Abstract
Hydrothermal circulation and alteration at mid-ocean ridges and ridge flanks have a key role in regulating seawater chemistry and global chemical fluxes, and support diverse ecosystems in the absence of light. In this Review, we outline tectonic, magmatic and hydrothermal processes that govern crustal architecture, alteration and biogeochemical cycles along mid-ocean ridges with different spreading rates. In general, hydrothermal systems vary from those that are magmatic-dominated with low-pH fluids >300 °C to serpentinizing systems with alkaline fluids <120 °C. Typically, slow-spreading ridges (rates <40 mm yr−1) have greater variability in magmatism, lithology and vent chemistry, which are influenced by detachment faults that expose lower-crustal and serpentinized mantle rocks. Hydrothermal alteration is an important sink for magnesium, sodium, sulfate and bicarbonate, and a net source of volatiles, iron and other nutrients to the deep ocean and vent ecosystems. Magmatic hydrothermal systems sustain a vast, hot and diverse microbial biosphere that represents a deep organic carbon source to ocean carbon budgets. In contrast, high-pH serpentinizing hydrothermal systems harbour a more limited microbial community consisting primarily of methane-metabolizing archaea. Continued advances in monitoring and analytical capabilities coupled with developments in metagenomic technologies will guide future investigations and discoveries in hydrothermal systems.
Key points
-
Spreading rates control variations in heat sources, magma input and tectonic processes along mid-ocean ridges and influence crustal architecture and hydrothermal processes, providing multifaceted habitats for life.
-
Approximately one-third (7 × 1012 to 11 × 1012 W) of the global oceanic heat flux (32 × 1012 W) occurs through hydrothermal convection at ridges and ridge flanks. Seawater circulation, hydrothermal alteration and microbial interactions regulate seawater chemistry and change the composition and physical properties of the lithosphere.
-
Roughly 50% of the global mid-ocean ridges are spreading at rates <40 mm yr−1, where major detachment faults expose lower-crustal and upper-mantle rocks, creating asymmetric ridge segments with large variability in structure, hydrothermal processes and vent fluid chemistry.
-
Serpentinization decreases bulk density (<2.9 g cm−3) and seismic velocities (Vp < 6 km s−1) of mantle rocks and weakens the oceanic lithosphere along detachment faults. Serpentinization reactions produce highly reduced fluids with high H2, CH4 and other organic molecules that provide energy for microbial life.
-
Hydrothermal processes govern global chemical fluxes (such as Mg, Fe, Mn and volatiles) and provide nutrients (for example, Fe flux ~4–6 × 109 mol yr−1) to the deep ocean. Approximately 0.05 GtC yr−1 of organic carbon is estimated to be produced through microbial interactions and oxidation of organic compounds within hydrothermal plumes.
-
Basalt-hosted systems support a vast, hot and diverse microbial biosphere, in contrast to serpentinizing systems, which sustain more limited microbial communities primarily dominated by methane-metabolizing archaea. Advanced technologies allow better characterization of the genetic makeup and metabolism of microbes and the role of viruses in shaping diversity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The rocky road to organics needs drying
Nature Communications Open Access 21 January 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The compilation of vent distributions and fluid compositions is provided in the online Supplementary Data file.
References
Parsons, B. The rates of plate creation and consumption. Geophys. J. Int. 67, 437–448 (1981).
Sinha, M. C. & Evans, R. L. Geophysical constraints upon the thermal regime of the ocean crust. Geophys. Monogr. Ser. https://doi.org/10.1029/148GM02 (2004).
German, C. R. & Lin, J. The thermal structure of the oceanic crust, ridge-spreading and hydrothermal circulation: How well do we understand their inter-connections? Geophys. Monogr. Ser. https://doi.org/10.1029/148GM01 (2004).
Wheat, C. G., Fisher, A. T., McManus, J., Hulme, S. M. & Orcutt, B. N. Cool seafloor hydrothermal springs reveal global geochemical fluxes. Earth Planet. Sci. Lett. 476, 179–188 (2017).
Stein, C. A. & Stein, S. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res. 99, 3081–3095 (1994).
Mottl, M. in Energy and Mass Transfer in Marine Hydrothermal Systems (eds Halbach, P. E. et al.) 271–286 (Dahlem Univ. Press, 2003).
Wheat, C. G. & Mottl, M. J. in Hydrogeology of the Oceanic Lithosphere, 627–658 (Cambridge Univ. Press, 2004).
Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. & Waterbury, J. B. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213, 340–342 (1981).
Lilley, M. D., Baross, J. A. & Gordon, L. I. in Hydrothermal Processes at Seafloor Spreading Centers (eds Rona, P. A. et al.) 411–449 (Springer, 1983).
Corliss, J. B. et al. Submarine thermal springs on the Galápagos Rift. Science 203, 1073–1083 (1979).
Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. USA 105, 10949–10954 (2008).
Kashefi, K. & Lovley, D. R. Extending the upper temperature limit for life. Science 301, 934–934 (2003).
Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).
Spang, A. & Ettema, T. J. G. Microbial diversity: the tree of life comes of age. Nat. Microbiol. 1, 16056 (2016).
Spiess, F. N. et al. East Pacific Rise: hot springs and geophysical experiments. Science 207, 1421–1433 (1980).
Von Damm, K. L. et al. Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).
Felbeck, H. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213, 336–338 (1981).
Beaulieu, S. E., Baker, E. T., German, C. R. & Maffei, A. An authoritative global database for active submarine hydrothermal vent fields. Geochem. Geophys. Geosyst. 14, 4892–4905 (2013).
Jannasch, H. W. & Wirsen, C. O. Chemosynthetic primary production at East Pacific sea floor spreading centers. BioScience 29, 592–598 (1979).
Hey, R. et al. Tectonic/volcanic segmentation and controls on hydrothermal venting along Earth’s fastest seafloor spreading system, EPR 27°–32°S: segmentation along the EPR. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000764 (2004).
Carbotte, S. & Macdonald, K. East Pacific rise 8°–10° 30′ N: evolution of ridge segments and discontinuities from SeaMARC II and three-dimensional magnetic studies. J. Geophys. Res. 97, 6959 (1992).
Anonymous. Penrose field conference on ophiolites. Geotimes 17, 24–25 (1972).
Carbotte, S. M. et al. Stacked magma lenses beneath mid‐ocean ridges: insights from new seismic observations and synthesis with prior geophysical and geologic findings. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2020JB021434 (2021).
Sinton, J. M. & Detrick, R. S. Mid-ocean ridge magma chambers. J. Geophys. Res. 97, 197–216 (1992).
Coogan, L. A. The lower oceanic crust. in Treatise on Geochemistry 497–541 (Elsevier, 2014).
Brown, T. C. et al. Textural character of gabbroic rocks from pito deep: a record of magmatic processes and the genesis of the upper plutonic crust at fast-spreading mid-ocean ridges. J. Petrol. 60, 997–1026 (2019).
Maher, S. M., Gee, J. S., Cheadle, M. J. & John, B. E. Three-dimensional magnetic stripes require slow cooling in fast-spread lower ocean crust. Nature 597, 511–515 (2021).
Karson, J. A., Kelley, D. S., Fornari, D. J., Perfit, M. R. & Shank, T. M. Discovering the Deep: a Photographic Atlas of the Seafloor and Ocean Crust. (Cambridge Univ. Press, 2015).
Haymon, R. M. et al. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52′ N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119, 85–101 (1993).
Von Damm, K. L. et al. Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375, 47–50 (1995).
Von Damm, K. L. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Geophys. Monogr. Ser. (eds Humphris, S. E., et al.) 222–247 (American Geophysical Union, 1995).
Tolstoy, M. et al. A sea-floor spreading event captured by seismometers. Science 314, 1920–1922 (2006).
Tan, Y. J., Tolstoy, M., Waldhauser, F. & Wilcock, W. S. D. Dynamics of a seafloor-spreading episode at the East Pacific Rise. Nature 540, 261–265 (2016).
Tolstoy, M., Waldhauser, F., Bohnenstiehl, D. R., Weekly, R. T. & Kim, W.-Y. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise. Nature 451, 181–184 (2008).
Delaney, J. R. et al. The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281, 222–230 (1998).
Baker, E. T. et al. Posteruption enhancement of hydrothermal activity: a 33‐year, multieruption time series at Axial Seamount (Juan de Fuca Ridge). Geochem. Geophys. Geosyst. 20, 814–828 (2019).
Clague, D. A. et al. Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge: geologic history of Axial Seamount. Geochem. Geophys. Geosyst. 14, 4403–4443 (2013).
Chadwick, W. W., Nooner, S. L., Butterfield, D. A. & Lilley, M. D. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nat. Geosci. 5, 474–477 (2012).
Wilcock, W. S. D. Physical response of mid-ocean ridge hydrothermal systems to local earthquakes. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000701 (2004).
Lilley, M. D., Butterfield, D. A., Lupton, J. E. & Olson, E. J. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881 (2003).
Delaney, J. R., Robigou, V., McDuff, R. E. & Tivey, M. K. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. J. Geophys. Res. 97, 19663–19682 (1992).
Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30, 385–491 (2002).
Kelley, D. et al. Endeavour Segment of the Juan de Fuca Ridge: one of the most remarkable places on Earth. Earth Oceanog. 25, 44–61 (2012).
Clague, D. A. et al. Hydrothermal chimney distribution on the Endeavour Segment, Juan de Fuca Ridge. Geochem. Geophys. Geosyst. 21, e2020GC008917 (2020).
Robigou, V., Delaney, J. R. & Stakes, D. S. Large massive sulfide deposits in a newly discovered active hydrothermal system, the High-Rise field, Endeavour Segment, Juan de Fuca Ridge. Geophys. Res. Lett. 20, 1887–1890 (1993).
Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).
Cannat, M., Fontaine, F. & Escartín, J. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. in Geophys. Monogr. Ser. 188, 241–264 (2010).
John, B. E. & Cheadle, M. J. Deformation and alteration associated with oceanic and continental detachment fault systems: are they similar? Geophys. Monogr. Ser. 188, 175–205 (2010).
Escartín, J. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455, 790–794 (2008).
Cannat, M. et al. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24° N). Geology 23, 49 (1995).
Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J. Geophys. Res. 103, 9857–9866 (1998).
Karson, J. A. Internal structure of oceanic lithosphere: a perspective from tectonic windows. Geophys. Monogr. Ser. 106, 177–218 (1998).
Cannat, M. et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001676 (2008).
Escartín, J. et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13° 30′ N, Mid Atlantic Ridge). Geochem. Geophys. Geosyst. 18, 1451–1482 (2017).
Smith, D. K., Escartín, J., Schouten, H. & Cann, J. R. Fault rotation and core complex formation: significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13°–15°N). Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001699 (2008).
Cannat, M. et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34, 605–608 (2006).
Dick, H. J. B., Tivey, M. A. & Tucholke, B. E. Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001645 (2008).
Sauter, D. et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat. Geosci. 6, 314–320 (2013).
Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423, 956–961 (2003).
MacLeod, C. J. et al. Life cycle of oceanic core complexes. Earth Planet. Sci. Lett. 287, 333–344 (2009).
Schroeder, T. & John, B. E. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2004GC000728 (2004).
Bickert, M., Lavier, L. & Cannat, M. How do detachment faults form at ultraslow mid-ocean ridges in a thick axial lithosphere? Earth Planet. Sci. Lett. 533, 116048 (2020).
McCaig, A. M., Delacour, A., Fallick, A. E., Castelain, T. & Früh-Green, G. L. Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic. Geophys. Monogr. Ser. 188, 207–239 (2010).
Boschi, C., Früh-Green, G. L., Delacour, A., Karson, J. A. & Kelley, D. S. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30° N). Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001074. (2006).
Kelley, D. S. et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307, 1428–1434 (2005).
Karson, J. A. et al. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30° N. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001109 (2006).
Colaço, A. et al. MoMAR-D: a technological challenge to monitor the dynamics of the Lucky Strike vent ecosystem. ICES J. Mar. Sci. 68, 416–424 (2011).
Barreyre, T. et al. Structure, temporal evolution, and heat flux estimates from the Lucky Strike deep-sea hydrothermal field derived from seafloor image mosaics. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003990 (2012).
Mittelstaedt, E. et al. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2011GC003991 (2012).
Lowell, R. P. et al. Magma-hydrothermal interactions at the Costa Rica Rift from data collected in 1994 and 2015. Earth Planet. Sci. Lett. 531, 115991 (2020).
Fontaine, F. J., Cannat, M., Escartin, J. & Crawford, W. C. Along-axis hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: insights from numerical models of the Lucky Strike vent field (MAR). Geochem. Geophys. Geosyst. 15, 2918–2931 (2014).
McCaig, A. M., Cliff, R. A., Escartin, J., Fallick, A. E. & MacLeod, C. J. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35, 935–938 (2007).
Kent, G. M., Harding, A. J. & Orcutt, J. A. Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9° 17′ N Deval from forward modeling of common depth point data. J. Geophys. Res. 98, 13945–13969 (1993).
Canales, J. P. et al. Upper crustal structure and axial topography at intermediate spreading ridges: Seismic constraints from the southern Juan de Fuca Ridge. J. Geophys. Res. 110, B12104 (2005).
Phipps Morgan, J. & Chen, Y. J. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993).
deMartin, B. J., Sohn, R. A., Pablo Canales, J. & Humphris, S. E. Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology 35, 711–714 (2007).
Cannat, M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J. Geophys. Res. 98, 4163–4172 (1993).
Wilcock, W. S. D. & Delaney, J. R. Mid-ocean ridge sulfide deposits: evidence for heat extraction from magma chambers or cracking fronts? Earth Planet. Sci. Lett. 145, 49–64 (1996).
Kelley, D. S. & Shank, T. M. Hydrothermal systems: a decade of discovery in slow spreading environments. Geophys. Monogr. Ser. 188, 369–407 (2010).
Kelley, D. S. et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412, 145–149 (2001).
Lecoeuvre, A., Ménez, B., Cannat, M., Chavagnac, V. & Gérard, E. Microbial ecology of the newly discovered serpentinite-hosted Old City hydrothermal field (southwest Indian ridge). ISME J. 15, 818–832 (2021).
Connelly, D. P. et al. Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012).
German, C. R. et al. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proc. Natl Acad. Sci. USA 107, 14020–14025 (2010).
McDermott, J. M., Seewald, J. S., German, C. R. & Sylva, S. P. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc. Natl Acad. Sci. USA 112, 7668–7672 (2015).
Hayman, N. W. et al. Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010GC003240 (2011).
Barreyre, T., Parnell‐Turner, R., Wu, J.‐N. & Fornari, D. J. Tracking crustal permeability and hydrothermal response during seafloor eruptions at the East Pacific Rise, 9° 50′ N. Geophys. Res. Lett. e2021GL095459 (2022).
Alt, J. C. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions Vol. 91 (eds Humphris, S. E. et al.) 85–114 (American Geophysical Union, 1995).
Tivey, M. K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20, 50–65 (2007).
Butterfield, D. A. et al. Mixing, reaction and microbial activity in the sub-seafloor revealed by temporal and spatial variation in diffuse flow vents at Axial Volcano. Geophys. Monogr. Ser. 144, 269–289 (2004).
Von Damm, K. L. & Lilley, M. D. Diffuse flow hydrothermal fluids from 9° 50′ N East Pacific Rise: origin, evolution and biogeochemical controls. Geophys. Monogr. Ser. 144, 245–268 (2004).
Opatkiewicz, A. D., Butterfield, D. A. & Baross, J. A. Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities. FEMS Microbiol. Ecol. 70, 413–424 (2009).
Fortunato, C. S., Larson, B., Butterfield, D. A. & Huber, J. A. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids: microbial genomics at axial seamount. Environ. Microbiol. 20, 769–784 (2018).
Deming, J. W. & Baross, J. A. Deep-sea smokers: windows to a subsurface biosphere? Geochim. Cosmochim. Acta 57, 3219–3230 (1993).
Huber, J. A. et al. Microbial population structures in the deep marine biosphere. Science 318, 97–100 (2007).
Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).
Dick, G. J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0160-2 (2019).
Bischoff, J. L. & Rosenbauer, R. J. An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am. J. Sci. 285, 725–763 (1985).
Kelley, D. S. & Delaney, J. R. Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700°C. Earth Planet. Sci. Lett. 83, 53–66 (1987).
Fournier, R. O. Conceptual models of brine evolution in magmatic-hydrothermal systems. US Geol. Surv. Prof. Pap. 1350, 1487–1506 (1987).
Coumou, D., Driesner, T., Weis, P. & Heinrich, C. A. Phase separation, brine formation, and salinity variation at black smoker hydrothermal systems. J. Geophys. Res. 114, B03212 (2009).
Chavagnac, V. et al. Spatial variations in vent chemistry at the lucky strike hydrothermal field, mid‐atlantic ridge (37° N): updates for subseafloor flow geometry from the newly discovered Capelinhos Vent. Geochem. Geophys. Geosyst. 19, 4444–4458 (2018).
Xu, G. & Lavelle, J. W. Circulation, hydrography, and transport over the summit of Axial seamount, a deep volcano in the Northeast Pacific. J. Geophys. Res. Ocean. 122, 5404–5422 (2017).
Kaye, J. Z. & Baross, J. A. High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol. Ecol. 32, 249–260 (2000).
Haase, K. M. et al. Young volcanism and related hydrothermal activity at 5° S on the slow-spreading southern Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001509 (2007).
Koschinsky, A. et al. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5° S on the Mid-Atlantic Ridge. Geology 36, 615–618 (2008).
Pester, N. J., Ding, K. & Seyfried, W. E. Magmatic eruptions and iron volatility in deep-sea hydrothermal fluids. Geology 42, 255–258 (2014).
Butterfield, D. A. et al. in Mid-Ocean Ridges (eds Cann, J. R., Elderfield, H. & Laughton, A. S.) 153–170 (Cambridge Univ. Press, 1999).
Von Damm, K. L. Chemistry of hydrothermal vent fluids from 9°–10° N, East Pacific Rise: ‘Time zero,’ the immediate posteruptive period. Geophys. Res. 105, 11203–11222 (2000).
Von Damm, K. L. et al. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet. Sci. Lett. 206, 365–378 (2003).
Butterfield, D. A. et al. Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil. Trans. R. Soc. Lond. A 355, 369–386 (1997).
Seewald, J., Cruse, A. & Saccocia, P. Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth Planet. Sci. Lett. 216, 575–590 (2003).
Love, B., Lilley, M., Butterfield, D., Olson, E. & Larson, B. Rapid variations in fluid chemistry constrain hydrothermal phase separation at the Main Endeavour Field. Geochem. Geophys. Geosyst. 18, 531–543 (2017).
Rommevaux, C. et al. Prokaryote communities at active chimney and in situ colonization devices after a magmatic degassing event (37° N MAR, EMSO‐Azores Deep‐Sea Observatory). Geochem. Geophys. Geosyst. 20, 3065–3089 (2019).
Baker, E. T., Massoth, G. J. & Feely, R. A. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature 329, 149–151 (1987).
Lupton, J. E., Baker, E. T. & Massoth, G. J. Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet. Sci. Lett. 171, 343–350 (1999).
Holden, J. F., Summit, M. & Baross, J. A. Thermophilic and hyperthermophilic microorganisms in 3–30 °C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 25, 33–41 (1998).
Summit, M. & Baross, J. A. Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption. Deep Sea Res. II Top. Stud. Oceanogr. 45, 2751–2766 (1998).
Kelley, D. S., Lilley, M. D., Lupton, J. E. & Olson, E. J. Enriched H2, CH4, and 3He concentrations in hydrothermal plumes associated with the 1996 Gorda Ridge eruptive event. Deep Sea Res. II Top. Stud. Oceanogr. 45, 2665–2682 (1998).
Spietz, R. et al. Deep-sea volcanic eruptions create unique chemical and biological linkages between the subsurface lithosphere and the oceanic hydrosphere. Oceanography 31, 128–135 (2018).
Meyer, J. L., Akerman, N. H., Proskurowski, G. & Huber, J. A. Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount, Juan de Fuca Ridge. Front. Microbiol. 4, 153 (2013).
Gold, T. The deep, hot biosphere. Proc. Natl Acad. Sci. USA 89, 6045–6049 (1992).
Baross, J. A. et al. in The Subseafloor Biosphere at Mid-Ocean Ridges Vol. 144 (eds Wilcock, W. S. D. et al.) 1–11 (American Geophysical Union, 2004).
Davis, E. E. & Fisher, A. T. in Encyclopedia of Solid Earth Geophysics (ed. Gupta, H. K.) https://doi.org/10.1007/978-3-030-10475-7_65-1 (Springer, 2020).
Simoneit, B. R. T., Kawka, O. E. & Brault, M. Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem. Geol. 71, 169–182 (1988).
Cruse, A. M. & Seewald, J. S. Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. Geochim. Cosmochim. Acta 70, 2073–2092 (2006).
Mottl, M. J. et al. Middle Valley, Juan de Fuca Ridge. Proc. Ocean Drill. Prog. Sci. Results 139 (1994).
Zierenberg, R. A., Fouquet, Y., Miller, D. J. & Normark, W. R. Proc. Ocean Drill. Prog. Sci. Results 169, http://www-odp.tamu.edu/publications/169_SR/169TOC.HTM (2000).
Ishibashi, J. et al. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough. Appl. Geochem. 17, 1457–1466 (2002).
Von Damm, K. L. et al. The Escanaba Trough, Gorda Ridge hydrothermal system: temporal stability and subseafloor complexity. Geochim. Cosmochim. Acta 69, 4971–4984 (2005).
Teske, A. et al. The Guaymas Basin Hiking Guide to hydrothermal mounds, chimneys, and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00075 (2016).
Paduan, J. B. et al. Discovery of hydrothermal vent fields on Alarcón rise and in Southern Pescadero Basin, Gulf of California. Geochem. Geophys. Geosyst. 19, 4788–4819 (2018).
Kawka, O. E. & Simoneit, B. R. T. Hydrothermal pyrolysis of organic matter in Guaymas Basin: I. Comparison of hydrocarbon distributions in subsurface sediments and seabed petroleums. Org. Geochem. 22, 947–978 (1994).
Lilley, M. D. et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364, 45–47 (1993).
You, C.-F. et al. Boron and halide systematics in submarine hydrothermal systems: effects of phase separation and sedimentary contributions. Earth Planet. Sci. Lett. 123, 227–238 (1994).
Proskurowski, G., Lilley, M. D. & Brown, T. A. Isotopic evidence of magmatism and seawater bicarbonate removal at the endeavour hydrothermal system. Earth Planet. Sci. Lett. 225, 53–61 (2004).
Pedersen, R. B. et al. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun. 1, 126 (2010).
Baumberger, T. et al. Fluid composition of the sediment-influenced Loki’s Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge. Geochim. Cosmochim. Acta 187, 156–178 (2016).
Charlou, J. L. et al. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Geophys. Monogr. Ser. 188, 265–296 (2010).
Andreani, M. et al. Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36° 14′ N). Geochem. Geophys. Geosyst. 15, 3543–3571 (2014).
Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14′ N, MAR). Chem. Geol. 191, 345–359 (2002).
Frost, B. R. On the stability of sulfides, oxides, and native metals in serpentinite. J. Petrol. 26, 31–63 (1985).
Abrajano, T. A. et al. Methane-hydrogen gas seeps, Zambales ophiolite, Philippines: deep or shallow origin? Chem. Geol. 71, 211–222 (1988).
McCollom, T. M., Klein, F., Solheid, P. & Moskowitz, B. The effect of pH on rates of reaction and hydrogen generation during serpentinization. Phil. Trans. R. Soc. A. 378, 20180428 (2020).
McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009).
Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. B 362, 1887–1926 (2007).
Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).
Russell, M. J., Hall, A. J. & Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 8, 355–371 (2010).
Hannington, M. D., De Ronde, C. E. J. & Petersen, S. in Economic Geology One Hundredth Anniversary Volume https://doi.org/10.5382/AV100.06 (Society of Economic Geologists, 2005).
Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L. M. & Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15° N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem. Geol. 242, 1–21 (2007).
German, C. R. & Seyfried, W. E. in Treatise on Geochemistry 2nd edn, Vol. 8 (eds Holland, H. D. & Turekian, K. K.) 191–233 (Elsevier, 2014).
Seyfried, W. E., Pester, N. J., Ding, K. & Rough, M. Vent fluid chemistry of the Rainbow hydrothermal system (36° N, MAR): phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 75, 1574–1593 (2011).
Konn, C. et al. Extending the dataset of fluid geochemistry of the Menez Gwen, Lucky Strike, Rainbow, TAG and Snake Pit hydrothermal vent fields: investigation of temporal stability and organic contribution. Deep. Sea Res. I Oceanogr. Res. Pap. 179, 103630 (2022).
Thurnherr, A. M. & Richards, K. J. Hydrography and high-temperature heat flux of the Rainbow hydrothermal site (36° 14′ N, Mid-Atlantic Ridge). J. Geophys. Res. 106, 9411–9426 (2001).
Canales, J. P., Dunn, R. A., Arai, R. & Sohn, R. A. Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system. Geology 45, 451–454 (2017).
Früh-Green, G. L. et al. Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357). Lithos 323, 137–155 (2018).
Proskurowski, G. et al. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319, 604–607 (2008).
Lang, S. Q., Butterfield, D. A., Schulte, M., Kelley, D. S. & Lilley, M. D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 74, 941–952 (2010).
Proskurowski, G., Lilley, M. D., Kelley, D. S. & Olson, E. J. Low temperature volatile production at the Lost City hydrothermal field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229, 331–343 (2006).
Früh-Green, G. L. et al. 30,000 years of hydrothermal activity at the Lost City vent field. Science 301, 495–498 (2003).
Lang, S. Q. et al. Extensive decentralized hydrogen export from the Atlantis Massif. Geology 49, 851–856 (2021).
Larson, B. I. et al. Stealth export of hydrogen and methane from a low temperature serpentinization system. Deep. Sea Res. II Topical Stud. Oceanogr. 121, 233–245 (2015).
Ternieten, L., Früh-Green, G. L. & Bernasconi, S. M. Carbonate mineralogy in mantle peridotites of the Atlantis Massif (IODP Expedition 357). J. Geophys. Res. Solid Earth 126, e2021JB021885 (2021).
Ternieten, L., Früh‐Green, G. L. & Bernasconi, S. M. Distribution and sources of carbon in serpentinized mantle peridotites at the Atlantis Massif (IODP Expedition 357). JGR Solid Earth 126, e2021JB021973 (2021).
Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl Acad. Sci. USA 105, 17295–17300 (2008).
Moore, W. S., Frankle, J. D., Benitez‐Nelson, C. R., Früh‐Green, G. L. & Lang, S. Q. Activities of 223Ra and 226Ra in fluids from the Lost City hydrothermal field require short fluid residence times. JGR Ocean. 126, e2021JC017886 (2021).
Kadko, D., Gronvold, K. & Butterfield, D. Application of radium isotopes to determine crustal residence times of hydrothermal fluids from two sites on the Reykjanes Peninsula, Iceland. Geochim. Cosmochim. Acta 71, 6019–6029 (2007).
Kadko, D. & Butterfield, D. A. The relationship of hydrothermal fluid composition and crustal residence time to maturity of vent fields on the Juan de Fuca Ridge. Geochim. Cosmochim. Acta 62, 1521–1533 (1998).
Reeves, E. P. Timing Earth’s abiotic kitchen: short hydrothermal fluid residence times in serpentinizing oceanic crust. JGR Oceans 127, e2022JC018601 (2022).
Klein, F., Grozeva, N. G. & Seewald, J. S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl Acad. Sci. USA 116, 17666–17672 (2019).
Etiope, G. & Whiticar, M. J. Abiotic methane in continental ultramafic rock systems: towards a genetic model. Appl. Geochem. 102, 139–152 (2019).
McCollom, T. M. & Seewald, J. S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401 (2007).
Kelley, D. S. & Früh-Green, G. L. Abiogenic methane in deep-seated mid-ocean ridge environments: insights from stable isotope analyses. J. Geophys. Res. 104, 10439–10460 (1999).
Kelley, D. S. & Früh-Green, G. L. Volatile lines of descent in submarine plutonic environments: insights from stable isotope and fluid inclusion analyses. Geochim. Cosmochim. Acta 65, 3325–3346 (2001).
Labidi, J. et al. Methane thermometry in deep-sea hydrothermal systems: evidence for re-ordering of doubly-substituted isotopologues during fluid cooling. Geochim. Cosmochim. Acta 288, 248–261 (2020).
Wang, D. T., Reeves, E. P., McDermott, J. M., Seewald, J. S. & Ono, S. Clumped isotopologue constraints on the origin of methane at seafloor hot springs. Geochim. Cosmochim. Acta 223, 141–158 (2018).
Amend, J. P., McCollom, T. M., Hentscher, M. & Bach, W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim. Cosmochim. Acta 75, 5736–5748 (2011).
Lang, S. Q. et al. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field. Sci. Rep. 8, 755 (2018).
Lang, S. Q. & Brazelton, W. J. Habitability of the marine serpentinite subsurface: a case study of the Lost City hydrothermal field. Phil. Trans. R. Soc. A 378, 20180429 (2020).
Schrenk, M. O., Kelley, D. S., Bolton, S. A. & Baross, J. A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City hydrothermal field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086–1095 (2004).
Adam, N. & Perner, M. Microbially mediated hydrogen cycling in deep-sea hydrothermal vents. Front. Microbiol. 9, 1–17 (2018).
Mehta, M. P. & Baross, J. A. Nitrogen fixation at 92 °C by a hydrothermal vent Archaeon. Science 314, 1783–1786 (2006).
Brandes, J. A. et al. Abiotic nitrogen reduction on the early Earth. Nature 395, 365–367 (1998).
Ménez, B. et al. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564, 59–63 (2018).
Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review: Full Report (HM Treasury, 2021).
Anderson, R. E. et al. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat. Commun. 8, 1114 (2017).
Poli, A. et al. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5, 25 (2017).
Zeng, X., Alain, K. & Shao, Z. Microorganisms from deep-sea hydrothermal vents. Mar. Life Sci. Technol. 3, 204–230 (2021).
Cathalot, C. et al. Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production. Nat. Commun. 12, 6861 (2021).
Anderson, R. E. Tracking microbial evolution in the subseafloor biosphere. mSystems https://doi.org/10.1128/mSystems.00731-21 (2021).
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).
Schleper, C. & Sousa, F. L. Meet the relatives of our cellular ancestor. Nature 577, 478–479 (2020).
Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020).
McNichol, J. et al. Primary productivity below the seafloor at deep-sea hot springs. Proc. Natl Acad. Sci. USA 115, 6756–6761 (2018).
Thomas, E., Anderson, R. E., Li, V., Rogan, L. J. & Huber, J. A. Diverse viruses in deep-sea hydrothermal vent fluids have restricted dispersal across ocean basins. mSystems 6, https://doi.org/10.1128/mSystems.00068-21 (2021).
Hu, S. K. et al. Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Proc. Natl Acad. Sci. USA 118, e2102674118 (2021).
Brazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl. Environ. Microbiol. 72, 6257–6270 (2006).
Brazelton, W. J. et al. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1000-year time scales in hydrothermal chimneys. Proc. Natl Acad. Sci. USA 107, 1612–1617 (2010).
Baross, J. A. & members of the Ocean Memory Project. The ocean carries ‘memories’ of SARS-CoV-2: We’ve been looking in the wrong place for a deeper understanding of the virus. Sci. Am. https://www.scientificamerican.com/article/the-ocean-carries-memories-of-sars-cov-2/ (2020).
Brazelton, W. J. & Baross, J. A. Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J. 3, 1420–1424 (2009).
Brazelton, W. J., Mehta, M. P., Kelley, D. S. & Baross, J. A. Physiological differentiation within a single-species biofilm fueled by serpentinization. mBio 2, https://doi.org/10.1128/mBio.00127-11 (2011).
Kodolányi, J., Pettke, T., Spandler, C., Kamber, B. S. & Gméling, K. Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J. Petrol. 53, 235–270 (2012).
Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).
Cannat, M., Cann, J. & Maclennan, J. Some hard rock constraints on the supply of heat to mid-ocean ridges. Geophys. Monogr. Ser. 148, 111–149 (2004).
Coogan, L. A. & Dosso, S. An internally consistent, probabilistic, determination of ridge-axis hydrothermal fluxes from basalt-hosted systems. Earth Planet. Sci. Lett. 323–324, 92–101 (2012).
Drever, J. I. The magnesium problem. Mar. Chem. 5, 337 (1974).
Edmond, J. M. et al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett. 46, 1–18 (1979).
Shalev, N., Bontognali, T. R. R., Wheat, C. G. & Vance, D. New isotope constraints on the Mg oceanic budget point to cryptic modern dolomite formation. Nat. Commun. 10, 5646 (2019).
Luther, G. W. Hydrothermal vents are a source of old refractory organic carbon to the deep ocean. Geophys. Res. Lett. 48, e2021GL094869 (2021).
Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5, 421–445 (2013).
Druffel, E. R. M., Williams, P. M., Bauer, J. E. & Ertel, J. R. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. 97, 15639 (1992).
Lang, S. Q., Butterfield, D. A., Lilley, M. D., Paul Johnson, H. & Hedges, J. I. Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 70, 3830–3842 (2006).
Hawkes, J. A. et al. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. Nat. Geosci. 8, 856–860 (2015).
McCarthy, M. D. et al. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat. Geosci. 4, 32–36 (2011).
Lin, H.-T., Repeta, D. J., Xu, L. & Rappé, M. S. Dissolved organic carbon in basalt-hosted deep subseafloor fluids of the Juan de Fuca Ridge flank. Earth Planet. Sci. Lett. 513, 156–165 (2019).
Shah Walter, S. R. et al. Microbial decomposition of marine dissolved organic matter in cool oceanic crust. Nat. Geosci. 11, 334–339 (2018).
Druffel, E. R. M. et al. Dissolved organic radiocarbon in the Eastern Pacific and Southern Oceans. Geophys. Res. Lett. 48, e2021GL092904 (2021).
Früh-Green, G. L., Connolly, J. A. D., Plas, A., Kelley, D. S. & Grobéty, B. Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. Geophys. Monogr. Ser. 144, 119–136 (2004).
Delacour, A., Früh-Green, G. L., Bernasconi, S. M., Schaeffer, P. & Kelley, D. S. Carbon geochemistry of serpentinites in the Lost City hydrothermal system (30° N, MAR). Geochim. Cosmochim. Acta 72, 3681–3702 (2008).
Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).
Lough, A. J. M. et al. Diffuse hydrothermal venting: a hidden source of iron to the oceans. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00329 (2019).
Ardyna, M. et al. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat. Commun. 10, 2451 (2019).
Schine, C. M. S. et al. Massive Southern Ocean phytoplankton bloom fed by iron of possible hydrothermal origin. Nat. Commun. 12, 1211 (2021).
Kleint, C. et al. Trace metal dynamics in shallow hydrothermal plumes at the Kermadec Arc. Front. Mar. Sci. 8, 782734 (2022).
Guieu, C. et al. Iron from a submarine source impacts the productive layer of the Western Tropical South Pacific (WTSP). Sci. Rep. 8, 9075 (2018).
Reese, B. K., Sobol, M. S., Bowles, M. W. & Hinrichs, K.-U. Redefining the subsurface biosphere: characterization of fungi isolated from energy-limited marine deep subsurface sediment. Front. Fung. Biol. https://doi.org/10.3389/ffunb.2021.727543 (2021).
Longnecker, K., Sievert, S. M., Sylva, S. P., Seewald, J. S. & Kujawinski, E. B. Dissolved organic carbon compounds in deep-sea hydrothermal vent fluids from the East Pacific Rise at 9° 50′ N. Org. Geochem. 125, 41–49 (2018).
Grandy, J. J., Onat, B., Tunnicliffe, V., Butterfield, D. A. & Pawliszyn, J. Unique solid phase microextraction sampler reveals distinctive biogeochemical profiles among various deep-sea hydrothermal vents. Sci. Rep. 10, 1360 (2020).
Noowong, A. et al. Imprint of Kairei and Pelagia deep-sea hydrothermal systems (Indian Ocean) on marine dissolved organic matter. Org. Geochem. 152, 104141 (2021).
Sert, M. F. et al. Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean. Biogeosciences 19, 2101–2120 (2022).
Kelley, D. S., Delaney, J. R. & Juniper, S. K. Establishing a new era of submarine volcanic observatories: cabling axial seamount and the Endeavour Segment of the Juan de Fuca Ridge. Mar. Geol. 352, 426–450 (2014).
Delaney, J. et al. Project NEPTUNE: an interactive, regional cabled ocean observatory in the northeast Pacific. Proc. IEEE Oceans https://doi.org/10.1109/OCEANS.2003.178480 (2003).
Delaney, J. R. & Barga, R. S. Observing the Oceans — A 2020 Vision for Ocean Science (Microsoft Research, 2009).
Petersen, S. et al. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14° 45′ N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos 112, 40–56 (2009).
Bach, W. & Früh-Green, G. L. Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6, 173–178 (2010).
Boetius, A. Lost city life. Science 307, 1420–1422 (2005).
Rouméjon, S., Cannat, M., Agrinier, P., Godard, M. & Andreani, M. Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62–65° E). J. Petrol. 56, 703–734 (2015).
Rouméjon, S., Früh-Green, G. L. & Orcutt, B. N. and the IODP Expedition 357 Science Party. Alteration heterogeneities in peridotites exhumed on the southern wall of the Atlantis Massif (IODP Expedition 357). J. Petrol. 59, 1329–1358 (2018).
Hentscher, M. & Bach, W. Geochemically induced shifts in catabolic energy yields explain past ecological changes of diffuse vents in the East Pacific Rise 9° 50′ N area. Geochem. Trans. 13, 2 (2012).
Kelley, D. S., Delaney, J. R. & Team, C. A. NSF’s Cabled Array: a wired tectonic plate and overlying ocean. In OCEANS 2016 MTS/IEEE Monterey https://doi.org/10.1109/OCEANS.2016.7761398 (IEEE, 2016).
Nooner, S. L. & Chadwick, W. W. Inflation-predictable behavior and co-eruption deformation at Axial Seamount. Science 354, 1399–1403 (2016).
Wilcock, W. S. D. et al. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science 354, 1395–1399 (2016).
Barreyre, T. et al. Temporal variability and tidal modulation of hydrothermal exit‐fluid temperatures at the Lucky Strike deep‐sea vent field, Mid‐Atlantic Ridge. J. Geophys. Res. Solid. Earth 119, 2543–2566 (2014).
Barreyre, T. & Sohn, R. A. Poroelastic response of mid‐ocean ridge hydrothermal systems to ocean tidal loading: Implications for shallow permeability structure. Geophys. Res. Lett. 43, 1660–1668 (2016).
Bohidar, S., Crawford, W. C. & Cannat, M. Temporal and spatial evolution of seismicity at Lucky Strike volcano, Mid-Atlantic Ridge. AGU Abstract V35A-0122 (American Geophysical Union, 2021).
Miller, D. J. & Iturrino, G. J. & Christensen. Geochemical and petrological constraints on velocity behavior of lower crustal and upper mantle rocks from the fast-spreading ridge at Hess Deep. Proc. Ocean. Drill. Prog. Sci. Results 147, 477–490 (1996).
Hirth, G., Escartín, J. & Lin, J. The rheology of the lower oceanic crust: implications for lithospheric deformation at mid-ocean ridges. Geophys. Monogr. Ser. 106, 291–303 (1998).
Boschi, C., Dini, A., Früh-Green, G. L. & Kelley, D. S. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30° N): insights from B and Sr isotope data. Geochim. Cosmochim. Acta 72, 1801–1823 (2008).
Alt, J. C. & Shanks, W. C. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim. Cosmochim. Acta 67, 641–653 (2003).
Andreani, M., Muñoz, M., Marcaillou, C. & Delacour, A. μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178, 70–83 (2013).
Mayhew, L. E. & Ellison, E. T. A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals. Phil. Trans. R. Soc. A 378, 20180420 (2020).
Acknowledgements
G.L.F.-G. acknowledges support from the Swiss National Science Foundation (grant no. 200021-163187). Support to D.S.K. was provided by the US National Science Foundation grant no. OCE-0137206, the Management and Operation of the Ocean Observatories Initiative grant 1743430 and the University of Washington. M.D.L. was supported by the US National Science Foundation (grants OCE-1037874 and 535962) and the W.M. Keck Foundation for Project NEPTUNE. The authors acknowledge the late Karen L. Von Damm, who pioneered and inspired decades of MOR hydrothermal vent research discussed in this Review. We further acknowledge the unwaning efforts of John R. Delaney, who was instrumental in driving the innovative ideas behind installing seafloor observatories at JdF.
Author information
Authors and Affiliations
Contributions
G.L.F.-G. coordinated and led the writing of this Review. M.D.L. contributed to all aspects of writing, compiled data and led discussions on hydrothermal vent discoveries, distributions, fluid chemistry, volatiles and fluxes. D.S.K. led discussions on Axial, Endeavour, Ocean Observatories, phase separation and water–rock–microbe interactions, and together with her CEV team provided many of the figures. M.C. and V.C. provided input on slow- and ultraslow-spreading ridges and the EMSO observatory. J.A.B. wrote all sections on life in hydrothermal environments. All authors participated in discussions and edited multiple versions of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks W. Bach, S. Sievert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
European Multidisciplinary Seafloor and water-column Observatory (EMSO): https://www.emso-fr.org/EMSO-Azores
MARUM: https://www.marum.de/en/Discover/Deep-Sea.html
Ocean Networks Canada: https://www.oceannetworks.ca/observatories/
Ocean Observatories Initiative (OOI) Regional Cabled Array: https://interactiveoceans.washington.edu
WHOI: https://www.whoi.edu
Glossary
- Abiotic
-
Formed or characterized by the absence of life or living organisms.
- Aerobic
-
Pertaining to or requiring the presence of free oxygen.
- Anaerobic
-
Occurring, living or active in the absence of free oxygen.
- Asthenosphere
-
The viscous, mechanically weak and ductile region of the upper mantle between approximately 80 and 200 km depth that is involved in plate tectonic dynamics.
- Chemosynthesis
-
The synthesis of organic compounds by microorganisms using energy derived from inorganic chemical reactions.
- Critical point of seawater
-
Pressure and temperature conditions at which solid, liquid and vapour phases of seawater coexist in thermodynamic equilibrium.
- Gabbro
-
Igneous rock (formed from crystallization of magma) consisting primarily of varying proportions of the minerals plagioclase and pyroxene.
- Heterotrophs
-
Organisms that are incapable of making their own food from light or inorganic compounds but consume complex organic compounds or other organisms in a food chain.
- Hydrothermal plumes
-
Upwelling and dispersal of buoyant hydrothermal fluids into the ocean at hydrothermal vents or after eruptions or dyking events.
- Hyperthermophilic
-
Pertaining to microorganisms that thrive in extremely hot environments and optimally grow above 80 °C.
- Lithosphere
-
Outer solid layer of the Earth, consisting of the brittle crust and uppermost mantle.
- Magma lenses
-
During periods of enhanced magma replenishment at MORs, magma accumulates in an axial melt lens overlying smaller stacked sills beneath sheeted dykes.
- Microbial floc
-
Microbial aggregates that appear as cloudy suspensions of cells floating in seawater rather than attached to a surface like most biofilms.
- Moho
-
The Mohorovičić discontinuity, known as the seismic Moho, is a discrete change in seismic wave velocities used to define the boundary between the crust and the mantle.
- Oceanic detachment faults
-
Extensional normal faults associated with asymmetric spreading that results in exposure of lower-crustal and upper-mantle rocks on the seafloor.
- Oceanic crust
-
The outermost layer of the lithosphere formed at mid-ocean ridge (MOR) spreading centres; it is 5–10 km thick, primarily composed of mafic lavas, dykes and gabbros.
- Oceanic crustal architecture
-
Rock types (lithologies), their distribution and structure of the oceanic crust.
- Ophiolite
-
Segments of oceanic crust and upper mantle tectonically exposed on land, often preserving features observed in different tectonic settings on the seafloor.
- Peridotite
-
The dominant rock type in the Earth’s upper mantle, consisting primarily of the Mg-rich minerals olivine and pyroxene.
- pH
-
A logarithmic scale from 0 to 14 to indicate the concentration of hydrogen ions in an aqueous solution and specifies the acidity (pH < 7) or basicity (pH > 7) of the solution.
- Serpentinization
-
Hydrothermal process that transforms anhydrous Fe–Mg silicates into hydrous minerals, such as serpentine and brucite, producing magnetite and hydrogen.
- Snowblowers
-
A distinct form of low-temperature hydrothermal venting with expulsion of copious amounts of white flocculent microbial material, reminiscent of snow.
- Spreading rate
-
The rate at which new oceanic lithosphere is created at mid-ocean ridge plate boundaries resulting in seafloor spreading.
- Volatiles
-
Dissolved gases in hydrothermal fluids or exsolved from melts.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Früh-Green, G.L., Kelley, D.S., Lilley, M.D. et al. Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges. Nat Rev Earth Environ 3, 852–871 (2022). https://doi.org/10.1038/s43017-022-00364-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-022-00364-y
This article is cited by
-
The rocky road to organics needs drying
Nature Communications (2023)
-
Sulfide metallogenic model for the ultraslow-spreading Southwest Indian Ridge
Science China Earth Sciences (2023)