Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antarctic geothermal heat flow and its implications for tectonics and ice sheets

An Author Correction to this article was published on 18 November 2022

This article has been updated

Abstract

Geothermal heat flow (GHF) is an elusive physical property, yet it can reveal past and present plate tectonic processes. In Antarctica, GHF has further consequences in predicting the response of ice sheets to climate change. In this Review, we discuss variations in Antarctic GHF models based on geophysical methods and draw insights into tectonics and GHF model usage for ice sheet modelling. The inferred GHF at continental scale for West Antarctica (up to 119 mW m−2, 95th percentile) points to numerous contributing influences, including non-steady state neotectonic processes. Combined influences cause especially high values in the vicinity of the Thwaites Glacier, a location critical for the accurate prediction of accelerated loss of Antarctic ice mass. The inferred variations across East Antarctica are more subtle (up to 66 mW m−2, 95th percentile), where slightly elevated values in some locations correspond to the influence of thinned lithosphere and tectonic units with concentrations of heat-producing elements. Fine-scale anomalies owing to heat-producing elements and horizontal components of heat flow are important for regional modelling. GHF maps comprising central values with these fine-scale anomalies captured within uncertainty bounds can thus enable improved ensemble-based ice sheet model predictions of Antarctic ice loss.

Key points

  • Differences between geothermal heat flow maps for Antarctica that are derived using alternative approaches provide greater insight into its tectonic evolution than anomalies that are constrained from one model alone.

  • Non-steady state processes and heat-producing elements in the upper crust contribute markedly to the spatial distribution of anomalously high geothermal heat flow values (>60%).

  • High geothermal heat flow anomalies in West Antarctica are a consequence of multiple contributing sources, such as neotectonic rifting, volcanism and a mantle heat anomaly.

  • The stable lithosphere of East Antarctica has relatively subtle geothermal heat flow anomalies, many of which are difficult to separate from model uncertainties and currently remain unresolved.

  • Fine-scale geothermal heat flow variations can be accounted for, through low and high bounds to possible geothermal heat flow in the form of uncertainty maps, to provide robust inputs to predictive modelling of Antarctic ice sheet evolution.

  • Geothermal heat flow is a boundary condition for modelling ice loss. In particular, the fast-changing Thwaites Glacier of West Antarctica, and the outlet glaciers of the Wilkes and Aurora Basins of East Antarctica, are locations of great concern.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple contributors to geothermal heat flow.
Fig. 2: GHF models of Antarctica.
Fig. 3: West Antarctic GHF, and non-steady state and anomalous components.
Fig. 4: East Antarctic GHF and anomalous components.
Fig. 5: The scale of various contributions to observed GHF.

Similar content being viewed by others

Data availability

The datasets analysed in this Review are available as open-source repositories (links below) or from the authors of the original studies. LE2118 https://doi.org/10.1594/PANGAEA.930237; Aq117 https://doi.org/10.1594/PANGAEA.924857; AqSS20 https://doi.org/10.1594/PANGAEA.918549; SW2016 https://sites.google.com/view/weisen/research-products; GV20174 available from authors of original article; MC1774 https://doi.org/10.1594/PANGAEA.882503; AW1576 http://www.seismolab.org/model/antarctica/lithosphere#an1-hf; FM0575 http://websrv.cs.umt.edu/isis/index.php/Antarctica_Basal_Heat_Flux; SR0413 available from authors of original article.

Change history

References

  1. Fowler, C. M. R. The Solid Earth: An Introduction to Global Geophysics (Cambridge Univ. Press, 2004).

  2. Jaupart, C. & Mareschal, J.-C. in Treatise on Geophysics 2nd edn, Vol. 6 (ed. Schubert, G.) 217–253 (Elsevier, 2015). Detailed review covering many aspects of heat flow and the thermal structure of the lithosphere.

  3. Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic Ice Sheet. Nat. Commun. 10, 503 (2019).

    Article  Google Scholar 

  4. Van Liefferinge, B. & Pattyn, F. Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica. Clim. Past. 9, 2335–2345 (2013).

    Article  Google Scholar 

  5. Parnell, J. & McMahon, S. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice. Phil. Trans. R. Soc. A 374, 20140293 (2016).

    Article  Google Scholar 

  6. Larour, E., Seroussi, H., Morlighem, M. & Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the ice sheet system model (ISSM). J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2011JF002140 (2012).

    Article  Google Scholar 

  7. Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature https://doi.org/10.1038/d41586-019-03595-0 (2019).

    Article  Google Scholar 

  8. Meredith, M. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2019).

  9. Turcotte, D. & Schubert, M. Geodynamics (Cambridge Univ. Press, 2014).

  10. Davies, J. H. Global map of solid Earth surface heat flow. Geochem. Geophys. Geosyst. 14, 4608–4622 (2013).

    Article  Google Scholar 

  11. Lucazeau, F. Analysis and mapping of an updated terrestrial heat flow data set. Geochem. Geophys. Geosyst. 20, 4001–4024 (2019). Analysis of a global dataset including quantitative support for representative values in different tectonic settings, and uncertainty estimates.

    Article  Google Scholar 

  12. Stål, T. et al. Properties and biases of the global heat flow compilation. Front. Earth Sci. https://doi.org/10.3389/feart.2022.963525 (2022).

    Article  Google Scholar 

  13. Shapiro, N. M. & Ritzwoller, M. H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett. 223, 213–224 (2004).

    Article  Google Scholar 

  14. Li, C. F., Lu, Y. & Wang, J. A global reference model of Curie-point depths based on EMAG2. Sci. Rep. 7, 45129 (2017).

    Article  Google Scholar 

  15. Burton-Johnson, A., Dziadek, R. & Martin, C. Geothermal heat flow in Antarctica: current and future directions. Cryosphere https://doi.org/10.5194/tc-2020-59 (2020). Review of geothermal heat flow (GHF) in Antarctica of broad scope that includes glaciological, geophysical, geological and marine geoscience approaches.

    Article  Google Scholar 

  16. Shen, W., Wiens, D. A., Lloyd, A. J. & Nyblade, A. A. A. A geothermal heat flux map of Antarctica empirically constrained by seismic structure. Geophys. Res. Lett. 47, 0–2 (2020). GHF of Antarctica modelled on high quality datasets from the USA using seismic tomography and a similarity approach.

    Article  Google Scholar 

  17. Stål, T., Reading, A. M., Halpin, J. A. & Whittaker, J. M. Antarctic geothermal heat flow model: Aq1. Geochem. Geophys. Geosyst. 22, e2020GC009428 (2021). GHF of Antarctica modelled on global datasets using a refined similarity approach.

    Article  Google Scholar 

  18. Lösing, M. & Ebbing, J. Predicting geothermal heat flow in Antarctica with a machine learning approach. J. Geophys. Res. Solid Earth 126, e2020JB021499 (2021). GHF of Antarctica modelled on global datasets using a machine learning approach.

    Article  Google Scholar 

  19. Stål, T. & Reading, A. M. A grid for multidimensional and multivariate spatial representation and data processing. J. Open. Res. Softw. 8, https://doi.org/10.5334/jors.287 (2020).

  20. Stål, T., Reading, A. M., Halpin, J. A., Steven J, P. & Whittaker, J. M. The Antarctic crust and upper mantle: a flexible 3D model and framework for interdisciplinary research. Front. Earth Sci. https://doi.org/10.3389/feart.2020.577502 (2020). A computational framework that enables model calculation and comparison.

    Article  Google Scholar 

  21. Burton-Johnson, A., Black, M., Peter, T. F. & Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10, 1665–1677 (2016).

    Article  Google Scholar 

  22. Foulger, G. R., Lustrino, M. & King, S. D. The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson (Geological Society of America, 2015).

  23. Lay, T., Hernlund, J. & Buffett, B. A. Core–mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008).

    Article  Google Scholar 

  24. Dye, S. Geoneutrinos and the radioactive power of the Earth. Rev. Geophys. https://doi.org/10.1029/2012RG000400 (2012).

    Article  Google Scholar 

  25. Arevalo, R., McDonough, W. F. & Luong, M. The K/U ratio of the silicate earth: insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett. 278, 361–369 (2009).

    Article  Google Scholar 

  26. Chapman, D. S. Thermal gradients in the continental crust. Geol. Soc. Spec. Publ. 24, 63–70 (1986).

    Article  Google Scholar 

  27. Goutorbe, B., Poort, J., Lucazeau, F. & Raillard, S. Global heat flow trends resolved from multiple geological and geophysical proxies. Geophys. J. Int. 187, 1405–1419 (2011).

    Article  Google Scholar 

  28. Artemieva, I. M., Thybo, H., Jakobsen, K., Sorensen, N. K. & Nielsen, L. S. Heat production in granitic rocks: global analysis based on a new data compilation. Earth Sci. Rev. 172, 1–26 (2017).

    Article  Google Scholar 

  29. Hasterok, D., Gard, M., Cox, G. & Hand, M. A 4 Ga record of granitic heat production: implications for geodynamic evolution and crustal composition of the early Earth. Precambrian Res. 331, 105375 (2019).

    Article  Google Scholar 

  30. Jaupart, C., Mareschal, J. C. & Iarotsky, L. Radiogenic heat production in the continental crust. Lithos 262, 398–427 (2016).

    Article  Google Scholar 

  31. Gard, M., Hasterok, D. & Halpin, J. A. Global whole-rock geochemical database compilation. Earth Syst. Sci. Data 11, 1553–1566 (2019).

    Article  Google Scholar 

  32. Gard, M., Hasterok, D., Hand, M. & Cox, G. Variations in continental heat production from 4 Ga to the present: evidence from geochemical data. Lithos 342343, 391–406 (2019).

    Article  Google Scholar 

  33. Goes, S., Hasterok, D., Schutt, D. L. & Klocking, M. Continental lithospheric temperatures: a review. Phys. Earth Planet. Inter. 306, 106509 (2020).

    Article  Google Scholar 

  34. Hacker, B. R., Kelemen, P. B. & Behn, M. D. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett. 307, 501–516 (2011).

    Article  Google Scholar 

  35. Rudnick, R. L. & Gao, S. Composition of the continental crust. Treatise Geochem. 4, 1–51 (2014).

    Google Scholar 

  36. Beardsmore, G. R. & Cull, J. P. Crustal Heat Flow (Cambridge Univ. Press, 2001).

  37. Lees, C. H. On the shapes of the isogeotherms under mountain ranges in radio-active districts. Proc. R. Soc. Lond. A 83, 339–346 (1910).

    Article  Google Scholar 

  38. Slagstad, T., Midttømme, K., Ramstad, R. K. & Slagstad, D. Factors influencing shallow (<1000 m depth) temperatures and their significance for extraction of ground-source heat. Geol. Soc. Spec. Publ. 11, 99–109 (2008).

    Google Scholar 

  39. Mony, L., Roberts, J. L. & Halpin, J. A. Inferring geothermal heat flux from an ice-borehole temperature profile at Law Dome, East Antarctica. J. Glaciol. 66, 509–519 (2020).

    Article  Google Scholar 

  40. Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W. & Foley, N. High geothermal heat flux measured below the West Antarctic Ice Sheet. Sci. Adv. https://doi.org/10.1126/sciadv.1500093 (2015).

    Article  Google Scholar 

  41. Begeman, C. B., Tulaczyk, S. M. & Fisher, A. T. Spatially variable geothermal heat flux in West Antarctica: evidence and implications. Geophys. Res. Lett. 44, 9823–9832 (2017).

    Article  Google Scholar 

  42. Willcocks, S., Hasterok, D. & Jennings, S. Thermal refraction: implications for subglacial heat flux. J. Glaciol. 67, 875–884 (2021). An exploration of GHF anomalies owing to refraction of heat associated with subglacial topography and contrasts in the thermal properties of geological materials.

    Article  Google Scholar 

  43. Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett. 295, 451–461 (2010).

    Article  Google Scholar 

  44. Siegert, M. J. et al. Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. Geol. Soc. Spec. Publ. 461, 197–213 (2018).

    Article  Google Scholar 

  45. Dow, C. et al. Totten glacier subglacial hydrology determined from geophysics and modeling. Earth Planet. Sci. Lett. 531, 115961 (2020).

    Article  Google Scholar 

  46. Schroeder, D. M., Blankenship, D. D., Young, D. A. & Quartini, E. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet. Proc. Natl Acad. Sci. USA 111, 9070–9072 (2014).

    Article  Google Scholar 

  47. Jordan, T. A. et al. Anomalously high geothermal flux near the South Pole. Sci. Rep. 8, 16785 (2018).

    Article  Google Scholar 

  48. Kerr, Y. H. et al. The SMOS mission: new tool for monitoring key elements of the global water cycle. Proc. IEEE 98, 666–687 (2010).

    Article  Google Scholar 

  49. Livingstone, S. J. et al. Subglacial lakes and their changing role in a warming climate. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00246-9 (2022).

    Article  Google Scholar 

  50. Passalacqua, O. et al. Retrieval of the absorption coefficient of L-band radiation in Antarctica from SMOS observations. Remote Sens. https://doi.org/10.3390/rs10121954 (2018).

    Article  Google Scholar 

  51. Macelloni, G. et al. On the retrieval of internal temperature of Antarctica Ice Sheet by using SMOS observations. Remote. Sens. Environ. 233, 111405 (2019).

    Article  Google Scholar 

  52. Fudge, T. J., Biyani, S. C., Clemens-Sewall, D. & Hawley, R. L. Constraining geothermal flux at coastal domes of the Ross Ice Sheet, Antarctica. Geophys. Res. Lett. 46, 13090–13098 (2019).

    Article  Google Scholar 

  53. Kleinschmidt, G. (ed.) The Geology of the Antarctic Continent (Schweizerbart Science, 2021).

  54. Jordan, T. A., Riley, T. R. & Siddoway, C. S. The geological history and evolution of West Antarctica. Nat. Rev. Earth Environ. 1, 117–133 (2020). Review paper on the geology and tectonic evolution of West Antarctica.

    Article  Google Scholar 

  55. Harley, S. L., Fitzsimons, I. C. & Zhao, Y. Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues. Geol. Soc. Spec. Publ. 383, 1–34 (2013). Review paper on the geology and tectonic evolution of East Antarctica.

    Article  Google Scholar 

  56. Sanchez, G. et al. PetroChron Antarctica: a geological database for interdisciplinary use. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2021GC010154 (2021).

    Article  Google Scholar 

  57. Cox, S. C., Smith Lyttle, B. & the GeoMAP team. ATA SCAR GeoMAP geology (v.2022-08)(GNS Science, 2022); https://doi.org/10.21420/7SH-6K05.

  58. Siddoway, C. in The Geology of the Antarctic Continent (ed. Kleinschmidt, G.) 87–131 (Schweizerbart Science, 2021).

  59. Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537–563 (2014).

    Article  Google Scholar 

  60. Shen, W. et al. The crust and upper mantle structure of Central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions. J. Geophys. Res. Solid Earth 123, 7824–7849 (2018).

    Article  Google Scholar 

  61. Smellie, J. in The Geology of the Antarctic Continent (ed. Kleinschmidt, G.) 18–86 (Schweizerbart Science, 2021).

  62. Artemieva, I. M. & Thybo, H. Continent size revisited: geophysical evidence for West Antarctica as a back-arc system. Earth Sci. Rev. 202, 103106 (2020).

    Article  Google Scholar 

  63. Boger, S. D. Antarctica — before and after Gondwana. Gondwana Res. 19, 335–371 (2011).

    Article  Google Scholar 

  64. Turner, R. J., Reading, A. M. & King, M. A. Separation of tectonic and local components of horizontal GPS station velocities: a case study for glacial isostatic adjustment in East Antarctica. Geophys. J. Int. 222, 1555–1569 (2020).

    Article  Google Scholar 

  65. Ferraccioli, F. et al. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 479, 388–392 (2011).

    Article  Google Scholar 

  66. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 6, 4305–4361 (2012).

    Google Scholar 

  67. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. https://doi.org/10.1038/s41561-019-0510-8 (2019).

    Article  Google Scholar 

  68. Maritati, A., Halpin, J. A., Whittaker, J. M. & Daczko, N. R. Fingerprinting Proterozoic bedrock in interior Wilkes Land, East Antarctica. Sci. Rep. 9, 10192 (2019).

    Article  Google Scholar 

  69. Aitken, A. R. et al. The subglacial geology of Wilkes Land, East Antarctica. Geophys. Res. Lett. 41, 2390–2400 (2014).

    Article  Google Scholar 

  70. Stål, T., Reading, A. M., Halpin, J. A. & Whittaker, J. M. A multivariate approach for mapping lithospheric domain boundaries in East Antarctica. Geophys. Res. Lett. 46, 10404–10416 (2019).

    Article  Google Scholar 

  71. Mulder, J. A. et al. A multiproxy provenance approach to uncovering the assembly of East Gondwana in Antarctica. Geology 47, 645–649 (2019).

    Article  Google Scholar 

  72. Dziadek, R., Ferraccioli, F. & Gohl, K. High geothermal heat flow beneath Thwaites Glacier in West Antarctica inferred from aeromagnetic data. Commun. Earth Environ. 2, 162 (2021).

    Article  Google Scholar 

  73. Lloyd, A. J. et al. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography. J. Geophys. Res. Solid Earth 125, 2019JB017823 (2020).

    Article  Google Scholar 

  74. Martos, Y. M. et al. Heat flux distribution of Antarctica unveiled. Geophys. Res. Lett. 44, 11417–11426 (2017).

    Article  Google Scholar 

  75. Fox Maule, C., Purucker, M. E., Olsen, N. & Mosegaard, K. Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309, 464–467 (2005).

    Article  Google Scholar 

  76. An, M. et al. Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities. J. Geophys. Res. Solid Earth 120, 8720–8742 (2015).

    Article  Google Scholar 

  77. Burton-Johnson, A., Halpin, J. A., Whittaker, J. M., Graham, F. S. & Watson, S. J. A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production. Geophys. Res. Lett. 44, 5436–5446 (2017).

    Article  Google Scholar 

  78. Ebbing, J., Gernigon, L., Pascal, C., Olesen, O. & Osmundsen, P. T. A discussion of structural and thermal control of magnetic anomalies on the mid-Norwegian margin. Geophys. Prospect. 57, 665–681 (2009).

    Article  Google Scholar 

  79. Gard, M. & Hasterok, D. A global Curie depth model utilising the equivalent source magnetic dipole method. Phys. Earth Planet. Inter. 313, 106672 (2021).

    Article  Google Scholar 

  80. An, M. et al. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. J. Geophys. Res. Solid. Earth 120, 359–383 (2015).

    Article  Google Scholar 

  81. Goes, S., Govers, R. & Vacher, P. Shallow mantle temperatures under Europe from P and S wave tomography. J. Geophys. Res. Solid Earth 105, 11153–11169 (2000).

    Article  Google Scholar 

  82. An, M. & Shi, Y. Three-dimensional thermal structure of the Chinese continental crust and upper mantle. Sci. China D Earth Sci. 50, 1441–1451 (2007).

    Article  Google Scholar 

  83. Haeger, C., Kaban, M. K., Tesauro, M., Petrunin, A. G. & Mooney, W. D. 3-D density, thermal, and compositional model of the Antarctic lithosphere and implications for its evolution. Geochem. Geophys. Geosyst. 20, 688–707 (2019).

    Article  Google Scholar 

  84. Schaeffer, A. J. & Lebedev, S. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194, 417–449 (2013).

    Article  Google Scholar 

  85. Lösing, M., Ebbing, J. & Szwillus, W. Geothermal heat flux in Antarctica: assessing models and observations by Bayesian inversion. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00105 (2020). Assessment of the influence of different lithospheric models on heat flow calculations for Antarctica.

    Article  Google Scholar 

  86. Hasterok, D., Gard, M. & Webb, J. On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geosci. Front. 9, 1777–1794 (2018). Appraisal of radiogenic heat production in upper crustal rocks.

    Article  Google Scholar 

  87. Goodge, J. W. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet. Cryosphere 12, 491–504 (2018).

    Article  Google Scholar 

  88. Aitken, A. & Urosevic, L. A probabilistic and model-based approach to the assessment of glacial detritus from ice sheet change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 561, 110053 (2021).

    Article  Google Scholar 

  89. Venzke, E. (ed.) in Volcanoes of the World v. 4.9.0., https://doi.org/10.5479/si.GVP.VOTW4-2013 (Smithsonian Institution, 2013).

  90. Schaeffer, A. J. & Lebedev, S. in Earth’s Heterogeneous Mantle, 3–46 (Springer, 2015).

  91. Carson, C. J., McLaren, S., Roberts, J. L., Boger, S. D. & Blankenship, D. D. Hot rocks in a cold place: high sub-glacial heat flow in East Antarctica. J. Geol. Soc. 171, 9–12 (2014).

    Article  Google Scholar 

  92. Mongelli, F. & Zito, G. The contemporary effect of erosion/sedimentation and past climate on the geothermal gradient. Stud. Geophys. Geod. 37, 258–264 (1993).

    Article  Google Scholar 

  93. Cammarano, F., Goes, S., Vacher, P. & Giardini, D. Inferring upper-mantle temperatures from seismic velocities. Phys. Earth Planet. Inter. 138, 197–222 (2003).

    Article  Google Scholar 

  94. Kaban, M. K., Tesauro, M., Mooney, W. D. & Cloetingh, S. A. P. L. Density, temperature, and composition of the North American lithosphere — new insights from a joint analysis of seismic, gravity, and mineral physics data: 1. Density structure of the crust and upper mantle. Geochem. Geophys. Geosyst. 15, 4781–4807 (2014).

    Article  Google Scholar 

  95. Afonso, J. C., Salajegheh, F., Szwillus, W., Ebbing, J. & Gaina, C. A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets. Geophys. J. Int. 217, 1602–1628 (2019).

    Article  Google Scholar 

  96. Sammon, L. G., Gao, C. & McDonough, W. F. Lower crustal composition in the southwestern United States. J. Geophys. Res. Solid Earth 125, e2019JB019011 (2020).

    Article  Google Scholar 

  97. Sui, S., Shen, W., Schulte-Pelkum, V. & Mahan, K. Constraining the crustal composition of the continental U.S. using seismic observables. GSA Bull. (in the press).

  98. Pappa, F., Ebbing, J., Ferraccioli, F. & van der Wal, W. Modeling satellite gravity gradient data to derive density, temperature, and viscosity structure of the Antarctic lithosphere. J. Geophys. Res. Solid Earth 124, 12053–12076 (2019).

    Article  Google Scholar 

  99. Hasterok, D. & Gard, M. Utilizing thermal isostasy to estimate sub-lithospheric heat flow and anomalous crustal radioactivity. Earth Planet. Sci. Lett. 450, 197–207 (2016).

    Article  Google Scholar 

  100. Artemieva, I. M. Antarctica ice sheet basal melting enhanced by high mantle heat. Earth Sci. Rev. 226, 103954 (2022).

    Article  Google Scholar 

  101. Stevens, N. T., Parizek, B. R. & Alley, R. B. Enhancement of volcanism and geothermal heat flux by ice-age cycling: a stress modeling study of Greenland. J. Geophys. Res. Earth Surf. 121, 1456–1471 (2016).

    Article  Google Scholar 

  102. Diao, N., Li, Q. & Fang, Z. Heat transfer in ground heat exchangers with groundwater advection. Int. J. Therm. Sci. 43, 1203–1211 (2004).

    Article  Google Scholar 

  103. Cracknell, M. J. & Reading, A. M. The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines. Geophysics 78, WB113–WB126 (2013).

    Article  Google Scholar 

  104. Wellmann, J. F. Information theory for correlation analysis and estimation of uncertainty reduction in maps and models. Entropy 15, 1464–1485 (2013).

    Article  Google Scholar 

  105. Jaupart, C. & Mareschal, J. C. in Treatise on Geochemistry 2nd edn, Vol. 4, 53–73 (Elsevier, 2013).

  106. Behrendt, J. C. Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations — a review. Glob. Planet. Change 23, 25–44 (1999).

    Article  Google Scholar 

  107. Siddoway, C. S. in Antarctica: A Keystone in a Changing World (eds Cooper, A. K. et al.) (National Academies Press, 2008); https://doi.org/10.3133/ofr20071047KP09.

  108. Scambos, T. et al. How much, how fast? A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century. Glob. Planet. Change 153, 16–34 (2017).

    Article  Google Scholar 

  109. van Wyk de Vries, M., Bingham, R. G. & Hein, A. S. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. Geol. Soc. Spec. Publ. 461, 231–248 (2018).

    Article  Google Scholar 

  110. Bell, R. E. et al. Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature 394, 58–62 (1998).

    Article  Google Scholar 

  111. Bell, R., Studinger, M., Karner, G., Finn, C. & Blankenship, D. in Antarctica (eds Fütterer, D. et al.) 117–121 (Springer, 2006).

  112. Behrendt, J. C. et al. Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys. Tectonics 15, 660–676 (1996).

    Article  Google Scholar 

  113. Tankersley, M. D., Horgan, H. J., Siddoway, C. S., Caratori Tontini, F. & Tinto, K. J. Basement topography and sediment thickness beneath Antarctica’s Ross Ice Shelf. Geophys. Res. Lett. 49, e2021GL097371 (2022).

    Article  Google Scholar 

  114. Seroussi, H., Ivins, E. R., Wiens, D. A. & Bondzio, J. Influence of a West Antarctic mantle plume on ice sheet basal conditions. J. Geophys. Res. Solid Earth 122, 7127–7155 (2017).

    Article  Google Scholar 

  115. Hansen, S. E. et al. Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: evidence for heterogeneous structure beneath West Antarctica. Earth Planet. Sci. Lett. 408, 66–78 (2014).

    Article  Google Scholar 

  116. O’Donnell, J. P. et al. The uppermost mantle seismic velocity structure of West Antarctica from Rayleigh wave tomography: insights into tectonic structure and geothermal heat flow. Earth Planet. Sci. Lett. 522, 219–233 (2019).

    Article  Google Scholar 

  117. Lucas, E. M. et al. P- and S-wave velocity structure of central West Antarctica: implications for the tectonic evolution of the West Antarctic Rift System. Earth Planet. Sci. Lett. 546, 116437 (2020).

    Article  Google Scholar 

  118. Lucas, E. M. et al. Seismicity and Pn velocity structure of Central West Antarctica. Geochem. Geophys. Geosyst. 22, e2020GC009471 (2021).

    Article  Google Scholar 

  119. Muller, R. D., Gohl, K., Cande, S. C., Goncharov, A. & Golynsky, A. V. Eocene to Miocene geometry of the West Antarctic Rift System. Aust. J. Earth Sci. 54, 1033–1045 (2007).

    Article  Google Scholar 

  120. Zundel, M., Spiegel, C., Lisker, F. & Monien, P. Post mid-Cretaceous tectonic and topographic evolution of Western Marie Byrd Land, West Antarctica: insights from apatite fission track and (U-Th-Sm)/He data. Geochem. Geophys. Geosyst. 20, 5831–5848 (2019).

    Article  Google Scholar 

  121. Duwiquet, H., Arbaret, L., Guillou-Frottier, L., Heap, M. J. & Bellanger, M. On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French Massif Central, France). Geotherm. Energy 7, 33 (2019).

    Article  Google Scholar 

  122. Wilch, T. I., McIntosh, W. C. & Panter, K. S. Chapter 5.4a Marie Byrd Land and Ellsworth Land: volcanology. Geol. Soc. Lond. Mem. 55, 515–576 (2021).

    Article  Google Scholar 

  123. Holschuh, N., Pollard, D., Alley, R. & Anandakrishnan, S. Evaluating Marie Byrd Land stability using an improved basal topography. Earth Planet. Sci. Lett. 408, 362–369 (2014).

    Article  Google Scholar 

  124. Zundel, M. et al. Thurston Island (West Antarctica) between Gondwana subduction and continental separation: a multistage evolution revealed by apatite thermochronology. Tectonics 38, 878–897 (2019).

    Article  Google Scholar 

  125. Leat, P. T. et al. Jurassic high heat production granites associated with the Weddell Sea rift system, Antarctica. Tectonophysics 722, 249–264 (2018).

    Article  Google Scholar 

  126. Goodge, J. W. Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma. Gondwana Res. 80, 50–122 (2020).

    Article  Google Scholar 

  127. Goodge, J. in The Geology of the Antarctic Continent (ed. Kleinschmidt, G.) 132–217 (Schweizerbart Science, 2021).

  128. Smellie, J. L. & Rocchi, S. Chapter 5.1a. Northern Victoria Land: volcanology. Geol. Soc. Lond. Mem. 55, 347–381 (2021).

    Article  Google Scholar 

  129. Brenn, G. R., Hansen, S. E. & Park, Y. Variable thermal loading and flexural uplift along the Transantarctic Mountains, Antarctica. Geology 45, 463–466 (2017).

    Article  Google Scholar 

  130. Shen, W. et al. Seismic evidence for lithospheric foundering beneath the southern Transantarctic Mountains, Antarctica. Geology 46, 71–74 (2017).

    Article  Google Scholar 

  131. Läufer, A. in The Geology of the Antarctic Continent (ed. Kleinschmidt, G.) 254–295 (Schweizerbart Science, 2021).

  132. Ruppel, A., Jacobs, J., Eagles, G., Läufer, A. & Jokat, W. New geophysical data from a key region in East Antarctica: estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST). Gondwana Res. 59, 97–107 (2018).

    Article  Google Scholar 

  133. Black, L., Sheraton, J. & James, P. Late Archaean granites of the Napier Complex, Enderby Land, Antarctica: a comparison of Rb-Sr, Sm-Nd and U-Pb isotopic systematics in a complex terrain. Precambrian Res. 32, 343–368 (1986).

    Article  Google Scholar 

  134. Halpin, J., Gerakiteys, C., Clarke, G., Belousova, E. & Griffin, W. In-situ U–Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica. Contrib. Mineral. Petrol. 148, 689–706 (2005).

    Article  Google Scholar 

  135. Tingey, R. J., McDougall, I. & Gleadow, A. J. W. The age and mode of formation of Gaussberg, Antarctica. J. Geol. Soc. Aust. 30, 241–246 (1983).

    Article  Google Scholar 

  136. Smellie, J. L. & Collerson, K. D. Chapter 5.5. Gaussberg: volcanology and petrology. Geol. Soc. Lond. Mem. https://doi.org/10.1144/M55-2018-85 (2021).

    Article  Google Scholar 

  137. Daczko, N. R., Halpin, J. A., Fitzsimons, I. C. W. & Whittaker, J. M. A cryptic Gondwana-forming orogen located in Antarctica. Sci. Rep. 8, 8371 (2018).

    Article  Google Scholar 

  138. Ferraccioli, F. et al. Gaussberg rift — illusion or reality? In Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES X (eds Cooper, A. K. et al.) USGS Open-File Report 2007-1047, 1996 (US Geological Survey and The National Academies, 2007).

  139. Halpin, J. A., Daczko, N. R., Kobler, M. E. & Whittaker, J. M. Strike-slip tectonics during the Neoproterozoic–Cambrian assembly of East Gondwana: evidence from a newly discovered microcontinent in the Indian Ocean (Batavia Knoll). Gondwana Res. 51, 137–148 (2017).

    Article  Google Scholar 

  140. Maritati, A. et al. The tectonic development and erosion of the Knox Subglacial Sedimentary Basin, East Antarctica. Geophys. Res. Lett. 43, 10728–10737 (2016).

    Article  Google Scholar 

  141. Maritati, A., Danisik, M., Halpin, J. A., Whittaker, J. M. & Aitken, A. R. A. Pangea rifting shaped the East Antarctic landscape. Tectonics 39, e2020TC006180 (2020).

    Article  Google Scholar 

  142. Aitken, A. et al. The Australo-Antarctic Columbia to Gondwana transition. Gondwana Res. 29, 136–152 (2016).

    Article  Google Scholar 

  143. Williams, S. E., Whittaker, J. M., Halpin, J. A. & Muller, R. D. Australian-Antarctic breakup and seafloor spreading: balancing geological and geophysical constraints. Earth Sci. Rev. 188, 41–58 (2019).

    Article  Google Scholar 

  144. Ebbing, J., Dilixiati, Y., Haas, P., Ferraccioli, F. & Scheiber-Enslin, S. East Antarctica magnetically linked to its ancient neighbours in Gondwana. Sci. Rep. 11, 5513 (2021).

    Article  Google Scholar 

  145. Pollett, A. et al. Heat flow in Southern Australia and connections with East Antarctica. Geochem. Geophys. Geosyst. 20, 5352–5370 (2019).

    Article  Google Scholar 

  146. Paxman, G. J. et al. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).

    Article  Google Scholar 

  147. Sauermilch, I., Whittaker, J. M., Bijl, P. K., Totterdell, J. M. & Jokat, W. Tectonic, oceanographic, and climatic controls on the Cretaceous-Cenozoic sedimentary record of the Australian-Antarctic Basin. J. Geophys. Res. Solid Earth 124, 7699–7724 (2019).

    Article  Google Scholar 

  148. Duclaux, G. et al. Superimposed Neoarchaean and Paleoproterozoic tectonics in the Terre Adélie Craton (East Antarctica): evidence from Th–U–Pb ages on monazite and 40Ar/39Ar ages. Precambrian Res. 167, 316–338 (2008).

    Article  Google Scholar 

  149. Halpin, J. A., White, R. W., Clarke, G. L. & Kelsey, D. E. The Proterozoic P–T–t evolution of the Kemp Land Coast, East Antarctica; constraints from Si-saturated and Si-undersaturated metapelites. J. Petrol. 48, 1321–1349 (2007).

    Article  Google Scholar 

  150. Morrissey, L. J., Hand, M. & Kelsey, D. E. Multi-stage metamorphism in the Rayner–Eastern Ghats Terrane: P–T–t constraints from the northern Prince Charles Mountains, east Antarctica. Precambrian Res. 267, 137–163 (2015).

    Article  Google Scholar 

  151. Tucker, N. M. et al. Proterozoic reworking of Archean (Yilgarn) basement in the Bunger Hills, East Antarctica. Precambrian Res. 298, 16–38 (2017).

    Article  Google Scholar 

  152. Leysinger Vieli, G. J.-M. C., Martín, C., Hindmarsh, R. C. A. & Lüthi, M. P. Basal freeze-on generates complex ice-sheet stratigraphy. Nat. Commun. 9, 4669 (2018).

    Article  Google Scholar 

  153. Gooch, B. T., Young, D. A. & Blankenship, D. D. Potential groundwater and heterogeneous heat source contributions to ice sheet dynamics in critical submarine basins of East Antarctica. Geochem. Geophys. Geosyst. 17, 395–409 (2016).

    Article  Google Scholar 

  154. Llubes, M., Lanseau, C. & Remy, F. Relations between basal condition, subglacial hydrological networks and geothermal flux in Antarctica. Earth Planet. Sci. Lett. 241, 655–662 (2006).

    Article  Google Scholar 

  155. Davies, J. H. & Davies, D. R. Earth’s surface heat flux. Solid. Earth 1, 5–24 (2010).

    Article  Google Scholar 

  156. Wright, R. & Pilger, E. Radiant flux from Earth’s subaerially erupting volcanoes. Int. J. Remote Sens. 29, 6443–6466 (2008).

    Article  Google Scholar 

  157. Hurwitz, S. Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J. Geophys. Res. 108, 2557 (2003).

    Article  Google Scholar 

  158. McCormack, F. S. et al. Fine-scale geothermal heat flow in Antarctica can increase simulated subglacial melt estimates. Geophys. Res. Lett. https://doi.org/10.1029/2022GL098539 (2022).

    Article  Google Scholar 

  159. van der Veen, C. J., Leftwich, T., von Frese, R., Csatho, B. M. & Li, J. Subglacial topography and geothermal heat flux: Potential interactions with drainage of the Greenland ice sheet. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030046 (2007).

    Article  Google Scholar 

  160. Colgan, W. et al. Topographic correction of geothermal heat flux in Greenland and Antarctica. J. Geophys. Res. Earth Surf. 126, e2020JF005598 (2021).

    Article  Google Scholar 

  161. Colleoni, F. et al. Spatio-temporal variability of processes across Antarctic ice-bed–ocean interfaces. Nat. Commun. 9, 2289 (2018).

    Article  Google Scholar 

  162. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  163. Fürst, J. J. et al. Assimilation of Antarctic velocity observations provides evidence for uncharted pinning points. Cryosphere 9, 1427–1443 (2015).

    Article  Google Scholar 

  164. Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4, 451–455 (2014).

    Article  Google Scholar 

  165. Gulick, S. P. S. et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 552, 225–229 (2017).

    Article  Google Scholar 

  166. Robel, A. A., Seroussi, H. & Roe, G. H. Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Proc. Natl Acad. Sci. USA 116, 14887–14892 (2019).

    Article  Google Scholar 

  167. Van Liefferinge, B. et al. Promising oldest ice sites in East Antarctica based on thermodynamical modelling. Cryosphere 12, 2773–2787 (2018).

    Article  Google Scholar 

  168. Larour, E., Morlighem, M., Seroussi, H., Schiermeier, J. & Rignot, E. Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2012JF002371 (2012).

    Article  Google Scholar 

  169. Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020).

    Article  Google Scholar 

  170. Pittard, M. L., Galton-Fenzi, B. K., Roberts, J. L. & Watson, C. S. Organization of ice flow by localized regions of elevated geothermal heat flux. Geophys. Res. Lett. 43, 3342–3350 (2016).

    Article  Google Scholar 

  171. Smith-Johnsen, S., Schlegel, N.-J., De Fleurian, B. & Nisancioglu, K. H. Sensitivity of the Northeast Greenland Ice Stream to geothermal heat. J. Geophys. Res. Earth Surf. 125, e2019JF005252 (2020).

    Article  Google Scholar 

  172. Lemieux, J. M., Sudicky, E. A., Peltier, W. R. & Tarasov, L. Simulating the impact of glaciations on continental groundwater flow systems: 2. Model application to the Wisconsinian glaciation over the Canadian landscape. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2007JF000929 (2008).

    Article  Google Scholar 

  173. Elsworth, C. W., Schroeder, D. M. & Siegfried, M. R. Interpreting englacial layer deformation in the presence of complex ice flow history with synthetic radargrams. Ann. Glaciol. 61, 206–213 (2020).

    Article  Google Scholar 

  174. Guimarães, S. N. P., Vieira, F. P. & Hamza, V. M. Heat flow variations in the Antarctic Continent. Int. J. Terr. Heat. Flow. Appl. 3, 1–10 (2020).

    Google Scholar 

  175. Purucker, M. Antarctica Basal Heat Flux (University of Montana, accessed 1 October 2012); http://websrv.cs.umt.edu/isis/index.php/Antarctica_Basal_Heat_Flux.

  176. Morse, P. E., Reading, A. M. & Stål, T. Well-posed geoscientific visualization through interactive color mapping. Front. Earth Sci. 7, 0–17 (2019).

    Article  Google Scholar 

  177. Crameri, F. & Shephard, G. E. Scientific colour maps, https://doi.org/10.5281/zenodo.3596401 (Zenodo, 2019).

  178. Dalziel, I. W. D. & Elliot, D. H. West Antarctica: problem child of Gondwanaland. Tectonics 1, 3–19 (1982).

    Article  Google Scholar 

  179. Cottrell, E. in Volcanic Hazards, Risks and Disasters (eds. Shroder, J. F. & Papale, P.) 1–16 (Elsevier, 2015).

  180. Lemieux, J. M., Sudicky, E. A., Peltier, W. R. & Tarasov, L. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J. Geophys. Res. Earth Surf. 113, 1–18 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Australian Research Council (ARC), through ARC DP190100418 (A.M.R., T.S.). Additional support was provided through ARC SRI Antarctica Gateway Partnership, SR140300001 (T.S.), ARC SRI Australian Centre for Excellence in Antarctic Science, SR200100008 (A.M.R., T.S., J.A.H.), ARC DP180104074 (J.A.H., D.H.), ARC DECRA DE210101433 (F.S.M.) and ARC SRI Securing Antarctica’s Environmental Future SR200100005 (F.S.M.). Further support was provided by the Deutsche Forschungsgemeinschaft in the framework of the priority programme ‘Antarctic Research with comparative investigations in Arctic ice areas’ SPP 1158 (grant no. EB 255/8-1, M.L., J.E.). The authors thank the many participants of the Scientific Committee on Antarctic Research, Scientific Research Program on Solid Earth Response and influence on Cryosphere Evolution (SCAR, SERCE, to 2020) and its successor, Instabilities and Thresholds in Antarctica, subcommittee on Geothermal Heat Flow (SCAR, INSTANT, from 2021) for discussions that informed this Review.

Author information

Authors and Affiliations

Authors

Contributions

A.M.R. conceived the review, drafted text and display items. T.S. drafted text and produced map and display items. All authors contributed to the text and refined the review.

Corresponding author

Correspondence to Anya M. Reading.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks T. Jordan, K. Matsuoka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Scientific Committee on Antarctic Research INSTANT initiative provides a further connection to legacy and current Antarctic GHF models at: https://www.scar-instant.org.

Supplementary information

Glossary

Heat

Energy held by a substance owing to the vibration of molecules.

Geothermal heat flow (GHF)

The outward movement of heat, due to cooling and radioactive decay, through the Earth. Commonly reported as a value for near-surface layers in units of W m−2 or mW m−2.

Steady state

A system where heat flows while each point remains at a constant temperature.

Non-steady state

A system of heat flow where points in the system are changing temperature, also known as transient heat flow.

Heat producing elements (HPE)

Elements, such as uranium, thorium and potassium, that produce substantial heat through radioactive decay, often more concentrated in some upper-crustal lithologies.

Temperature

A property of a material that defines the amount of heat energy available for transfer.

Cold-based

A cold-based ice sheet is an extensive body of ice where the base is below the pressure melting point.

Warm-based

A warm-based ice sheet is an extensive body of ice where the base is above the pressure melting point, and meltwater can be present.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reading, A.M., Stål, T., Halpin, J.A. et al. Antarctic geothermal heat flow and its implications for tectonics and ice sheets. Nat Rev Earth Environ 3, 814–831 (2022). https://doi.org/10.1038/s43017-022-00348-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00348-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing