144–8164 (2015).

    Article  Google Scholar 

  249. Sippel, S., Zscheischler, J. & Reichstein, M. Ecosystem impacts of climate extremes crucially depend on the timing. Proc. Natl Acad. Sci. USA 113, 5768–5770 (2016).

    Article  Google Scholar 

  250. Sharples, J. J., Lewis, S. C. & Perkins-Kirkpatrick, S. E. et al. Modulating influence of drought on the synergy between heatwaves and dead fine fuel moisture content of bushfire fuels in the southeast Australian region. Weather Clim. Extremes 31, 100300 (2021).

    Article  Google Scholar 

  251. Gruber, S., Hoelzle, M. & Haeberli, W. Permafrost thaw and destabilization of alpine rock walls in the hot summer of 2003. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020051 (2004).

  252. Ravanel, L., Magnin, F. & Deline, P. Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Sci. Total Environ. 609, 132–143 (2017).

    Article  Google Scholar 

  253. Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D. & Seneviratne, S. I. Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth’s Future 7, 692–703 (2019).

    Article  Google Scholar 

  254. Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161–163 (2014).

    Article  Google Scholar 

  255. Sippel, S. et al. Quantifying changes in climate variability and extremes: pitfalls and their overcoming. Geophys. Res. Lett. 42, 9990–9998 (2015).

    Article  Google Scholar 

  256. Stefanon, M., D’Andrea, F. & Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 7, 014023 (2012).

    Article  Google Scholar 

  257. Lyon, B., Barnston, A. G., Coffel, E. & Horton, R. M. Projected increase in the spatial extent of contiguous US summer heat waves and associated attributes. Environ. Res. Lett. 14, 114029 (2019).

    Article  Google Scholar 

  258. Baldwin, J. W., Dessy, J. B., Vecchi, G. A. & Oppenheimer, M. Temporally compound heat wave events and global warming: an emerging hazard. Earth’s Future 7, 411–427 (2019).

    Article  Google Scholar 

  259. Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA 107, 9552–9555 (2010).

    Article  Google Scholar 

  260. Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).

    Article  Google Scholar 

  261. Russo, S., Sillmann, J. & Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 7, 1–7 (2017).

    Article  Google Scholar 

  262. Buzan, J., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).

    Article  Google Scholar 

  263. Raymond, C. et al. On the controlling factors for globally extreme humid heat. Geophys. Res. Lett. 48, e2021GL096082 (2021).

    Article  Google Scholar 

  264. Xue, P. & Eltahir, E. A. Estimation of the heat and water budgets of the Persian (Arabian) Gulf using a regional climate model. J. Clim. 28, 5041–5062 (2015).

    Article  Google Scholar 

  265. Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 1–9 (2018).

    Article  Google Scholar 

  266. Pal, J. S. & Eltahir, E. A. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Change 6, 197–200 (2016).

    Article  Google Scholar 

  267. Im, E.-S., Pal, J. S. & Eltahir, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3, e1603322 (2017).

    Article  Google Scholar 

  268. Nageswararao, M., Sinha, P., Mohanty, U. & Mishra, S. Occurrence of more heat waves over the central east coast of India in the recent warming era. Pure Appl. Geophys. 177, 1143–1155 (2020).

    Article  Google Scholar 

  269. Tuel, A., Choi, Y.-W., AlRukaibi, D. & Eltahir, E. A. B. Extreme storms in southwest Asia (Northern Arabian Peninsula) under current and future climates. Clim. Dynam. 58, 1509–1524 (2021).

  270. Pyrina, M. & Domeisen, D. I. V. Sub-seasonal predictability of onset, duration, and intensity of European heat extremes. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.4394 (2022).

Download references

Acknowledgements

The authors thank Y.-W. Choi for help with creating the Box figure and R. W.-Y. Wu for the data download for Fig. 4. Support from the Swiss National Science Foundation through projects PP00P2_170523 and PP00P2_198896 to D.I.V.D. is gratefully acknowledged. S.E.P.-K. is supported by Australian Research Council grant numbers FT170100106 and CE170100023. A.W. received funding from the EU Horizon 2020 Project European Climate Prediction system (EUCP) grant agreement 776613. S.I.S. acknowledges funding from the EU Horizon 2020 Project XAIDA (grant agreement 101003469). E.M.F. acknowledges funding from the EU Horizon 2020 Project XAIDA (grant agreement 101003469) and by the Swiss National Science Foundation (grant 200020_178778).

Author information

Authors and Affiliations

Authors

Contributions

D.I.V.D. initiated and led the Review, wrote the draft manuscript and created Figs. 2–5. C.S. made Fig. 1 and E.A.B.E. the box figure. All authors contributed to the writing and/or editing of the Review and gave feedback on the figures.

Corresponding author

Correspondence to Daniela I. V. Domeisen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thank Dáithí Stone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domeisen, D.I.V., Eltahir, E.A.B., Fischer, E.M. et al. Prediction and projection of heatwaves. Nat Rev Earth Environ 4, 36–50 (2023). https://doi.org/10.1038/s43017-022-00371-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00371-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing