Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges

Abstract

Hydrothermal circulation and alteration at mid-ocean ridges and ridge flanks have a key role in regulating seawater chemistry and global chemical fluxes, and support diverse ecosystems in the absence of light. In this Review, we outline tectonic, magmatic and hydrothermal processes that govern crustal architecture, alteration and biogeochemical cycles along mid-ocean ridges with different spreading rates. In general, hydrothermal systems vary from those that are magmatic-dominated with low-pH fluids >300 °C to serpentinizing systems with alkaline fluids <120 °C. Typically, slow-spreading ridges (rates <40 mm yr−1) have greater variability in magmatism, lithology and vent chemistry, which are influenced by detachment faults that expose lower-crustal and serpentinized mantle rocks. Hydrothermal alteration is an important sink for magnesium, sodium, sulfate and bicarbonate, and a net source of volatiles, iron and other nutrients to the deep ocean and vent ecosystems. Magmatic hydrothermal systems sustain a vast, hot and diverse microbial biosphere that represents a deep organic carbon source to ocean carbon budgets. In contrast, high-pH serpentinizing hydrothermal systems harbour a more limited microbial community consisting primarily of methane-metabolizing archaea. Continued advances in monitoring and analytical capabilities coupled with developments in metagenomic technologies will guide future investigations and discoveries in hydrothermal systems.

Key points

  • Spreading rates control variations in heat sources, magma input and tectonic processes along mid-ocean ridges and influence crustal architecture and hydrothermal processes, providing multifaceted habitats for life.

  • Approximately one-third (7 × 1012 to 11 × 1012 W) of the global oceanic heat flux (32 × 1012 W) occurs through hydrothermal convection at ridges and ridge flanks. Seawater circulation, hydrothermal alteration and microbial interactions regulate seawater chemistry and change the composition and physical properties of the lithosphere.

  • Roughly 50% of the global mid-ocean ridges are spreading at rates <40 mm yr1, where major detachment faults expose lower-crustal and upper-mantle rocks, creating asymmetric ridge segments with large variability in structure, hydrothermal processes and vent fluid chemistry.

  • Serpentinization decreases bulk density (<2.9 g cm3) and seismic velocities (Vp < 6 km s−1) of mantle rocks and weakens the oceanic lithosphere along detachment faults. Serpentinization reactions produce highly reduced fluids with high H2, CH4 and other organic molecules that provide energy for microbial life.

  • Hydrothermal processes govern global chemical fluxes (such as Mg, Fe, Mn and volatiles) and provide nutrients (for example, Fe flux ~4–6 × 109 mol yr1) to the deep ocean. Approximately 0.05 GtC yr−1 of organic carbon is estimated to be produced through microbial interactions and oxidation of organic compounds within hydrothermal plumes.

  • Basalt-hosted systems support a vast, hot and diverse microbial biosphere, in contrast to serpentinizing systems, which sustain more limited microbial communities primarily dominated by methane-metabolizing archaea. Advanced technologies allow better characterization of the genetic makeup and metabolism of microbes and the role of viruses in shaping diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of hydrothermal vents on the seafloor.
Fig. 2: Variations in magmatism, structure and hydrothermal systems with varying spreading rates.
Fig. 3: Hydrothermal processes at mid-ocean ridges.
Fig. 4: Mid-ocean ridge hydrothermal fluxes and life.

Similar content being viewed by others

Data availability

The compilation of vent distributions and fluid compositions is provided in the online Supplementary Data file.

References

  1. Parsons, B. The rates of plate creation and consumption. Geophys. J. Int. 67, 437–448 (1981).

    Article  Google Scholar 

  2. Sinha, M. C. & Evans, R. L. Geophysical constraints upon the thermal regime of the ocean crust. Geophys. Monogr. Ser. https://doi.org/10.1029/148GM02 (2004).

  3. German, C. R. & Lin, J. The thermal structure of the oceanic crust, ridge-spreading and hydrothermal circulation: How well do we understand their inter-connections? Geophys. Monogr. Ser. https://doi.org/10.1029/148GM01 (2004).

  4. Wheat, C. G., Fisher, A. T., McManus, J., Hulme, S. M. & Orcutt, B. N. Cool seafloor hydrothermal springs reveal global geochemical fluxes. Earth Planet. Sci. Lett. 476, 179–188 (2017).

    Article  Google Scholar 

  5. Stein, C. A. & Stein, S. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res. 99, 3081–3095 (1994).

    Article  Google Scholar 

  6. Mottl, M. in Energy and Mass Transfer in Marine Hydrothermal Systems (eds Halbach, P. E. et al.) 271–286 (Dahlem Univ. Press, 2003).

  7. Wheat, C. G. & Mottl, M. J. in Hydrogeology of the Oceanic Lithosphere, 627–658 (Cambridge Univ. Press, 2004).

  8. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213, 340–342 (1981).

    Article  Google Scholar 

  9. Lilley, M. D., Baross, J. A. & Gordon, L. I. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. A. et al.) 411–449 (Springer, 1983).

  10. Corliss, J. B. et al. Submarine thermal springs on the Galápagos Rift. Science 203, 1073–1083 (1979).

    Article  Google Scholar 

  11. Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).

    Article  Google Scholar 

  12. Kashefi, K. & Lovley, D. R. Extending the upper temperature limit for life. Science 301, 934–934 (2003).

    Article  Google Scholar 

  13. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    Article  Google Scholar 

  14. Spang, A. & Ettema, T. J. G. Microbial diversity: the tree of life comes of age. Nat. Microbiol. 1, 16056 (2016).

    Article  Google Scholar 

  15. Spiess, F. N. et al. East Pacific Rise: hot springs and geophysical experiments. Science 207, 1421–1433 (1980).

    Article  Google Scholar 

  16. Von Damm, K. L. et al. Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    Article  Google Scholar 

  17. Felbeck, H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213, 336–338 (1981).

    Article  Google Scholar 

  18. Beaulieu, S. E., Baker, E. T., German, C. R. & Maffei, A. An authoritative global database for active submarine hydrothermal vent fields. Geochem. Geophys. Geosyst. 14, 4892–4905 (2013).

    Article  Google Scholar 

  19. Jannasch, H. W. & Wirsen, C. O. Chemosynthetic primary production at East Pacific sea floor spreading centers. BioScience 29, 592–598 (1979).

    Article  Google Scholar 

  20. Hey, R. et al. Tectonic/volcanic segmentation and controls on hydrothermal venting along Earth’s fastest seafloor spreading system, EPR 27°–32°S: segmentation along the EPR. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000764 (2004).

    Article  Google Scholar 

  21. Carbotte, S. & Macdonald, K. East Pacific rise 8°–10° 30′ N: evolution of ridge segments and discontinuities from SeaMARC II and three-dimensional magnetic studies. J. Geophys. Res. 97, 6959 (1992).

    Article  Google Scholar 

  22. Anonymous. Penrose field conference on ophiolites. Geotimes 17, 24–25 (1972).

    Google Scholar 

  23. Carbotte, S. M. et al. Stacked magma lenses beneath mid‐ocean ridges: insights from new seismic observations and synthesis with prior geophysical and geologic findings. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2020JB021434 (2021).

    Article  Google Scholar 

  24. Sinton, J. M. & Detrick, R. S. Mid-ocean ridge magma chambers. J. Geophys. Res. 97, 197–216 (1992).

    Article  Google Scholar 

  25. Coogan, L. A. The lower oceanic crust. in Treatise on Geochemistry 497–541 (Elsevier, 2014).

  26. Brown, T. C. et al. Textural character of gabbroic rocks from pito deep: a record of magmatic processes and the genesis of the upper plutonic crust at fast-spreading mid-ocean ridges. J. Petrol. 60, 997–1026 (2019).

    Article  Google Scholar 

  27. Maher, S. M., Gee, J. S., Cheadle, M. J. & John, B. E. Three-dimensional magnetic stripes require slow cooling in fast-spread lower ocean crust. Nature 597, 511–515 (2021).

    Article  Google Scholar 

  28. Karson, J. A., Kelley, D. S., Fornari, D. J., Perfit, M. R. & Shank, T. M. Discovering the Deep: a Photographic Atlas of the Seafloor and Ocean Crust. (Cambridge Univ. Press, 2015).

  29. Haymon, R. M. et al. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52′ N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119, 85–101 (1993).

    Article  Google Scholar 

  30. Von Damm, K. L. et al. Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375, 47–50 (1995).

    Article  Google Scholar 

  31. Von Damm, K. L. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Geophys. Monogr. Ser. (eds Humphris, S. E., et al.) 222–247 (American Geophysical Union, 1995).

  32. Tolstoy, M. et al. A sea-floor spreading event captured by seismometers. Science 314, 1920–1922 (2006).

    Article  Google Scholar 

  33. Tan, Y. J., Tolstoy, M., Waldhauser, F. & Wilcock, W. S. D. Dynamics of a seafloor-spreading episode at the East Pacific Rise. Nature 540, 261–265 (2016).

    Article  Google Scholar 

  34. Tolstoy, M., Waldhauser, F., Bohnenstiehl, D. R., Weekly, R. T. & Kim, W.-Y. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature 451, 181–184 (2008).

    Article  Google Scholar 

  35. Delaney, J. R. et al. The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281, 222–230 (1998).

    Article  Google Scholar 

  36. Baker, E. T. et al. Posteruption enhancement of hydrothermal activity: a 33‐year, multieruption time series at Axial Seamount (Juan de Fuca Ridge). Geochem. Geophys. Geosyst. 20, 814–828 (2019).

    Article  Google Scholar 

  37. Clague, D. A. et al. Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge: geologic history of Axial Seamount. Geochem. Geophys. Geosyst. 14, 4403–4443 (2013).

    Article  Google Scholar 

  38. Chadwick, W. W., Nooner, S. L., Butterfield, D. A. & Lilley, M. D. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nat. Geosci. 5, 474–477 (2012).

    Article  Google Scholar 

  39. Wilcock, W. S. D. Physical response of mid-ocean ridge hydrothermal systems to local earthquakes. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000701 (2004).

    Article  Google Scholar 

  40. Lilley, M. D., Butterfield, D. A., Lupton, J. E. & Olson, E. J. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881 (2003).

    Article  Google Scholar 

  41. Delaney, J. R., Robigou, V., McDuff, R. E. & Tivey, M. K. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. J. Geophys. Res. 97, 19663–19682 (1992).

    Article  Google Scholar 

  42. Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491 (2002).

    Article  Google Scholar 

  43. Kelley, D. et al. Endeavour Segment of the Juan de Fuca Ridge: one of the most remarkable places on Earth. Earth Oceanog. 25, 44–61 (2012).

    Article  Google Scholar 

  44. Clague, D. A. et al. Hydrothermal chimney distribution on the Endeavour Segment, Juan de Fuca Ridge. Geochem. Geophys. Geosyst. 21, e2020GC008917 (2020).

    Article  Google Scholar 

  45. Robigou, V., Delaney, J. R. & Stakes, D. S. Large massive sulfide deposits in a newly discovered active hydrothermal system, the High-Rise field, Endeavour Segment, Juan de Fuca Ridge. Geophys. Res. Lett. 20, 1887–1890 (1993).

    Article  Google Scholar 

  46. Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    Article  Google Scholar 

  47. Cannat, M., Fontaine, F. & Escartín, J. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. in Geophys. Monogr. Ser. 188, 241–264 (2010).

  48. John, B. E. & Cheadle, M. J. Deformation and alteration associated with oceanic and continental detachment fault systems: are they similar? Geophys. Monogr. Ser. 188, 175–205 (2010).

  49. Escartín, J. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455, 790–794 (2008).

    Article  Google Scholar 

  50. Cannat, M. et al. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24° N). Geology 23, 49 (1995).

    Article  Google Scholar 

  51. Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J. Geophys. Res. 103, 9857–9866 (1998).

    Article  Google Scholar 

  52. Karson, J. A. Internal structure of oceanic lithosphere: a perspective from tectonic windows. Geophys. Monogr. Ser. 106, 177–218 (1998).

  53. Cannat, M. et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001676 (2008).

    Article  Google Scholar 

  54. Escartín, J. et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13° 30′ N, Mid Atlantic Ridge). Geochem. Geophys. Geosyst. 18, 1451–1482 (2017).

    Article  Google Scholar 

  55. Smith, D. K., Escartín, J., Schouten, H. & Cann, J. R. Fault rotation and core complex formation: significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15°N). Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001699 (2008).

    Article  Google Scholar 

  56. Cannat, M. et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34, 605–608 (2006).

    Article  Google Scholar 

  57. Dick, H. J. B., Tivey, M. A. & Tucholke, B. E. Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001645 (2008).

    Article  Google Scholar 

  58. Sauter, D. et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat. Geosci. 6, 314–320 (2013).

    Article  Google Scholar 

  59. Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–961 (2003).

    Article  Google Scholar 

  60. MacLeod, C. J. et al. Life cycle of oceanic core complexes. Earth Planet. Sci. Lett. 287, 333–344 (2009).

    Article  Google Scholar 

  61. Schroeder, T. & John, B. E. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000728 (2004).

    Article  Google Scholar 

  62. Bickert, M., Lavier, L. & Cannat, M. How do detachment faults form at ultraslow mid-ocean ridges in a thick axial lithosphere? Earth Planet. Sci. Lett. 533, 116048 (2020).

    Article  Google Scholar 

  63. McCaig, A. M., Delacour, A., Fallick, A. E., Castelain, T. & Früh-Green, G. L. Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic. Geophys. Monogr. Ser. 188, 207–239 (2010).

  64. Boschi, C., Früh-Green, G. L., Delacour, A., Karson, J. A. & Kelley, D. S. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30° N). Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001074. (2006).

    Article  Google Scholar 

  65. Kelley, D. S. et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307, 1428–1434 (2005).

    Article  Google Scholar 

  66. Karson, J. A. et al. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30° N. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001109 (2006).

    Article  Google Scholar 

  67. Colaço, A. et al. MoMAR-D: a technological challenge to monitor the dynamics of the Lucky Strike vent ecosystem. ICES J. Mar. Sci. 68, 416–424 (2011).

    Article  Google Scholar 

  68. Barreyre, T. et al. Structure, temporal evolution, and heat flux estimates from the Lucky Strike deep-sea hydrothermal field derived from seafloor image mosaics. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003990 (2012).

    Article  Google Scholar 

  69. Mittelstaedt, E. et al. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003991 (2012).

    Article  Google Scholar 

  70. Lowell, R. P. et al. Magma-hydrothermal interactions at the Costa Rica Rift from data collected in 1994 and 2015. Earth Planet. Sci. Lett. 531, 115991 (2020).

    Article  Google Scholar 

  71. Fontaine, F. J., Cannat, M., Escartin, J. & Crawford, W. C. Along-axis hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: insights from numerical models of the Lucky Strike vent field (MAR). Geochem. Geophys. Geosyst. 15, 2918–2931 (2014).

    Article  Google Scholar 

  72. McCaig, A. M., Cliff, R. A., Escartin, J., Fallick, A. E. & MacLeod, C. J. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35, 935–938 (2007).

    Article  Google Scholar 

  73. Kent, G. M., Harding, A. J. & Orcutt, J. A. Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9° 17′ N Deval from forward modeling of common depth point data. J. Geophys. Res. 98, 13945–13969 (1993).

    Article  Google Scholar 

  74. Canales, J. P. et al. Upper crustal structure and axial topography at intermediate spreading ridges: Seismic constraints from the southern Juan de Fuca Ridge. J. Geophys. Res. 110, B12104 (2005).

    Article  Google Scholar 

  75. Phipps Morgan, J. & Chen, Y. J. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993).

    Article  Google Scholar 

  76. deMartin, B. J., Sohn, R. A., Pablo Canales, J. & Humphris, S. E. Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology 35, 711–714 (2007).

    Article  Google Scholar 

  77. Cannat, M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J. Geophys. Res. 98, 4163–4172 (1993).

    Article  Google Scholar 

  78. Wilcock, W. S. D. & Delaney, J. R. Mid-ocean ridge sulfide deposits: evidence for heat extraction from magma chambers or cracking fronts? Earth Planet. Sci. Lett. 145, 49–64 (1996).

    Article  Google Scholar 

  79. Kelley, D. S. & Shank, T. M. Hydrothermal systems: a decade of discovery in slow spreading environments. Geophys. Monogr. Ser. 188, 369–407 (2010).

  80. Kelley, D. S. et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412, 145–149 (2001).

    Article  Google Scholar 

  81. Lecoeuvre, A., Ménez, B., Cannat, M., Chavagnac, V. & Gérard, E. Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME J. 15, 818–832 (2021).

    Article  Google Scholar 

  82. Connelly, D. P. et al. Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012).

    Article  Google Scholar 

  83. German, C. R. et al. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proc. Natl Acad. Sci. USA 107, 14020–14025 (2010).

    Article  Google Scholar 

  84. McDermott, J. M., Seewald, J. S., German, C. R. & Sylva, S. P. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl Acad. Sci. USA 112, 7668–7672 (2015).

    Article  Google Scholar 

  85. Hayman, N. W. et al. Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010GC003240 (2011).

    Article  Google Scholar 

  86. Barreyre, T., Parnell‐Turner, R., Wu, J.‐N. & Fornari, D. J. Tracking crustal permeability and hydrothermal response during seafloor eruptions at the East Pacific Rise, 9° 50′ N. Geophys. Res. Lett. e2021GL095459 (2022).

  87. Alt, J. C. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions Vol. 91 (eds Humphris, S. E. et al.) 85–114 (American Geophysical Union, 1995).

  88. Tivey, M. K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20, 50–65 (2007).

    Article  Google Scholar 

  89. Butterfield, D. A. et al. Mixing, reaction and microbial activity in the sub-seafloor revealed by temporal and spatial variation in diffuse flow vents at Axial Volcano. Geophys. Monogr. Ser. 144, 269–289 (2004).

  90. Von Damm, K. L. & Lilley, M. D. Diffuse flow hydrothermal fluids from 9° 50′ N East Pacific Rise: origin, evolution and biogeochemical controls. Geophys. Monogr. Ser. 144, 245–268 (2004).

  91. Opatkiewicz, A. D., Butterfield, D. A. & Baross, J. A. Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities. FEMS Microbiol. Ecol. 70, 413–424 (2009).

    Article  Google Scholar 

  92. Fortunato, C. S., Larson, B., Butterfield, D. A. & Huber, J. A. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids: microbial genomics at axial seamount. Environ. Microbiol. 20, 769–784 (2018).

    Article  Google Scholar 

  93. Deming, J. W. & Baross, J. A. Deep-sea smokers: windows to a subsurface biosphere? Geochim. Cosmochim. Acta 57, 3219–3230 (1993).

    Article  Google Scholar 

  94. Huber, J. A. et al. Microbial population structures in the deep marine biosphere. Science 318, 97–100 (2007).

    Article  Google Scholar 

  95. Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).

    Article  Google Scholar 

  96. Dick, G. J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0160-2 (2019).

    Article  Google Scholar 

  97. Bischoff, J. L. & Rosenbauer, R. J. An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am. J. Sci. 285, 725–763 (1985).

    Article  Google Scholar 

  98. Kelley, D. S. & Delaney, J. R. Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700°C. Earth Planet. Sci. Lett. 83, 53–66 (1987).

    Article  Google Scholar 

  99. Fournier, R. O. Conceptual models of brine evolution in magmatic-hydrothermal systems. US Geol. Surv. Prof. Pap. 1350, 1487–1506 (1987).

    Google Scholar 

  100. Coumou, D., Driesner, T., Weis, P. & Heinrich, C. A. Phase separation, brine formation, and salinity variation at black smoker hydrothermal systems. J. Geophys. Res. 114, B03212 (2009).

    Google Scholar 

  101. Chavagnac, V. et al. Spatial variations in vent chemistry at the lucky strike hydrothermal field, mid‐atlantic ridge (37° N): updates for subseafloor flow geometry from the newly discovered Capelinhos Vent. Geochem. Geophys. Geosyst. 19, 4444–4458 (2018).

    Article  Google Scholar 

  102. Xu, G. & Lavelle, J. W. Circulation, hydrography, and transport over the summit of Axial seamount, a deep volcano in the Northeast Pacific. J. Geophys. Res. Ocean. 122, 5404–5422 (2017).

    Article  Google Scholar 

  103. Kaye, J. Z. & Baross, J. A. High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol. Ecol. 32, 249–260 (2000).

    Article  Google Scholar 

  104. Haase, K. M. et al. Young volcanism and related hydrothermal activity at 5° S on the slow-spreading southern Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001509 (2007).

    Article  Google Scholar 

  105. Koschinsky, A. et al. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5° S on the Mid-Atlantic Ridge. Geology 36, 615–618 (2008).

    Article  Google Scholar 

  106. Pester, N. J., Ding, K. & Seyfried, W. E. Magmatic eruptions and iron volatility in deep-sea hydrothermal fluids. Geology 42, 255–258 (2014).

    Article  Google Scholar 

  107. Butterfield, D. A. et al. in Mid-Ocean Ridges (eds Cann, J. R., Elderfield, H. & Laughton, A. S.) 153–170 (Cambridge Univ. Press, 1999).

  108. Von Damm, K. L. Chemistry of hydrothermal vent fluids from 9°–10° N, East Pacific Rise: ‘Time zero,’ the immediate posteruptive period. Geophys. Res. 105, 11203–11222 (2000).

    Article  Google Scholar 

  109. Von Damm, K. L. et al. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet. Sci. Lett. 206, 365–378 (2003).

    Article  Google Scholar 

  110. Butterfield, D. A. et al. Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil. Trans. R. Soc. Lond. A 355, 369–386 (1997).

    Article  Google Scholar 

  111. Seewald, J., Cruse, A. & Saccocia, P. Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth Planet. Sci. Lett. 216, 575–590 (2003).

    Article  Google Scholar 

  112. Love, B., Lilley, M., Butterfield, D., Olson, E. & Larson, B. Rapid variations in fluid chemistry constrain hydrothermal phase separation at the Main Endeavour Field. Geochem. Geophys. Geosyst. 18, 531–543 (2017).

    Article  Google Scholar 

  113. Rommevaux, C. et al. Prokaryote communities at active chimney and in situ colonization devices after a magmatic degassing event (37° N MAR, EMSO‐Azores Deep‐Sea Observatory). Geochem. Geophys. Geosyst. 20, 3065–3089 (2019).

    Article  Google Scholar 

  114. Baker, E. T., Massoth, G. J. & Feely, R. A. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature 329, 149–151 (1987).

    Article  Google Scholar 

  115. Lupton, J. E., Baker, E. T. & Massoth, G. J. Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet. Sci. Lett. 171, 343–350 (1999).

    Article  Google Scholar 

  116. Holden, J. F., Summit, M. & Baross, J. A. Thermophilic and hyperthermophilic microorganisms in 3–30 °C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 25, 33–41 (1998).

    Google Scholar 

  117. Summit, M. & Baross, J. A. Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption. Deep Sea Res. II Top. Stud. Oceanogr. 45, 2751–2766 (1998).

    Article  Google Scholar 

  118. Kelley, D. S., Lilley, M. D., Lupton, J. E. & Olson, E. J. Enriched H2, CH4, and 3He concentrations in hydrothermal plumes associated with the 1996 Gorda Ridge eruptive event. Deep Sea Res. II Top. Stud. Oceanogr. 45, 2665–2682 (1998).

    Article  Google Scholar 

  119. Spietz, R. et al. Deep-sea volcanic eruptions create unique chemical and biological linkages between the subsurface lithosphere and the oceanic hydrosphere. Oceanography 31, 128–135 (2018).

    Article  Google Scholar 

  120. Meyer, J. L., Akerman, N. H., Proskurowski, G. & Huber, J. A. Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount, Juan de Fuca Ridge. Front. Microbiol. 4, 153 (2013).

    Article  Google Scholar 

  121. Gold, T. The deep, hot biosphere. Proc. Natl Acad. Sci. USA 89, 6045–6049 (1992).

    Article  Google Scholar 

  122. Baross, J. A. et al. in The Subseafloor Biosphere at Mid-Ocean Ridges Vol. 144 (eds Wilcock, W. S. D. et al.) 1–11 (American Geophysical Union, 2004).

  123. Davis, E. E. & Fisher, A. T. in Encyclopedia of Solid Earth Geophysics (ed. Gupta, H. K.) https://doi.org/10.1007/978-3-030-10475-7_65-1 (Springer, 2020).

  124. Simoneit, B. R. T., Kawka, O. E. & Brault, M. Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem. Geol. 71, 169–182 (1988).

    Article  Google Scholar 

  125. Cruse, A. M. & Seewald, J. S. Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochim. Cosmochim. Acta 70, 2073–2092 (2006).

    Article  Google Scholar 

  126. Mottl, M. J. et al. Middle Valley, Juan de Fuca Ridge. Proc. Ocean Drill. Prog. Sci. Results 139 (1994).

  127. Zierenberg, R. A., Fouquet, Y., Miller, D. J. & Normark, W. R. Proc. Ocean Drill. Prog. Sci. Results 169, http://www-odp.tamu.edu/publications/169_SR/169TOC.HTM (2000).

  128. Ishibashi, J. et al. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough. Appl. Geochem. 17, 1457–1466 (2002).

    Article  Google Scholar 

  129. Von Damm, K. L. et al. The Escanaba Trough, Gorda Ridge hydrothermal system: temporal stability and subseafloor complexity. Geochim. Cosmochim. Acta 69, 4971–4984 (2005).

    Article  Google Scholar 

  130. Teske, A. et al. The Guaymas Basin Hiking Guide to hydrothermal mounds, chimneys, and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00075 (2016).

    Article  Google Scholar 

  131. Paduan, J. B. et al. Discovery of hydrothermal vent fields on Alarcón rise and in Southern Pescadero Basin, Gulf of California. Geochem. Geophys. Geosyst. 19, 4788–4819 (2018).

    Article  Google Scholar 

  132. Kawka, O. E. & Simoneit, B. R. T. Hydrothermal pyrolysis of organic matter in Guaymas Basin: I. Comparison of hydrocarbon distributions in subsurface sediments and seabed petroleums. Org. Geochem. 22, 947–978 (1994).

    Article  Google Scholar 

  133. Lilley, M. D. et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364, 45–47 (1993).

    Article  Google Scholar 

  134. You, C.-F. et al. Boron and halide systematics in submarine hydrothermal systems: effects of phase separation and sedimentary contributions. Earth Planet. Sci. Lett. 123, 227–238 (1994).

    Article  Google Scholar 

  135. Proskurowski, G., Lilley, M. D. & Brown, T. A. Isotopic evidence of magmatism and seawater bicarbonate removal at the endeavour hydrothermal system. Earth Planet. Sci. Lett. 225, 53–61 (2004).

    Article  Google Scholar 

  136. Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 1, 126 (2010).

    Article  Google Scholar 

  137. Baumberger, T. et al. Fluid composition of the sediment-influenced Loki’s Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge. Geochim. Cosmochim. Acta 187, 156–178 (2016).

    Article  Google Scholar 

  138. Charlou, J. L. et al. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Geophys. Monogr. Ser. 188, 265–296 (2010).

  139. Andreani, M. et al. Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36° 14′ N). Geochem. Geophys. Geosyst. 15, 3543–3571 (2014).

    Article  Google Scholar 

  140. Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14′ N, MAR). Chem. Geol. 191, 345–359 (2002).

    Article  Google Scholar 

  141. Frost, B. R. On the stability of sulfides, oxides, and native metals in serpentinite. J. Petrol. 26, 31–63 (1985).

    Article  Google Scholar 

  142. Abrajano, T. A. et al. Methane-hydrogen gas seeps, Zambales ophiolite, Philippines: deep or shallow origin? Chem. Geol. 71, 211–222 (1988).

    Article  Google Scholar 

  143. McCollom, T. M., Klein, F., Solheid, P. & Moskowitz, B. The effect of pH on rates of reaction and hydrogen generation during serpentinization. Phil. Trans. R. Soc. A. 378, 20180428 (2020).

    Article  Google Scholar 

  144. McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009).

    Article  Google Scholar 

  145. Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. B 362, 1887–1926 (2007).

    Article  Google Scholar 

  146. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    Article  Google Scholar 

  147. Russell, M. J., Hall, A. J. & Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 8, 355–371 (2010).

    Article  Google Scholar 

  148. Hannington, M. D., De Ronde, C. E. J. & Petersen, S. in Economic Geology One Hundredth Anniversary Volume https://doi.org/10.5382/AV100.06 (Society of Economic Geologists, 2005).

  149. Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L. M. & Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15° N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem. Geol. 242, 1–21 (2007).

    Article  Google Scholar 

  150. German, C. R. & Seyfried, W. E. in Treatise on Geochemistry 2nd edn, Vol. 8 (eds Holland, H. D. & Turekian, K. K.) 191–233 (Elsevier, 2014).

  151. Seyfried, W. E., Pester, N. J., Ding, K. & Rough, M. Vent fluid chemistry of the Rainbow hydrothermal system (36° N, MAR): phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 75, 1574–1593 (2011).

    Article  Google Scholar 

  152. Konn, C. et al. Extending the dataset of fluid geochemistry of the Menez Gwen, Lucky Strike, Rainbow, TAG and Snake Pit hydrothermal vent fields: investigation of temporal stability and organic contribution. Deep. Sea Res. I Oceanogr. Res. Pap. 179, 103630 (2022).

    Article  Google Scholar 

  153. Thurnherr, A. M. & Richards, K. J. Hydrography and high-temperature heat flux of the Rainbow hydrothermal site (36° 14′ N, Mid-Atlantic Ridge). J. Geophys. Res. 106, 9411–9426 (2001).

    Article  Google Scholar 

  154. Canales, J. P., Dunn, R. A., Arai, R. & Sohn, R. A. Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system. Geology 45, 451–454 (2017).

    Article  Google Scholar 

  155. Früh-Green, G. L. et al. Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357). Lithos 323, 137–155 (2018).

    Article  Google Scholar 

  156. Proskurowski, G. et al. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319, 604–607 (2008).

    Article  Google Scholar 

  157. Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S. & Lilley, M. D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 74, 941–952 (2010).

    Article  Google Scholar 

  158. Proskurowski, G., Lilley, M. D., Kelley, D. S. & Olson, E. J. Low temperature volatile production at the Lost City hydrothermal field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229, 331–343 (2006).

    Article  Google Scholar 

  159. Früh-Green, G. L. et al. 30,000 years of hydrothermal activity at the Lost City vent field. Science 301, 495–498 (2003).

    Article  Google Scholar 

  160. Lang, S. Q. et al. Extensive decentralized hydrogen export from the Atlantis Massif. Geology 49, 851–856 (2021).

    Article  Google Scholar 

  161. Larson, B. I. et al. Stealth export of hydrogen and methane from a low temperature serpentinization system. Deep. Sea Res. II Topical Stud. Oceanogr. 121, 233–245 (2015).

    Article  Google Scholar 

  162. Ternieten, L., Früh-Green, G. L. & Bernasconi, S. M. Carbonate mineralogy in mantle peridotites of the Atlantis Massif (IODP Expedition 357). J. Geophys. Res. Solid Earth 126, e2021JB021885 (2021).

    Google Scholar 

  163. Ternieten, L., Früh‐Green, G. L. & Bernasconi, S. M. Distribution and sources of carbon in serpentinized mantle peridotites at the Atlantis Massif (IODP Expedition 357). JGR Solid Earth 126, e2021JB021973 (2021).

    Google Scholar 

  164. Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl Acad. Sci. USA 105, 17295–17300 (2008).

    Article  Google Scholar 

  165. Moore, W. S., Frankle, J. D., Benitez‐Nelson, C. R., Früh‐Green, G. L. & Lang, S. Q. Activities of 223Ra and 226Ra in fluids from the Lost City hydrothermal field require short fluid residence times. JGR Ocean. 126, e2021JC017886 (2021).

    Article  Google Scholar 

  166. Kadko, D., Gronvold, K. & Butterfield, D. Application of radium isotopes to determine crustal residence times of hydrothermal fluids from two sites on the Reykjanes Peninsula, Iceland. Geochim. Cosmochim. Acta 71, 6019–6029 (2007).

    Article  Google Scholar 

  167. Kadko, D. & Butterfield, D. A. The relationship of hydrothermal fluid composition and crustal residence time to maturity of vent fields on the Juan de Fuca Ridge. Geochim. Cosmochim. Acta 62, 1521–1533 (1998).

    Article  Google Scholar 

  168. Reeves, E. P. Timing Earth’s abiotic kitchen: short hydrothermal fluid residence times in serpentinizing oceanic crust. JGR Oceans 127, e2022JC018601 (2022).

    Article  Google Scholar 

  169. Klein, F., Grozeva, N. G. & Seewald, J. S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl Acad. Sci. USA 116, 17666–17672 (2019).

    Article  Google Scholar 

  170. Etiope, G. & Whiticar, M. J. Abiotic methane in continental ultramafic rock systems: towards a genetic model. Appl. Geochem. 102, 139–152 (2019).

    Article  Google Scholar 

  171. McCollom, T. M. & Seewald, J. S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401 (2007).

    Article  Google Scholar 

  172. Kelley, D. S. & Früh-Green, G. L. Abiogenic methane in deep-seated mid-ocean ridge environments: insights from stable isotope analyses. J. Geophys. Res. 104, 10439–10460 (1999).

    Article  Google Scholar 

  173. Kelley, D. S. & Früh-Green, G. L. Volatile lines of descent in submarine plutonic environments: insights from stable isotope and fluid inclusion analyses. Geochim. Cosmochim. Acta 65, 3325–3346 (2001).

    Article  Google Scholar 

  174. Labidi, J. et al. Methane thermometry in deep-sea hydrothermal systems: evidence for re-ordering of doubly-substituted isotopologues during fluid cooling. Geochim. Cosmochim. Acta 288, 248–261 (2020).

    Article  Google Scholar 

  175. Wang, D. T., Reeves, E. P., McDermott, J. M., Seewald, J. S. & Ono, S. Clumped isotopologue constraints on the origin of methane at seafloor hot springs. Geochim. Cosmochim. Acta 223, 141–158 (2018).

    Article  Google Scholar 

  176. Amend, J. P., McCollom, T. M., Hentscher, M. & Bach, W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim. Cosmochim. Acta 75, 5736–5748 (2011).

    Article  Google Scholar 

  177. Lang, S. Q. et al. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field. Sci. Rep. 8, 755 (2018).

    Article  Google Scholar 

  178. Lang, S. Q. & Brazelton, W. J. Habitability of the marine serpentinite subsurface: a case study of the Lost City hydrothermal field. Phil. Trans. R. Soc. A 378, 20180429 (2020).

    Article  Google Scholar 

  179. Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City hydrothermal field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).

    Article  Google Scholar 

  180. Adam, N. & Perner, M. Microbially mediated hydrogen cycling in deep-sea hydrothermal vents. Front. Microbiol. 9, 1–17 (2018).

    Article  Google Scholar 

  181. Mehta, M. P. & Baross, J. A. Nitrogen fixation at 92 °C by a hydrothermal vent Archaeon. Science 314, 1783–1786 (2006).

    Article  Google Scholar 

  182. Brandes, J. A. et al. Abiotic nitrogen reduction on the early Earth. Nature 395, 365–367 (1998).

    Article  Google Scholar 

  183. Ménez, B. et al. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564, 59–63 (2018).

    Article  Google Scholar 

  184. Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review: Full Report (HM Treasury, 2021).

  185. Anderson, R. E. et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat. Commun. 8, 1114 (2017).

    Article  Google Scholar 

  186. Poli, A. et al. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5, 25 (2017).

    Article  Google Scholar 

  187. Zeng, X., Alain, K. & Shao, Z. Microorganisms from deep-sea hydrothermal vents. Mar. Life Sci. Technol. 3, 204–230 (2021).

    Article  Google Scholar 

  188. Cathalot, C. et al. Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production. Nat. Commun. 12, 6861 (2021).

    Article  Google Scholar 

  189. Anderson, R. E. Tracking microbial evolution in the subseafloor biosphere. mSystems https://doi.org/10.1128/mSystems.00731-21 (2021).

    Article  Google Scholar 

  190. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article  Google Scholar 

  191. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    Article  Google Scholar 

  192. Schleper, C. & Sousa, F. L. Meet the relatives of our cellular ancestor. Nature 577, 478–479 (2020).

    Article  Google Scholar 

  193. Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020).

    Article  Google Scholar 

  194. McNichol, J. et al. Primary productivity below the seafloor at deep-sea hot springs. Proc. Natl Acad. Sci. USA 115, 6756–6761 (2018).

    Article  Google Scholar 

  195. Thomas, E., Anderson, R. E., Li, V., Rogan, L. J. & Huber, J. A. Diverse viruses in deep-sea hydrothermal vent fluids have restricted dispersal across ocean basins. mSystems 6, https://doi.org/10.1128/mSystems.00068-21 (2021).

  196. Hu, S. K. et al. Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Proc. Natl Acad. Sci. USA 118, e2102674118 (2021).

    Article  Google Scholar 

  197. Brazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl. Environ. Microbiol. 72, 6257–6270 (2006).

    Article  Google Scholar 

  198. Brazelton, W. J. et al. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1000-year time scales in hydrothermal chimneys. Proc. Natl Acad. Sci. USA 107, 1612–1617 (2010).

    Article  Google Scholar 

  199. Baross, J. A. & members of the Ocean Memory Project. The ocean carries ‘memories’ of SARS-CoV-2: We’ve been looking in the wrong place for a deeper understanding of the virus. Sci. Am. https://www.scientificamerican.com/article/the-ocean-carries-memories-of-sars-cov-2/ (2020).

  200. Brazelton, W. J. & Baross, J. A. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J. 3, 1420–1424 (2009).

    Article  Google Scholar 

  201. Brazelton, W. J., Mehta, M. P., Kelley, D. S. & Baross, J. A. Physiological differentiation within a single-species biofilm fueled by serpentinization. mBio 2, https://doi.org/10.1128/mBio.00127-11 (2011).

  202. Kodolányi, J., Pettke, T., Spandler, C., Kamber, B. S. & Gméling, K. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J. Petrol. 53, 235–270 (2012).

    Article  Google Scholar 

  203. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  204. Cannat, M., Cann, J. & Maclennan, J. Some hard rock constraints on the supply of heat to mid-ocean ridges. Geophys. Monogr. Ser. 148, 111–149 (2004).

  205. Coogan, L. A. & Dosso, S. An internally consistent, probabilistic, determination of ridge-axis hydrothermal fluxes from basalt-hosted systems. Earth Planet. Sci. Lett. 323–324, 92–101 (2012).

    Article  Google Scholar 

  206. Drever, J. I. The magnesium problem. Mar. Chem. 5, 337 (1974).

    Google Scholar 

  207. Edmond, J. M. et al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett. 46, 1–18 (1979).

    Article  Google Scholar 

  208. Shalev, N., Bontognali, T. R. R., Wheat, C. G. & Vance, D. New isotope constraints on the Mg oceanic budget point to cryptic modern dolomite formation. Nat. Commun. 10, 5646 (2019).

    Article  Google Scholar 

  209. Luther, G. W. Hydrothermal vents are a source of old refractory organic carbon to the deep ocean. Geophys. Res. Lett. 48, e2021GL094869 (2021).

    Article  Google Scholar 

  210. Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5, 421–445 (2013).

    Article  Google Scholar 

  211. Druffel, E. R. M., Williams, P. M., Bauer, J. E. & Ertel, J. R. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. 97, 15639 (1992).

    Article  Google Scholar 

  212. Lang, S. Q., Butterfield, D. A., Lilley, M. D., Paul Johnson, H. & Hedges, J. I. Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 70, 3830–3842 (2006).

    Article  Google Scholar 

  213. Hawkes, J. A. et al. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat. Geosci. 8, 856–860 (2015).

    Article  Google Scholar 

  214. McCarthy, M. D. et al. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat. Geosci. 4, 32–36 (2011).

    Article  Google Scholar 

  215. Lin, H.-T., Repeta, D. J., Xu, L. & Rappé, M. S. Dissolved organic carbon in basalt-hosted deep subseafloor fluids of the Juan de Fuca Ridge flank. Earth Planet. Sci. Lett. 513, 156–165 (2019).

    Article  Google Scholar 

  216. Shah Walter, S. R. et al. Microbial decomposition of marine dissolved organic matter in cool oceanic crust. Nat. Geosci. 11, 334–339 (2018).

    Article  Google Scholar 

  217. Druffel, E. R. M. et al. Dissolved organic radiocarbon in the Eastern Pacific and Southern Oceans. Geophys. Res. Lett. 48, e2021GL092904 (2021).

    Article  Google Scholar 

  218. Früh-Green, G. L., Connolly, J. A. D., Plas, A., Kelley, D. S. & Grobéty, B. Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. Geophys. Monogr. Ser. 144, 119–136 (2004).

  219. Delacour, A., Früh-Green, G. L., Bernasconi, S. M., Schaeffer, P. & Kelley, D. S. Carbon geochemistry of serpentinites in the Lost City hydrothermal system (30° N, MAR). Geochim. Cosmochim. Acta 72, 3681–3702 (2008).

    Article  Google Scholar 

  220. Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).

    Article  Google Scholar 

  221. Lough, A. J. M. et al. Diffuse hydrothermal venting: a hidden source of iron to the oceans. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00329 (2019).

    Article  Google Scholar 

  222. Ardyna, M. et al. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat. Commun. 10, 2451 (2019).

    Article  Google Scholar 

  223. Schine, C. M. S. et al. Massive Southern Ocean phytoplankton bloom fed by iron of possible hydrothermal origin. Nat. Commun. 12, 1211 (2021).

    Article  Google Scholar 

  224. Kleint, C. et al. Trace metal dynamics in shallow hydrothermal plumes at the Kermadec Arc. Front. Mar. Sci. 8, 782734 (2022).

    Article  Google Scholar 

  225. Guieu, C. et al. Iron from a submarine source impacts the productive layer of the Western Tropical South Pacific (WTSP). Sci. Rep. 8, 9075 (2018).

    Article  Google Scholar 

  226. Reese, B. K., Sobol, M. S., Bowles, M. W. & Hinrichs, K.-U. Redefining the subsurface biosphere: characterization of fungi isolated from energy-limited marine deep subsurface sediment. Front. Fung. Biol. https://doi.org/10.3389/ffunb.2021.727543 (2021).

    Article  Google Scholar 

  227. Longnecker, K., Sievert, S. M., Sylva, S. P., Seewald, J. S. & Kujawinski, E. B. Dissolved organic carbon compounds in deep-sea hydrothermal vent fluids from the East Pacific Rise at 9° 50′ N. Org. Geochem. 125, 41–49 (2018).

    Article  Google Scholar 

  228. Grandy, J. J., Onat, B., Tunnicliffe, V., Butterfield, D. A. & Pawliszyn, J. Unique solid phase microextraction sampler reveals distinctive biogeochemical profiles among various deep-sea hydrothermal vents. Sci. Rep. 10, 1360 (2020).

    Article  Google Scholar 

  229. Noowong, A. et al. Imprint of Kairei and Pelagia deep-sea hydrothermal systems (Indian Ocean) on marine dissolved organic matter. Org. Geochem. 152, 104141 (2021).

    Article  Google Scholar 

  230. Sert, M. F. et al. Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean. Biogeosciences 19, 2101–2120 (2022).

    Article  Google Scholar 

  231. Kelley, D. S., Delaney, J. R. & Juniper, S. K. Establishing a new era of submarine volcanic observatories: cabling axial seamount and the Endeavour Segment of the Juan de Fuca Ridge. Mar. Geol. 352, 426–450 (2014).

    Article  Google Scholar 

  232. Delaney, J. et al. Project NEPTUNE: an interactive, regional cabled ocean observatory in the northeast Pacific. Proc. IEEE Oceans https://doi.org/10.1109/OCEANS.2003.178480 (2003).

    Article  Google Scholar 

  233. Delaney, J. R. & Barga, R. S. Observing the Oceans — A 2020 Vision for Ocean Science (Microsoft Research, 2009).

  234. Petersen, S. et al. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14° 45′ N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos 112, 40–56 (2009).

    Article  Google Scholar 

  235. Bach, W. & Früh-Green, G. L. Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6, 173–178 (2010).

    Article  Google Scholar 

  236. Boetius, A. Lost city life. Science 307, 1420–1422 (2005).

    Article  Google Scholar 

  237. Rouméjon, S., Cannat, M., Agrinier, P., Godard, M. & Andreani, M. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62–65° E). J. Petrol. 56, 703–734 (2015).

    Article  Google Scholar 

  238. Rouméjon, S., Früh-Green, G. L. & Orcutt, B. N. and the IODP Expedition 357 Science Party. Alteration heterogeneities in peridotites exhumed on the southern wall of the Atlantis Massif (IODP Expedition 357). J. Petrol. 59, 1329–1358 (2018).

    Article  Google Scholar 

  239. Hentscher, M. & Bach, W. Geochemically induced shifts in catabolic energy yields explain past ecological changes of diffuse vents in the East Pacific Rise 9° 50′ N area. Geochem. Trans. 13, 2 (2012).

    Article  Google Scholar 

  240. Kelley, D. S., Delaney, J. R. & Team, C. A. NSF’s Cabled Array: a wired tectonic plate and overlying ocean. In OCEANS 2016 MTS/IEEE Monterey https://doi.org/10.1109/OCEANS.2016.7761398 (IEEE, 2016).

  241. Nooner, S. L. & Chadwick, W. W. Inflation-predictable behavior and co-eruption deformation at Axial Seamount. Science 354, 1399–1403 (2016).

    Article  Google Scholar 

  242. Wilcock, W. S. D. et al. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science 354, 1395–1399 (2016).

    Article  Google Scholar 

  243. Barreyre, T. et al. Temporal variability and tidal modulation of hydrothermal exit‐fluid temperatures at the Lucky Strike deep‐sea vent field, Mid‐Atlantic Ridge. J. Geophys. Res. Solid. Earth 119, 2543–2566 (2014).

    Article  Google Scholar 

  244. Barreyre, T. & Sohn, R. A. Poroelastic response of mid‐ocean ridge hydrothermal systems to ocean tidal loading: Implications for shallow permeability structure. Geophys. Res. Lett. 43, 1660–1668 (2016).

    Article  Google Scholar 

  245. Bohidar, S., Crawford, W. C. & Cannat, M. Temporal and spatial evolution of seismicity at Lucky Strike volcano, Mid-Atlantic Ridge. AGU Abstract V35A-0122 (American Geophysical Union, 2021).

  246. Miller, D. J. & Iturrino, G. J. & Christensen. Geochemical and petrological constraints on velocity behavior of lower crustal and upper mantle rocks from the fast-spreading ridge at Hess Deep. Proc. Ocean. Drill. Prog. Sci. Results 147, 477–490 (1996).

    Google Scholar 

  247. Hirth, G., Escartín, J. & Lin, J. The rheology of the lower oceanic crust: implications for lithospheric deformation at mid-ocean ridges. Geophys. Monogr. Ser. 106, 291–303 (1998).

  248. Boschi, C., Dini, A., Früh-Green, G. L. & Kelley, D. S. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30° N): insights from B and Sr isotope data. Geochim. Cosmochim. Acta 72, 1801–1823 (2008).

    Article  Google Scholar 

  249. Alt, J. C. & Shanks, W. C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim. Cosmochim. Acta 67, 641–653 (2003).

    Article  Google Scholar 

  250. Andreani, M., Muñoz, M., Marcaillou, C. & Delacour, A. μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178, 70–83 (2013).

    Article  Google Scholar 

  251. Mayhew, L. E. & Ellison, E. T. A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals. Phil. Trans. R. Soc. A 378, 20180420 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

G.L.F.-G. acknowledges support from the Swiss National Science Foundation (grant no. 200021-163187). Support to D.S.K. was provided by the US National Science Foundation grant no. OCE-0137206, the Management and Operation of the Ocean Observatories Initiative grant 1743430 and the University of Washington. M.D.L. was supported by the US National Science Foundation (grants OCE-1037874 and 535962) and the W.M. Keck Foundation for Project NEPTUNE. The authors acknowledge the late Karen L. Von Damm, who pioneered and inspired decades of MOR hydrothermal vent research discussed in this Review. We further acknowledge the unwaning efforts of John R. Delaney, who was instrumental in driving the innovative ideas behind installing seafloor observatories at JdF.

Author information

Authors and Affiliations

Authors

Contributions

G.L.F.-G. coordinated and led the writing of this Review. M.D.L. contributed to all aspects of writing, compiled data and led discussions on hydrothermal vent discoveries, distributions, fluid chemistry, volatiles and fluxes. D.S.K. led discussions on Axial, Endeavour, Ocean Observatories, phase separation and water–rock–microbe interactions, and together with her CEV team provided many of the figures. M.C. and V.C. provided input on slow- and ultraslow-spreading ridges and the EMSO observatory. J.A.B. wrote all sections on life in hydrothermal environments. All authors participated in discussions and edited multiple versions of the manuscript.

Corresponding author

Correspondence to Gretchen L. Früh-Green.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks W. Bach, S. Sievert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Multidisciplinary Seafloor and water-column Observatory (EMSO): https://www.emso-fr.org/EMSO-Azores

MARUM: https://www.marum.de/en/Discover/Deep-Sea.html

Ocean Networks Canada: https://www.oceannetworks.ca/observatories/

Ocean Observatories Initiative (OOI) Regional Cabled Array: https://interactiveoceans.washington.edu

WHOI: https://www.whoi.edu

Supplementary information

Glossary

Abiotic

Formed or characterized by the absence of life or living organisms.

Aerobic

Pertaining to or requiring the presence of free oxygen.

Anaerobic

Occurring, living or active in the absence of free oxygen.

Asthenosphere

The viscous, mechanically weak and ductile region of the upper mantle between approximately 80 and 200 km depth that is involved in plate tectonic dynamics.

Chemosynthesis

The synthesis of organic compounds by microorganisms using energy derived from inorganic chemical reactions.

Critical point of seawater

Pressure and temperature conditions at which solid, liquid and vapour phases of seawater coexist in thermodynamic equilibrium.

Gabbro

Igneous rock (formed from crystallization of magma) consisting primarily of varying proportions of the minerals plagioclase and pyroxene.

Heterotrophs

Organisms that are incapable of making their own food from light or inorganic compounds but consume complex organic compounds or other organisms in a food chain.

Hydrothermal plumes

Upwelling and dispersal of buoyant hydrothermal fluids into the ocean at hydrothermal vents or after eruptions or dyking events.

Hyperthermophilic

Pertaining to microorganisms that thrive in extremely hot environments and optimally grow above 80 °C.

Lithosphere

Outer solid layer of the Earth, consisting of the brittle crust and uppermost mantle.

Magma lenses

During periods of enhanced magma replenishment at MORs, magma accumulates in an axial melt lens overlying smaller stacked sills beneath sheeted dykes.

Microbial floc

Microbial aggregates that appear as cloudy suspensions of cells floating in seawater rather than attached to a surface like most biofilms.

Moho

The Mohorovičić discontinuity, known as the seismic Moho, is a discrete change in seismic wave velocities used to define the boundary between the crust and the mantle.

Oceanic detachment faults

Extensional normal faults associated with asymmetric spreading that results in exposure of lower-crustal and upper-mantle rocks on the seafloor.

Oceanic crust

The outermost layer of the lithosphere formed at mid-ocean ridge (MOR) spreading centres; it is 5–10 km thick, primarily composed of mafic lavas, dykes and gabbros.

Oceanic crustal architecture

Rock types (lithologies), their distribution and structure of the oceanic crust.

Ophiolite

Segments of oceanic crust and upper mantle tectonically exposed on land, often preserving features observed in different tectonic settings on the seafloor.

Peridotite

The dominant rock type in the Earth’s upper mantle, consisting primarily of the Mg-rich minerals olivine and pyroxene.

pH

A logarithmic scale from 0 to 14 to indicate the concentration of hydrogen ions in an aqueous solution and specifies the acidity (pH < 7) or basicity (pH > 7) of the solution.

Serpentinization

Hydrothermal process that transforms anhydrous Fe–Mg silicates into hydrous minerals, such as serpentine and brucite, producing magnetite and hydrogen.

Snowblowers

A distinct form of low-temperature hydrothermal venting with expulsion of copious amounts of white flocculent microbial material, reminiscent of snow.

Spreading rate

The rate at which new oceanic lithosphere is created at mid-ocean ridge plate boundaries resulting in seafloor spreading.

Volatiles

Dissolved gases in hydrothermal fluids or exsolved from melts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Früh-Green, G.L., Kelley, D.S., Lilley, M.D. et al. Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges. Nat Rev Earth Environ 3, 852–871 (2022). https://doi.org/10.1038/s43017-022-00364-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00364-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing