Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau

Abstract

The Qinghai–Tibetan Plateau (QTP) has experienced atmospheric warming, cryosphere thaw and intensified human activities since the 1970s. These changes have had sometimes striking impacts on the hydrology, ecosystems and biogeochemistry of the region. In this Review, we describe carbon and nitrogen cycling on the QTP. Overall, the QTP has been a net carbon sink (with a net carbon balance of ~44 million tons of carbon uptake per year) and a methane source (~0.96 trillion grams per year of carbon in the form of methane, Tg CH4-C yr−1) since the 2000s. Rising temperatures, precipitation and nitrogen availability drive primary productivity increases, leading to increased carbon uptake. Conversely, these factors also increase greenhouse gas emissions, soil respiration rates and permafrost carbon mobilization, increasing carbon loss. Anthropogenic activities such as overgrazing and construction decrease plant production and soil carbon and nitrogen stocks, but restoration efforts on the QTP drive regional increases in these stocks. On balance, these changes are complex but largely offset each other. In the future, the QTP is predicted to still function as a net carbon sink, despite ongoing severe permafrost degradation. Moreover, nitrogen stocks are expected to remain relatively stable, partly related to potential future decreases in nitrogen deposition.

Key points

  • Qinghai–Tibetan Plateau soils contain substantial carbon and nitrogen stocks, with >48 Pg carbon estimated in the upper 1 m of soil.

  • Net ecosystem productivity (NEP) has increased as a result of climate change and restoration. As the increases in NEP surpass the increases in carbon losses (methane (CH4) emission, output to and outgassing from waters), the QTP acts as a net carbon sink at a rate of ~44 million tons of carbon per year.

  • Wetlands and waters are main sources of QTP CH4 emissions, but rising CH4 emissions are partly offset by increased uptake by grasslands, suggesting that the QTP is a CH4 source around 0.96 Tg CH4-C yr1.

  • Warming on the QTP relieves temperature limitation and nitrogen limitation of alpine plant growth, driving increased plant growth; variable precipitation associated with warming regulates the warming effect through altering soil moisture.

  • Sustainable grazing decreases aboveground biomass and increases soil respiration, but contributes to soil carbon and nitrogen stocks through biomass and nitrogen-rich excrement input into soils; this effect of grazing can be partly offset by warming.

  • Heavy grazing and severe permafrost thaw drives substantial carbon and nitrogen loss through increased erosion and soil organic carbon mineralization, and decreased plant carbon input; climate change further strengthens this effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical and anthropogenic changes on the Qinghai–Tibetan Plateau.
Fig. 2: Carbon and nitrogen stocks on the QTP.
Fig. 3: Carbon and nitrogen fluxes on the QTP.
Fig. 4: Drivers of changes in carbon and nitrogen cycling on the QTP.
Fig. 5: Adaptation and mitigation on the QTP.

Similar content being viewed by others

References

  1. Latif, A. et al. Review on global change status and its impacts on the Tibetan Plateau environment. J. Plant Ecol. 12, 917–930 (2019).

    Article  Google Scholar 

  2. Kuang, X. X. & Jiao, J. J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 121, 3979–4007 (2016).

    Article  Google Scholar 

  3. Bibi, S. et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int. J. Climatol. 38, E1–E17 (2018).

    Article  Google Scholar 

  4. Yang, M. X., Wang, X. J., Pang, G. J., Wang, G. N. & Liu, Z. C. The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes. Earth Sci. Rev. 190, 353–369 (2019).

    Article  Google Scholar 

  5. Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).

    Article  Google Scholar 

  6. Zou, D. et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2017).

    Article  Google Scholar 

  7. Zhao, Q. D. et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow. J. Hydrol. 573, 60–81 (2019).

    Article  Google Scholar 

  8. Yao, T. et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-022-00299-4 (2022).

    Article  Google Scholar 

  9. Zhang, G., Luo, W., Chen, W. & Zheng, G. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 64, 1306–1309 (2019).

    Article  Google Scholar 

  10. Chen, H. et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob. Change Biol. 19, 2940–2955 (2013).

    Article  Google Scholar 

  11. Chen, Y., Feng, J., Yuan, X. & Zhu, B. Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: a meta-analysis. Geoderma https://doi.org/10.1016/j.geoderma.2020.114363 (2020).

    Article  Google Scholar 

  12. Wang, Z. P. et al. Vegetation expansion on the tibetan plateau and its relationship with climate change. Remote Sens. https://doi.org/10.3390/rs12244150 (2020).

    Article  Google Scholar 

  13. Yin, H. et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 19, 2158–2167 (2013).

    Article  Google Scholar 

  14. Chen, J. et al. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agric. For. Meteorol. 220, 21–29 (2016).

    Article  Google Scholar 

  15. Yang, G. et al. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw. Environ. Sci. Technol. 52, 9162–9169 (2018).

    Article  Google Scholar 

  16. Yang, G. et al. Changes in methane flux along a permafrost thaw sequence on the Tibetan Plateau. Environ. Sci. Technol. 52, 1244–1252 (2018).

    Article  Google Scholar 

  17. Breidenbach, A. et al. Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nat. Commun. https://doi.org/10.1038/s41467-022-30047-7 (2022). Assesses degradation-induced soil organic carbon (SOC) and nitrogen losses as well as related microbial functional changes, based on a meta-analysis of 594 observations.

    Article  Google Scholar 

  18. Fu, B. et al. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier. Bull. Chin. Acad. Sci. 36, 1298–1306 (2021). in Chinese.

    Google Scholar 

  19. Luo, T. X., Li, W. H. & Zhu, H. Z. Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecol. Appl. 12, 980–997 (2002).

    Article  Google Scholar 

  20. Piao, S. et al. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai-Tibetan grasslands over the past five decades. Glob. Planet. Change 98–99, 73–80 (2012).

    Article  Google Scholar 

  21. Wu, T. et al. Weakening of carbon sink on the Qinghai–Tibet plateau. Geoderma 412, 115707 (2022).

    Article  Google Scholar 

  22. Jiang, L. et al. Assessment of frozen ground organic carbon pool on the Qinghai-Tibet Plateau. J. Soils Sediments 19, 128–139 (2019).

    Article  Google Scholar 

  23. Yang, Y. H. et al. Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochem. Cycles https://doi.org/10.1029/2010gb003804 (2010).

    Article  Google Scholar 

  24. Mu, C. et al. Editorial: Organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere 9, 479–486 (2015).

    Article  Google Scholar 

  25. Zhao, L. et al. Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan plateau. Sci. Rep. https://doi.org/10.1038/s41598-018-22024-2 (2018).

    Article  Google Scholar 

  26. Wei, D. & Wang, X. D. Recent climatic changes and wetland expansion turned Tibet into a net CH4 source. Clim. Change 144, 657–670 (2017).

    Article  Google Scholar 

  27. Zhang, J. et al. Extrapolation and uncertainty evaluation of carbon dioxide and methane emissions in the Qinghai-Tibetan Plateau wetlands since the 1960s. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00361 (2020).

    Article  Google Scholar 

  28. Zhang, L. et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).

    Article  Google Scholar 

  29. Tan, K. et al. Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-Tibetan grasslands. Glob. Biogeochem. Cycles https://doi.org/10.1029/2009gb003530 (2010).

    Article  Google Scholar 

  30. Yang, Y. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 14, 1592–1599 (2008).

    Article  Google Scholar 

  31. Xia, J. et al. Estimates of grassland biomass and turnover time on the Tibetan Plateau. Environ. Res. Lett. 13, 014020 (2018).

    Article  Google Scholar 

  32. Zhuang, Q. et al. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob. Ecol. Biogeogr. 19, 649–662 (2010).

    Google Scholar 

  33. Nieberding, F. et al. A long-term (2005–2019) eddy covariance data set of CO2 and H2O fluxes from the Tibetan alpine steppe. Earth Syst. Sci. Data 12, 2505–2524 (2020).

    Article  Google Scholar 

  34. Guo, Q. et al. Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agric. For. Meteorol. 214, 169–177 (2015).

    Article  Google Scholar 

  35. Li, H. et al. The predominance of nongrowing season emissions to the annual methane budget of a semiarid Alpine meadow on the northeastern Qinghai-Tibetan plateau. Ecosystems https://doi.org/10.1007/s10021-021-00669-x (2021).

    Article  Google Scholar 

  36. Luo, C. et al. CO2, CH4 and N2O fluxes in an alpine meadow on the Tibetan Plateau as affected by N-addition and grazing exclusion. Nutr. Cycl. Agroecosystems 117, 29–42 (2020).

    Article  Google Scholar 

  37. Wei, D., Xu, R., Tenzin, T., Wang, Y. & Wang, Y. Considerable methane uptake by alpine grasslands despite the cold climate: in situ measurements on the central Tibetan Plateau, 2008–2013. Glob. Change Biol. 21, 777–788 (2015).

    Article  Google Scholar 

  38. Peng, Y. et al. Soil temperature dynamics modulate N2O flux response to multiple nitrogen additions in an alpine steppe. J. Geophys. Res. Biogeosci. 123, 3308–3319 (2018).

    Article  Google Scholar 

  39. Nie, X.-q et al. Aboveground biomass of the alpine shrub ecosystems in Three-River Source region of the Tibetan Plateau. J. Mt. Sci. 15, 357–363 (2018).

    Article  Google Scholar 

  40. Nie, X., Dong, W., Yang, L., Fan, L. & Zhou, G. Belowground biomass of alpine shrublands across the northeast Tibetan Plateau. Ecol. Evol. 10, 5315–5322 (2020).

    Article  Google Scholar 

  41. Nie, X., Xiong, F., Yang, L., Li, C. & Zhou, G. Soil nitrogen storage, distribution, and associated controlling factors in the northeast Tibetan Plateau shrublands. Forests https://doi.org/10.3390/f8110416 (2017).

    Article  Google Scholar 

  42. Fu, Y. et al. Quantification of year-round methane and nitrous oxide fluxes in a typical alpine shrub meadow on the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 255, 27–36 (2018).

    Article  Google Scholar 

  43. Fei, X. et al. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, southwest China. Sci. Total Environ. 616, 824–840 (2018).

    Article  Google Scholar 

  44. Duan, F., Fang, J. & Zhou, C. Study on the relationship between the release characteristics of organic carbon from litters and soil organic carbon pool in Tibetan primitive dark coniferous forest. J. Soil Water Conserv. 34, 349–355 (2020).

    Google Scholar 

  45. Yao, Z. et al. Characteristics of annual greenhouse gas flux and NO release from alpine meadow and forest on the eastern Tibetan Plateau. Agric. For. Meteorol. 272-273, 166–175 (2019).

    Article  Google Scholar 

  46. Liu, X. et al. Five-year measurements of net ecosystem CO2 exchange at a fen in the Zoige peatlands on the Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 124, 11803–11818 (2019).

    Article  Google Scholar 

  47. Niu, B. et al. CO2 exchange in an alpine swamp meadow on the central Tibetan Plateau. Wetlands 37, 525–543 (2017).

    Article  Google Scholar 

  48. Zhu, J. et al. Seasonal and interannual variations of CO2 fluxes over 10 years in an Alpine wetland on the Qinghai-Tibetan plateau. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2020jg006011 (2020).

  49. Wang, M. et al. Carbon dynamics of peatlands in China during the Holocene. Quat. Sci. Rev. 99, 34–41 (2014).

    Article  Google Scholar 

  50. Nie, X. et al. Drivers of soil total nitrogen and phosphorus storage in alpine wetland across the three rivers source region on the Qinghai-Tibetan Plateau. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.806771 (2022).

    Article  Google Scholar 

  51. Wang, B., Niu, B., Yang, X. & Gu, S. Environmental factors and soil CO2 emissions in an alpine swamp meadow ecosystem on the Tibetan plateau in response to experimental warming. J. Chem. https://doi.org/10.1155/2016/2573185 (2016).

    Article  Google Scholar 

  52. Wu, F., Cao, S., Cao, G., Chen, K. & Peng, C. The characteristics and seasonal variation of methane fluxes from an alpine wetland in the Qinghai Lake watershed, China. Wetlands https://doi.org/10.1007/s13157-021-01415-8 (2021).

    Article  Google Scholar 

  53. Chen, H. et al. Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications. J. Geophys. Res. Atmos. https://doi.org/10.1029/2006jd008072 (2008).

    Article  Google Scholar 

  54. Cao, R., Chen, Y., Wu, X., Zhou, Q. & Sun, S. The effect of drainage on CO2, CH4 and N2O emissions in the Zoige peatland: a 40-month in situ study. Mires Peat https://doi.org/10.19189/MaP.2017.OMB.292 (2018).

    Article  Google Scholar 

  55. Gao, Y., Chen, H. & Zeng, X. Effects of nitrogen and sulfur deposition on CH4 and N2O fluxes in high-altitude peatland soil under different water tables in the Tibetan Plateau. Soil Sci. Plant Nutr. 60, 404–410 (2014).

    Article  Google Scholar 

  56. Spencer, R. G. M. et al. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau. Geochim. Cosmochim. Acta 142, 64–74 (2014).

    Article  Google Scholar 

  57. Qu, B. et al. Export of dissolved carbonaceous and nitrogenous substances in rivers of the ‘Water Tower of Asia’. J. Environ. Sci. 65, 53–61 (2018).

    Article  Google Scholar 

  58. Wu, Y. et al. Response of the soil food web to warming and litter removal in the Tibetan Plateau, China. Geoderma 401, 115318 (2021).

    Article  Google Scholar 

  59. Song, K. et al. Dissolved carbon in a large variety of lakes across five limnetic regions in China. J. Hydrol. 563, 143–154 (2018).

    Article  Google Scholar 

  60. Xu, H., Lan, J., Liu, B., Sheng, E. & Yeager, K. M. Modern carbon burial in Lake Qinghai, China. Appl. Geochem. 39, 150–155 (2013).

    Article  Google Scholar 

  61. Wang, M. et al. Carbon accumulation and sequestration of lakes in China during the Holocene. Glob. Change Biol. 21, 4436–4448 (2015).

    Article  Google Scholar 

  62. Wang, M. et al. Temporal-spatial pattern of organic carbon sequestration by Chinese lakes since 1850. Limnol. Oceanogr. 63, 1283–1297 (2018).

    Article  Google Scholar 

  63. Ran, L. et al. CO2 outgassing from the Yellow River network and its implications for riverine carbon cycle. J. Geophys. Res. Biogeosci. 120, 1334–1347 (2015).

    Article  Google Scholar 

  64. Wen, Z. et al. Carbon dioxide emissions from lakes and reservoirs of China: a regional estimate based on the calculated pCO2. Atmos. Environ. 170, 71–81 (2017).

    Article  Google Scholar 

  65. Qu, B. et al. Greenhouse gases emissions in rivers of the Tibetan Plateau. Sci. Rep. 7, 16573 (2017).

    Article  Google Scholar 

  66. Han, B. et al. Connections between daily surface temperature contrast and CO2 flux over a Tibetan lake: a case study of Ngoring Lake. J. Geophys. Res. Atmos. https://doi.org/10.1029/2019jd032277 (2020).

  67. Zhang, Y. et al. Sink or source? Methane and carbon dioxide emissions from cryoconite holes, subglacial sediments, and proglacial river runoff during intensive glacier melting on the Tibetan Plateau. Fundam. Res. 1, 232–239 (2021).

    Article  Google Scholar 

  68. Zhang, L. et al. Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau. Nat. Commun. 13, 950 (2022).

    Article  Google Scholar 

  69. Wei, D. et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proc. Natl Acad. Sci USA https://doi.org/10.1073/pnas.2015283118 (2021).

    Article  Google Scholar 

  70. Tian, L., Zhang, Y. & Zhu, J. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/9/10/104001 (2014).

    Article  Google Scholar 

  71. Du, M. Y., Kawashima, S., Yonemura, S., Zhang, X. Z. & Chen, S. B. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Glob. Planet. Change 41, 241–249 (2004).

    Article  Google Scholar 

  72. Zhang, Z., Qiao, M., Li, D., Yin, H. & Liu, Q. Do warming-induced changes in quantity and stoichiometry of root exudation promote soil N transformations via stimulation of soil nitrifiers, denitrifiers and ammonifiers? Eur. J. Soil. Biol. 74, 60–68 (2016).

    Article  Google Scholar 

  73. Wu, Y. et al. Warming and grazing interact to affect root dynamics in an alpine meadow. Plant Soil. 459, 109–124 (2021).

    Article  Google Scholar 

  74. Li, Y. et al. Microbial community responses reduce soil carbon loss in Tibetan alpine grasslands under short-term warming. Glob. Change Biol. 25, 3438–3449 (2019).

    Article  Google Scholar 

  75. Zi, H. B. et al. Responses of soil bacterial community and enzyme activity to experimental warming of an alpine meadow. Eur. J. Soil. Sci. 69, 429–438 (2018).

    Article  Google Scholar 

  76. Li, C. et al. Productivity and quality of alpine grassland vary with soil water availability under experimental warming. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01790 (2018).

    Article  Google Scholar 

  77. Shi, S., Liu, G., Li, Z. & Ye, X. Elevation-dependent growth trends of forests as affected by climate warming in the southeastern Tibetan Plateau. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119551 (2021).

    Article  Google Scholar 

  78. Sun, S. et al. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau. Geoderma 353, 283–292 (2019).

    Article  Google Scholar 

  79. Xu, Z.-F., Hu, T.-X., Wang, K.-Y., Zhang, Y.-B. & Xian, J.-R. Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, eastern Tibetan Plateau, China. Plant Species Biol. 24, 27–34 (2009).

    Article  Google Scholar 

  80. Ma, Z., Zhao, W., Liu, M. & Liu, Q. Responses of soil respiration and its components to experimental warming in an alpine scrub ecosystem on the eastern Qinghai-Tibet Plateau. Sci. Total Environ. 643, 1427–1435 (2018).

    Article  Google Scholar 

  81. Wang, S. et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93, 2365–2376 (2012). Assesses the effects of warming and grazing on soil N availability, species composition and plant aboveground net primary productivity (ANPP) through a controlled asymmetrical warming with a grazing experiment.

    Article  Google Scholar 

  82. Yuan, X. et al. Plant and microbial regulations of soil carbon dynamics under warming in two alpine swamp meadow ecosystems on the Tibetan Plateau. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.148072 (2021).

    Article  Google Scholar 

  83. Dong, S., Shang, Z., Gao, J. & Boone, R. B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2019.106684 (2020).

    Article  Google Scholar 

  84. Peng, F. et al. Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa6508 (2017).

    Article  Google Scholar 

  85. Wang, G. et al. Responses of soil respiration to experimental warming in an alpine steppe on the Tibetan Plateau. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab3bbc (2019).

    Article  Google Scholar 

  86. Zhao, J., Tian, L., Wei, H., Sun, F. & Li, R. Negative responses of ecosystem autotrophic and heterotrophic respiration to experimental warming in a Tibetan semi-arid alpine steppe. Catena 179, 98–106 (2019).

    Article  Google Scholar 

  87. Lu, X., Fan, J., Yan, Y. & Wang, X. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, northern Tibet. PLoS ONE https://doi.org/10.1371/journal.pone.0059054 (2013).

    Article  Google Scholar 

  88. Ganjurjav, H. et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 233–240 (2016).

    Article  Google Scholar 

  89. Ding, X. et al. Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan plateau. Biol. Fertil. Soils 56, 881–892 (2020).

    Article  Google Scholar 

  90. Liu, M. et al. Warming increases soil carbon input in a Sibiraea angustata-dominated alpine shrub ecosystem. J. Plant Ecol. 15, 335–346 (2022).

    Article  Google Scholar 

  91. Ding, X. et al. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil. Biol. Biochem. 135, 13–19 (2019).

    Article  Google Scholar 

  92. Yue, H. et al. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. ISME J. 9, 2012–2020 (2015). Analyses the feedback responses of soil microbial communities to simulated warming by soil transplant in Tibetan grasslands.

    Article  Google Scholar 

  93. Yu, J. et al. Microbial metabolic limitation response to experimental warming along an altitudinal gradient in alpine grasslands, eastern Tibetan Plateau. Catena https://doi.org/10.1016/j.catena.2022.106243 (2022).

    Article  Google Scholar 

  94. Tian, J. et al. Microbial metabolic response to winter warming stabilizes soil carbon. Glob. Change Biol. 27, 2011–2028 (2021).

    Article  Google Scholar 

  95. Li, F. et al. Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. Funct. Ecol. 34, 911–922 (2020).

    Article  Google Scholar 

  96. Ma, Z.-L., Zhao, W.-Q. & Liu, M. Responses of polyphenoloxidase and catalase activities of rhizosphere and bulk soils to warming during the growing season in an alpine scrub ecosystem. J. Appl. Ecol. 30, 3681–3688 [in Chinese.] (2019).

    Google Scholar 

  97. Pang, Z. et al. Differential response to warming of the uptake of nitrogen by plant species in non-degraded and degraded alpine grasslands. J. Soils Sediment. 19, 2212–2221 (2019).

    Article  Google Scholar 

  98. Zong, N., Shi, P. & Chai, X. Effects of warming and nitrogen addition on nutrient resorption efficiency in an alpine meadow on the northern Tibetan Plateau. Soil. Sci. Plant Nutr. 64, 482–490 (2018).

    Article  Google Scholar 

  99. Jiang, L. et al. Effects of warming and grazing on dissolved organic nitrogen in a Tibetan alpine meadow ecosystem. Soil. Tillage Res. 158, 156–164 (2016).

    Article  Google Scholar 

  100. Gao, J.-Q., Ouyang, H., Xu, X.-L., Zhou, C.-P. & Zhang, F. Effects of temperature and water saturation on CO2 production and nitrogen mineralization in alpine wetland soils. Pedosphere 19, 71–77 (2009).

    Article  Google Scholar 

  101. Fang, X. et al. Yak excreta-induced changes in soil microbial communities increased the denitrification rate of marsh soil under warming conditions. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2021.103935 (2021).

    Article  Google Scholar 

  102. Li, F. et al. Warming effects on methane fluxes differ between two alpine grasslands with contrasting soil water status. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2020.107988 (2020).

    Article  Google Scholar 

  103. Gu, X. et al. Soil extractable organic C and N contents, methanotrophic activity under warming and degradation in a Tibetan alpine meadow. Agric. Ecosyst. Environ. 278, 6–14 (2019).

    Article  Google Scholar 

  104. Yang, G. et al. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil. Biol. Biochem. 78, 83–89 (2014).

    Article  Google Scholar 

  105. Shi, F., Chen, H., Chen, H., Wu, Y. & Wu, N. The combined effects of warming and drying suppress CO2 and N2O emission rates in an alpine meadow of the eastern Tibetan Plateau. Ecol. Res. 27, 725–733 (2012).

    Article  Google Scholar 

  106. Hu, Y. et al. Variations of N2O fluxes in response to warming and cooling in an alpine meadow on the Tibetan Plateau. Clim. Change 143, 129–142 (2017).

    Article  Google Scholar 

  107. Li, D., Liu, Q., Yin, H., Luo, Y. & Hui, D. Differential responses and controls of soil CO2 and N2O fluxes to experimental warming and nitrogen fertilization in a subalpine coniferous spruce (Picea asperata Mast.) plantation forest. Forests https://doi.org/10.3390/f10090808 (2019).

    Article  Google Scholar 

  108. Zhao, Z. et al. Effects of warming and nitrogen deposition on CH4, CO2 and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau. Sci. Total Environ. 592, 565–572 (2017).

    Article  Google Scholar 

  109. Tang, L. et al. Warming counteracts grazing effects on the functional structure of the soil microbial community in a Tibetan grassland. Soil. Biol. Biochem. 134, 113–121 (2019).

    Article  Google Scholar 

  110. Xu, M. et al. Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environ. Exp. Botany 109, 54–62 (2015).

    Article  Google Scholar 

  111. Jia, J. et al. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Glob. Change Biol. 25, 4383–4393 (2019). Uses a manipulative soil warming experiment to compare warming effects on the composition and sourcing of SOC pools at different depths.

    Article  Google Scholar 

  112. Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Change Biol. 27, 2061–2075 (2021).

    Article  Google Scholar 

  113. Chang, R. et al. Soil organic carbon becomes newer under warming at a permafrost site on the Tibetan Plateau. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2020.108074 (2021).

    Article  Google Scholar 

  114. Liu, L. et al. Responses of peat carbon at different depths to simulated warming and oxidizing. Sci. Total Environ. 548, 429–440 (2016).

    Article  Google Scholar 

  115. Fu, G., Zhang, H. R. & Sun, W. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the northern Tibetan Plateau. Sci. Total Environ. 650, 2666–2673 (2019).

    Article  Google Scholar 

  116. Fu, G. & Shen, Z.-X. Asymmetrical warming of growing/non-growing season increases soil respiration during growing season in an alpine meadow. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.152591 (2022).

    Article  Google Scholar 

  117. Lin, L., Wang, Q., Zhang, Z. & He, J. Warming enhances soil freezing and thawing circles in the non-growing season in a Tibetan alpine grassland. Acta Sci. Nat. Univ. Pekin. 53, 171–178 [in Chinese] (2017).

    Google Scholar 

  118. Song, W. et al. Methane emissions from an alpine wetland on the Tibetan Plateau: neglected but vital contribution of the nongrowing season. J. Geophys. Res. Biogeosci. 120, 1475–1490 (2015).

    Article  Google Scholar 

  119. Yu, J. et al. Long-term trend of water vapor over the Tibetan Plateau in boreal summer under global warming. Sci. China Earth Sci. https://doi.org/10.1007/s11430-021-9874-0 (2022).

    Article  Google Scholar 

  120. Wang, Y., Xie, X., Shi, J. & Zhu, B. Ensemble runoff modeling driven by multi-source precipitation products over the Tibetan Plateau. Chin. Sci. Bull. 66, 4169–4186 in Chinese. (2021).

    Article  Google Scholar 

  121. Qiao, B. J., Zhu, L. P. & Yang, R. M. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote. Sens. Environ. 222, 232–243 (2019).

    Article  Google Scholar 

  122. Zhao, D., Zhu, Y., Wu, S. & Zheng, D. Projection of vegetation distribution to 1.5 degrees C and 2 degrees C of global warming on the Tibetan Plateau. Glob. Planet. Change https://doi.org/10.1016/j.gloplacha.2021.103525 (2021).

    Article  Google Scholar 

  123. Zhao, Y. et al. Soil development mediates precipitation control on plant productivity and diversity in alpine grasslands. Geoderma https://doi.org/10.1016/j.geoderma.2022.115721 (2022).

    Article  Google Scholar 

  124. Wang, Y., Zhu, Z., Ma, Y. & Yuan, L. Carbon and water fluxes in an alpine steppe ecosystem in the Nam Co area of the Tibetan Plateau during two years with contrasting amounts of precipitation. Int. J. Biometeorol. 64, 1183–1196 (2020).

    Article  Google Scholar 

  125. Liu, F., Zhang, Y. & Luo, J. The effects of experimental warming and CO2 concentration doubling on soil organic carbon fractions of a montane coniferous forest on the eastern Qinghai-Tibetan Plateau. Eur. J. For. Res. 137, 211–221 (2018).

    Article  Google Scholar 

  126. Fu, G., Shen, Z.-X. & Zhang, X.-Z. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the northern Tibetan Plateau. Agric. For. Meteorol. 249, 11–21 (2018).

    Article  Google Scholar 

  127. Yu, C.-Q., Wang, J.-W., Shen, Z.-X. & Fu, G. Effects of experimental warming and increased precipitation on soil respiration in an alpine meadow in the northern Tibetan Plateau. Sci. Total Environ. 647, 1490–1497 (2019).

    Article  Google Scholar 

  128. Chen, Q., Niu, B., Hu, Y., Luo, T. & Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136787 (2020).

    Article  Google Scholar 

  129. Wu, H. et al. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135818 (2020).

    Article  Google Scholar 

  130. Du, Y., Guo, X., Cao, G. & Li, Y. Increased nitrous oxide emissions resulting from nitrogen addition and increased precipitation in an alpine meadow ecosystem. Pol. J. Environ. Stud. 25, 447–451 (2016).

    Article  Google Scholar 

  131. Liu, X. et al. Dominant influence of non-thawing periods on annual CO2 emissions from Zoige peatlands: five-year eddy covariance analysis. Ecol. Indic. 129, 107913 (2021).

    Article  Google Scholar 

  132. Wang, Y. et al. Increasing trends in rainfall-runoff erosivity in the source region of the Three Rivers, 1961–2012. Sci. Total Environ. 592, 639–648 (2017).

    Article  Google Scholar 

  133. You, Q. et al. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2019.103043 (2020).

    Article  Google Scholar 

  134. Wu, T. et al. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. Int. J. Climatol. 33, 920–930 (2013).

    Article  Google Scholar 

  135. Li, S., Zhang, Y., Wang, Z. & Li, L. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv. 30, 276–286 (2018).

    Article  Google Scholar 

  136. Wang, L. et al. High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes. Sci. Total Environ. 801, 149692 (2021).

    Article  Google Scholar 

  137. Yang, Y. et al. Permafrost and drought regulate vulnerability of Tibetan Plateau grasslands to warming. Ecosphere https://doi.org/10.1002/ecs2.2233 (2018). Assesses the effect of warming on alpine ecosystems with and without permafrost, based on a synthesis of 12 warming experiments across the plateau.

    Article  Google Scholar 

  138. Yang, Z.-P., Gao, J.-X., Zhao, L., Xu, X.-L. & Ouyang, H. Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau. Plant Soil. 367, 687–700 (2013).

    Article  Google Scholar 

  139. Ding, J. Z. et al. Decadal soil carbon accumulation across Tibetan permafrost regions. Nat. Geosci. 10, 420–424 (2017). Assesses decadal changes in SOC stocks in the active layer of permafrost-affected soils, based on repeated measurements from the 2000s to 2010s.

    Article  Google Scholar 

  140. Chen, S. et al. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/4/045406 (2012).

    Article  Google Scholar 

  141. Jin, X.-Y. et al. Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Change Res. 12, 29–47 (2021).

    Article  Google Scholar 

  142. Wu, M.-H. et al. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc. Natl Acad. Sci. USA 118, e2025321118 (2021). Examines how the diversity, composition and network structure of active layer microbial communities respond to permafrost degradation in alpine ecosystems of the QTP.

    Article  Google Scholar 

  143. Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).

    Article  Google Scholar 

  144. Liu, Y. W., Xu, R., Wang, Y. S., Pan, Y. P. & Piao, S. L. Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau. Atmos. Chem. Phys. 15, 11683–11700 (2015).

    Article  Google Scholar 

  145. Qiao, N., Xu, X., Cao, G., Ouyang, H. & Kuzyakov, Y. Land use change decreases soil carbon stocks in Tibetan grasslands. Plant Soil. 395, 231–241 (2015).

    Article  Google Scholar 

  146. Miehe, G. et al. The Kobresia pygmaea ecosystem of the Tibetan highlands — origin, functioning and degradation of the world’s largest pastoral alpine ecosystem Kobresia pastures of Tibet. Sci. Total Environ. 648, 754–771 (2019).

    Article  Google Scholar 

  147. Liu, X. et al. Changes in soil carbon and nitrogen stocks following degradation of alpine grasslands on the Qinghai-Tibetan Plateau: a meta-analysis. Land Degrad. Dev. 32, 1262–1273 (2021).

    Article  Google Scholar 

  148. Zhou, G. et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob. Change Biol. 23, 1167–1179 (2017).

    Article  Google Scholar 

  149. Hafner, S. et al. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob. Change Biol. 18, 528–538 (2012).

    Article  Google Scholar 

  150. Du, C., Jing, J., Shen, Y., Liu, H. & Gao, Y. Short-term grazing exclusion improved topsoil conditions and plant characteristics in degraded alpine grasslands. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2019.105680 (2020).

    Article  Google Scholar 

  151. Sun, Y., Schleuss, P. M., Pausch, J., Xu, X. L. & Kuzyakov, Y. Nitrogen pools and cycles in Tibetan Kobresia pastures depending on grazing. Biol. Fertil. Soils 54, 569–581 (2018). Assesses the effect of grazing on this C–N exchange mechanism based on a 15NH4+ field labelling experiment with additional clipping and shading treatments.

    Article  Google Scholar 

  152. Yang, D. et al. Water–air interface greenhouse gas emissions (CO2, CH4, and N2O) emissions were amplified by continuous dams in an urban river in Qinghai-Tibet Plateau, China. Water https://doi.org/10.3390/w12030759 (2020).

    Article  Google Scholar 

  153. Zhuang, M., Gongbuzeren, Zhang, J. & Li, W. Community-based seasonal movement grazing maintains lower greenhouse gas emission intensity on Qinghai-Tibet Plateau of China. Land Use Policy 85, 155–160 (2019).

    Article  Google Scholar 

  154. Sun, G. et al. Responses of root exudation and nutrient cycling to grazing intensities and recovery practices in an alpine meadow: an implication for pasture management. Plant Soil. 416, 515–525 (2017).

    Article  Google Scholar 

  155. Yin, M. et al. Enhancement of N2O emissions by grazing is related to soil physicochemical characteristics rather than nitrifier and denitrifier abundances in alpine grassland. Geoderma https://doi.org/10.1016/j.geoderma.2020.114511 (2020).

    Article  Google Scholar 

  156. Tang, S. et al. Effect of grazing on methane uptake from Eurasian steppe of China. BMC Ecol. https://doi.org/10.1186/s12898-018-0168-x (2018).

    Article  Google Scholar 

  157. Li, M. et al. Declining human activity intensity on alpine grasslands of the Tibetan Plateau. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2021.113198 (2021).

    Article  Google Scholar 

  158. Xiong, Q. et al. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000–2015. J. Arid Land. 11, 637–651 (2019).

    Article  Google Scholar 

  159. Sun, J. et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 65, 1405–1414 (2020).

    Article  Google Scholar 

  160. Liu, X., Ma, Z., Huang, X. & Li, L. How does grazing exclusion influence plant productivity and community structure in alpine grasslands of the Qinghai-Tibetan Plateau? Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2020.e01066 (2020).

    Article  Google Scholar 

  161. Liu, X. et al. Does grazing exclusion improve soil carbon and nitrogen stocks in alpine grasslands on the Qinghai-Tibetan Plateau? A meta-analysis. Sustainability https://doi.org/10.3390/su12030977 (2020).

    Article  Google Scholar 

  162. Wei, D. et al. Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China. Plant Soil 359, 45–55 (2012).

    Article  Google Scholar 

  163. Li, J. et al. The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2020.106084 (2020).

    Article  Google Scholar 

  164. Tai, B., Wu, Q., Zhang, Z. & Xu, X. Cooling performance and deformation behavior of crushed-rock embankments on the Qinghai-Tibet Railway in permafrost regions. Eng. Geol. https://doi.org/10.1016/j.enggeo.2019.105453 (2020).

    Article  Google Scholar 

  165. Zhang, Y. et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chin. Sci. Bull. 64, 2865–2875 (2019).

    Article  Google Scholar 

  166. Yang, K. et al. Temperature response of soil carbon decomposition depends strongly on forest management practice and soil layer on the eastern Tibetan Plateau. Sci. Rep. 7, 4777 (2017).

    Article  Google Scholar 

  167. Fu, G. & Shen, Z.-X. Response of alpine plants to nitrogen addition on the Tibetan Plateau: a meta-analysis. J. Plant Growth Regul. 35, 974–979 (2016).

    Article  Google Scholar 

  168. Luo, L. et al. UAV-based spatiotemporal thermal patterns of permafrost slopes along the Qinghai–Tibet engineering corridor. Landslides 15, 2161–2172 (2018).

    Article  Google Scholar 

  169. Wu, Q., Liu, Y., Zhang, J. & Tong, C. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China. Permafr. Periglac. Process. 13, 199–205 (2002).

    Article  Google Scholar 

  170. Wen, Z. et al. Managing ice-rich permafrost exposed during cutting excavation along Qinghai-Tibetan railway: experiences and implementation. Eng. Geol. 122, 316–327 (2011).

    Article  Google Scholar 

  171. Zhao, X. et al. Influence of proximity to the Qinghai-Tibet highway and railway on variations of soil heavy metal concentrations and bacterial community diversity on the Tibetan Plateau. Sci. Cold Arid. Reg. 11, 407–418 (2019).

    Google Scholar 

  172. Bardgett, R. D. & Saggar, S. Effects of heavy-metal contamination on the short-term decomposition of labeled C-14 glucose in a pasture soil. Soil Biol. Biochem. 26, 727–733 (1994).

    Article  Google Scholar 

  173. Peng, C. et al. Building a ‘green’ railway in China. Science 316, 546–547 (2007).

    Article  Google Scholar 

  174. Zhu, X. et al. Effects of warming, grazing/cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau. Agric. For. Meteorol. 214, 506–514 (2015).

    Article  Google Scholar 

  175. Luo, L. H., Duan, Q. T., Wang, L. X., Zhao, W. Z. & Zhuang, Y. L. Increased human pressures on the alpine ecosystem along the Qinghai-Tibet Railway. Reg. Environ. Change https://doi.org/10.1007/s10113-020-01616-7 (2020).

    Article  Google Scholar 

  176. Wang, Y. et al. Precipitation determines the magnitude and direction of interannual responses of soil respiration to experimental warming. Plant Soil. 458, 75–91 (2021). Combines 7-year soil respiration measurements in a warming experiment with a meta-analysis on grassland warming experiments globally to investigate how precipitation influences the warming response of soil respiration.

    Article  Google Scholar 

  177. Zhao, J. et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteorol. 279, 107761 (2019).

    Article  Google Scholar 

  178. Lin, L. et al. Precipitation overrides warming in mediating soil nitrogen pools in an alpine grassland ecosystem on the Tibetan Plateau. Sci. Rep. https://doi.org/10.1038/srep31438 (2016).

    Article  Google Scholar 

  179. Peng, F., Xue, X., You, Q., Zhou, X. & Wang, T. Warming effects on carbon release in a permafrost area of Qinghai-Tibet Plateau. Environ. Earth Sci. 73, 57–66 (2015).

    Article  Google Scholar 

  180. Luo, D., Jin, H., Bense, V. F., Jin, X. & Li, X. Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the headwater area of the Yellow River, Tibetan Plateau. Geoderma https://doi.org/10.1016/j.geoderma.2020.114531 (2020).

    Article  Google Scholar 

  181. Chang, R., Wang, G., Yang, Y. & Chen, X. Experimental warming increased soil nitrogen sink in the Tibetan permafrost. J. Geophys. Res. Biogeosci. 122, 1870–1879 (2017).

    Article  Google Scholar 

  182. Wu, J. et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2020.111875 (2021).

    Article  Google Scholar 

  183. Wang, Z. et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China. Ecol. Inform. 33, 32–44 (2016).

    Article  Google Scholar 

  184. Chen, H. et al. Attribution analyses of changes in alpine grasslands on the Qinghai-Tibetan Plateau. Chin. Sci. Bull. 65, 2406–2418 (2020).

    Article  Google Scholar 

  185. Zhang, Y. et al. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau. Rangel. J. 37, 57–65 (2015).

    Article  Google Scholar 

  186. Rui, Y. et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qinghai-Tibet Plateau in China. J. Soils Sediment. 11, 903–914 (2011).

    Article  Google Scholar 

  187. Ma, S. et al. Warming decreased and grazing increased plant uptake of amino acids in an alpine meadow. Ecol. Evol. 5, 3995–4005 (2015).

    Article  Google Scholar 

  188. Luo, C. et al. Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau. Soil Biol. Biochem. 41, 2493–2500 (2009).

    Article  Google Scholar 

  189. Wang, J. et al. Effects of warming and clipping on CH4 and N2O fluxes in an alpine meadow. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2020.108278 (2021).

    Article  Google Scholar 

  190. Wang, T. H. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. https://doi.org/10.1126/sciadv.aaz3513 (2020). Assesses SOC stocks in the QTP permafrost based more than 100 site measurements and projects their future trends.

    Article  Google Scholar 

  191. Jin, Z., Zhuang, Q., He, J.-S., Zhu, X. & Song, W. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/10/8/085007 (2015).

    Article  Google Scholar 

  192. Du, Y. et al. Simulation and prediction of nitrous oxide emission by the water and nitrogen management model on the Tibetan Plateau. Biochem. Syst. Ecol. 65, 49–56 (2016).

    Article  Google Scholar 

  193. Zhang, W., Zhang, F., Qi, J. & Hou, F. Modeling impacts of climate change and grazing effects on plant biomass and soil organic carbon in the Qinghai-Tibetan grasslands. Biogeosciences 14, 5455–5470 (2017).

    Article  Google Scholar 

  194. Voigt, C. et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 1, 420–434 (2020).

    Article  Google Scholar 

  195. Notice by the State Council of the Action Plan for Carbon Dioxide Peaking Before 2030 (National Development and Reform Commission of China, 2021).

  196. Mallapaty, S. How China could be carbon neutral by mid-century. Nature 586, 482–483 (2020).

    Article  Google Scholar 

  197. Gelsor, N. et al. Solar energy on the Tibetan Plateau: atmospheric influences. Sol. Energy 173, 984–992 (2018).

    Article  Google Scholar 

  198. Zhong, R., Zhao, T., He, Y. & Chen, X. Hydropower change of the water tower of Asia in 21st century: a case of the Lancang River hydropower base, upper Mekong. Energy 179, 685–696 (2019).

    Article  Google Scholar 

  199. Wild, T. B., Loucks, D. P., Annandale, G. W. & Kaini, P. Maintaining sediment flows through hydropower dams in the Mekong river basin. J. Water Resour. Plan. Manag. https://doi.org/10.1061/(asce)wr.1943-5452.0000560 (2016).

    Article  Google Scholar 

  200. Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Article  Google Scholar 

  201. Fang, Y. & Wei, Y. Climate change adaptation on the Qinghai-Tibetan Plateau: the importance of solar energy utilization for rural household. Renew. Sustain. Energy Rev. 18, 508–518 (2013).

    Article  Google Scholar 

  202. Huang, K. et al. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote. Sens. 8, 876 (2016).

    Article  Google Scholar 

  203. Mu, C. C. et al. The status and stability of permafrost carbon on the Tibetan Plateau. Earth Sci. Rev. https://doi.org/10.1016/j.earcirev.2020.103433 (2020).

    Article  Google Scholar 

  204. Chen, F. et al. The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era. Sci. Bull. 66, 1263–1266 (2021).

    Article  Google Scholar 

  205. The State Council on the Implementation of Notice of the Third National Soil Survey (State Council of the People’s Republic of China, 2022).

  206. García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 507–517 (2021).

    Article  Google Scholar 

  207. Peng, P. & Zhu, L. Observations of land surface processes of the Tibetan Plateau based on the field stations network. Sci. Technol. Rev. 35, 97–102 (2017). in Chinese.

    Google Scholar 

  208. Zhao, X. et al. Using balance of seasonal herbage supply and demand to inform sustainable grassland management on the Qinghai–Tibetan Plateau. Front. Agric. Sci. Eng. https://doi.org/10.15302/j-fase-2018203 (2018).

    Article  Google Scholar 

  209. Hou, X. et al. Vegetation Map of the People’s Republic of China (1:4 M) (SinoMaps, 1982).

  210. Wang, J. et al. High uncertainties detected in the wetlands distribution of the Qinghai-Tibet Plateau based on multisource data. Landsc. Ecol. Eng. 16, 47–61 (2020).

    Article  Google Scholar 

  211. Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Yin, J. Zhang and X. Liu for providing data, and J. Liu, Y. He, D. Zhu, G. Yang, D. Xue, L. Liu and X. Huang for providing insights. We give special thanks to W. Xiong for her careful editing of the draft. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA2005010404), the Second Tibetan Plateau Scientific Expedition (2019QZKK0304).

Author information

Authors and Affiliations

Authors

Contributions

H.C. conceived the ideas and designed the review framework. Q.Z. and P.J assisted with data collation and figures. N.W., Y.G., X.F., J.T., S.N., Y.Z. and C.P. provided research experience and opinions, and helped to improve the writing of the paper. H.C., Y.W., P.J. and X.X. led the writing of the manuscript. Other authors contributed to the drafts and revision. All authors gave the final approval for publication.

Corresponding authors

Correspondence to Huai Chen or Yanfen Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Ju, P., Zhu, Q. et al. Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. Nat Rev Earth Environ 3, 701–716 (2022). https://doi.org/10.1038/s43017-022-00344-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00344-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene