Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Timing and mechanisms of Tibetan Plateau uplift

Abstract

The timing of the initial India–Asia collision and the mechanisms that led to the eventual formation of the high (>5 km) Tibetan Plateau remain enigmatic. In this Review, we describe the spatio-temporal distribution and geodynamic mechanisms of surface uplift in the Tibetan Plateau, based on geologic and palaeo-altimetric constraints. Localized mountain building was initiated during a Cretaceous microcontinent collision event in central Tibet and ocean–continent convergence in southern Tibet. Geological data indicate that India began colliding with Asian-affinity rocks 65–60 million years ago (Ma). High-elevation (>4 km) east–west mountain belts were established in southern and central Tibet by ~55 Ma and ~45 Ma, respectively. These mountain belts were separated by ≤2 km elevation basins centred on the microcontinent suture in central Tibet, until the basins were uplifted further between ~38 and 29 Ma. Basin uplift to ≥4 km elevation was delayed along the India–Asia suture zone until ~20 Ma, along with that in northern Tibet. Delamination and break-off of the subducted Indian and Asian lithosphere were the dominant mechanisms of surface uplift, with spatial variations controlled by inherited lithospheric heterogeneities. Future research should explore why surface uplift along suture zones — the loci of the initial collision — was substantially delayed compared with the time of initial collision.

Key points

  • The Tibetan Plateau did not get uplifted as a large entity or grow systematically outward from the India–Asia suture (IAS), because lithospheric heterogeneities in Asia imparted by pre-Cenozoic tectonic events created relatively weak and strong zones that deformed differently during collision.

  • Cretaceous tectonic events built embryonic mountains belts and weakened the lithosphere in southern and central Tibet.

  • Continental Asian detritus appeared in Indian continental margin sedimentary rocks by 65–60 million years ago (Ma). The most conservative interpretation based on available geologic constraints is that these sediments mark the initiation of India–Asia collision.

  • The quest to further quantify the history of surface elevation change across Tibet spurred the field of quantitative palaeo-altimetry, such as measurement of oxygen and hydrogen isotopes in palaeo-water proxies, carbonate clumped isotope thermometry and fossil leaf physiognomy.

  • Quantitative palaeo-altimetry suggests that high (≥4 km) elevations were obtained in southern Tibet by ~55 Ma and in central Tibet by ~45 Ma, whereas an intervening valley remained at <2 km elevation until between ~38 and 29 Ma. The IAS zone and Himalaya Mountains were rapidly uplifted from <3 km to near-modern elevations at ~20 Ma.

  • Subcrustal processes such as subduction, delamination and break-off of Indian and Asian continental lithosphere were important tectonic events during the formation of the Tibetan Plateau.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Digital elevation map and cross-section of the Himalaya and Tibetan Plateau.
Fig. 2: Proposed geodynamic mechanisms of continental collisional deformation and plateau formation.
Fig. 3: Competing hypotheses for the history of India–Asia suturing.
Fig. 4: History of surface elevation change across Tibet.
Fig. 5: Lithosphere-scale tectonic processes and corresponding changes in surface elevation and climate.
Fig. 6: Modern geometries of subducting Indian and Asian lithosphere.

Similar content being viewed by others

References

  1. Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the India monsoon. Rev. Geophys. 31, 357–396 (1993).

    Article  Google Scholar 

  2. Clark, M. K. et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23, TC1006 (2004).

    Article  Google Scholar 

  3. Spicer, R. A. Tibet, the Himalaya, Asian monsoons and biodiversity — in what ways are they related? Plant Divers. 39, 233–244 (2017).

    Article  Google Scholar 

  4. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  Google Scholar 

  5. Gaillardet, J. & Galy, A. Himalaya — carbon sink or source? Science 320, 1727–1728 (2008).

    Article  Google Scholar 

  6. Guo, Z., Wilson, M., Dingwell, D. B. & Liu, J. India–Asia collision as a driver of atmospheric CO2 in the Cenozoic. Nat. Commun. 12, 3891 (2021).

    Article  Google Scholar 

  7. Allègre, C. J. et al. Structure and evolution of the Himalaya–Tibet orogenic belt. Nature 307, 17–22 (1984).

    Article  Google Scholar 

  8. Dewey, J. F., Shackleton, R. M., Chang, C. F. & Sun, Y. Y. The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. A 327, 379–413 (1988).

    Google Scholar 

  9. Yin, A. & Harrison, T. M. Geologic evolution of the Himalayan–Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28, 211–280 (2000).

    Article  Google Scholar 

  10. Cai, F. L., Ding, L. & Yue, Y. H. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India–Asia collision. Earth Planet. Sci. Lett. 305, 195–206 (2011).

    Article  Google Scholar 

  11. Aitchison, J. C., Ali, J. R. & Davis, A. M. When and where did India and Asia collide? J. Geophys. Res. 112, B05423 (2007).

    Google Scholar 

  12. van Hinsbergen, D. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article  Google Scholar 

  13. Kapp, P. & DeCelles, P. G. Mesozoic–Cenozoic geological evolution of the Himalayan–Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).

    Article  Google Scholar 

  14. van Hinsbergen, D. J. J. et al. Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30, TC5003 (2011).

    Google Scholar 

  15. Replumaz, A., Negredo, A. M., Guillot, S., van der Beek, P. & Villasenor, A. Crustal mass budget and recycling during the India/Asia collision. Tectonophysics 492, 99–107 (2010).

    Article  Google Scholar 

  16. Ingalls, M., Rowley, D. B., Currie, B. S. & Colman, A. S. Large-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nat. Geosci. 9, 848–853 (2016).

    Article  Google Scholar 

  17. Roe, G. H. et al. A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma. J. Geophys. Res. Atmos. 121, 5453–5470 (2016).

    Article  Google Scholar 

  18. An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene time. Nature 411, 62–66 (2001).

    Article  Google Scholar 

  19. Molnar, P., Boos, W. R. & Battisti, D. S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010).

    Article  Google Scholar 

  20. Spicer, R. A. et al. The topographic evolution of the Tibetan region as revealed by palaeontology. Palaeobio. Palaeoenv. 101, 213–243 (2020).

    Article  Google Scholar 

  21. Tapponnier, P. et al. Oblique stepwise rise and growth of the Tibet plateau. Science 294, 1671–1677 (2001).

    Article  Google Scholar 

  22. Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006).

    Article  Google Scholar 

  23. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 (1992).

    Article  Google Scholar 

  24. Royden, L. H., Burchfiel, B. C. & Van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).

    Article  Google Scholar 

  25. Ding, L. et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250–264 (2014).

    Article  Google Scholar 

  26. Su, T. et al. No high Tibetan Plateau until the Neogene. Sci. Adv. 5, eaav2189 (2019).

    Article  Google Scholar 

  27. Webb, A. A. G. et al. The Himalaya in 3D: slab dynamics controlled mountain building and monsoon intensification. Lithosphere 9, 637–651 (2017).

    Google Scholar 

  28. Kelly, S., Beaumont, C. & Butler, J. P. Inherited terrane properties explain enigmatic post-collisional Himalayan–Tibetan evolution. Geology 48, 8–14 (2020).

    Article  Google Scholar 

  29. Molnar, P. & Tapponnier, P. A possible dependence of tectonic strength on the age of the crust in Asia. Earth Planet. Sci. Lett. 52, 107–114 (1981).

    Article  Google Scholar 

  30. Kapp, P., DeCelles, P. G., Gehrels, G. E., Heizler, M. & Ding, L. Geological records of the Lhasa–Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 119, 917–933 (2007).

    Article  Google Scholar 

  31. Zhu, D.-C. et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 245, 7–17 (2016).

    Article  Google Scholar 

  32. Kapp, P., Yin, A., Harrison, T. M. & Ding, L. Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull. 117, 865–878 (2005).

    Article  Google Scholar 

  33. Ma, A. et al. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): implications for the tectonic uplift of central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 30–47 (2018).

    Article  Google Scholar 

  34. Rohrmann, A. et al. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology 40, 187–190 (2012).

    Article  Google Scholar 

  35. Li, L., Garzione, C. N., Pullen, A., Zhang, P. & Li, Y. Late Cretaceous–Cenozoic basin evolution and topographic growth of the Hoh Xil Basin, central Tibetan Plateau. Geol. Soc. Am. Bull. 130, 499–521 (2018).

    Article  Google Scholar 

  36. DeCelles, P. G., Kapp, P., Ding, L. & Gehrels, G. E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol. Soc. Am. Bull. 119, 654–680 (2007).

    Article  Google Scholar 

  37. Volkmer, J. E., Kapp, P., Guynn, J. H. & Lai, Q. Cretaceous–Tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics 26, TC6007 (2007).

    Article  Google Scholar 

  38. Tapponnier, P. et al. The Tibetan side of the India–Eurasia collision. Nature 294, 405–410 (1981).

    Article  Google Scholar 

  39. Burg, J. P. & Chen, G. M. Tectonics and structural zonation of southern Tibet, China. Nature 311, 219–223 (1984).

    Article  Google Scholar 

  40. Ji, W.-Q., Wu, F.-Y., Chung, S.-L., Li, J.-X. & Liu, C.-Z. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 262, 229–245 (2009).

    Article  Google Scholar 

  41. Wang, C. et al. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos 262, 320–333 (2016).

    Article  Google Scholar 

  42. BouDagher-Fadel, M. K. et al. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the mid-Cretaceous limestones in the southern Tibetan Plateau. J. Foraminifer. Res. 47, 188–207 (2017).

    Article  Google Scholar 

  43. Leier, A. L., DeCelles, P. G., Kapp, P. & Ding, L. The Takena formation of the Lhasa terrane, southern Tibet: the record of a Late Cretaceous retroarc foreland basin. Geol. Soc. Am. Bull. 119, 31–48 (2007).

    Article  Google Scholar 

  44. Sun, G., Hu, X., Sinclair, H. D., BouDagher-Fadel, M. K. & Wang, J. Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. Geol. Soc. Am. Bull. 127, 1001–1020 (2015).

    Google Scholar 

  45. Kapp, P. et al. The Gangdese retroarc thrust belt revealed. GSA Today 17, 4–9 (2007).

    Article  Google Scholar 

  46. Zhu, D.-C., Wang, Q., Cawood, P. A., Zhao, Z.-D. & Mo, X.-X. Raising the Gangdese mountains in southern Tibet. J. Geophys. Res. Solid. Earth 122, 214–223 (2017).

    Article  Google Scholar 

  47. Hu, F. et al. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole-rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202 (2020).

    Article  Google Scholar 

  48. Tang, M., Ji, W.-Q., Chu, X., Wu, A. & Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76–80 (2021).

    Article  Google Scholar 

  49. Sundell, K. E., Laskowski, A. K., Kapp, P. A., Ducea, M. N. & Chapman, J. B. Jurassic to Neogene quantiative crustal thickness estimates in southern Tibet. GSA Today 31, 4–10 (2021).

    Article  Google Scholar 

  50. Staisch, L. M. et al. A Cretaceous–Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: implications for the tectonic evolution of the northern Tibet Plateau. Tectonics 33, 281–301 (2014).

    Article  Google Scholar 

  51. Sha, J., Fabbi, S., Cestari, R. & Consorti, L. Stratigraphic and taxonomic considerations on the Late Cretaceous rudist fauna of Aksai Chin (Western Tibet, China) from the De Filippi Collection. Carnets Geol. 20, 249–272 (2020).

    Article  Google Scholar 

  52. Ali, J. R. & Aitchison, J. C. Greater India. Earth Sci. Rev. 72, 169–188 (2005).

    Article  Google Scholar 

  53. Ding, L. Paleocene deep-water sediments and radiolarian faunas: implications for evolution of Yarlung-Zangbo foreland basin, southern Tibet. Sci. China Ser. D. Earth Sci 46, 84–96 (2003).

    Article  Google Scholar 

  54. Jadoul, F., Berra, F. & Garzanti, E. The Tethys Himalayan passive margin from Late Triassic to early Cretaceous (south Tibet). J. Asian Earth Sci. 16, 173–194 (1998).

    Article  Google Scholar 

  55. Hu, X. et al. The timing of India–Asia collision onset — facts, theories, controversies. Earth Sci. Rev. 160, 264–299 (2016).

    Article  Google Scholar 

  56. Ding, L. et al. Processes of initial collision and suturing between India and Asia. Sci. China Earth Sci. 60, 635–651 (2017).

    Article  Google Scholar 

  57. Searle, M. P. et al. The closing of the Tethys and the tectonics of the Himalaya. Geol. Soc. Am. Bull. 98, 678–701 (1987).

    Article  Google Scholar 

  58. van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V. & Gassmoller, R. Acceleration and deceleration of India–Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. 116, B06101 (2011).

    Google Scholar 

  59. Yang, T. et al. New insights into the India–Asia collision process from Cretaceous paleomagnetic and geochronologic results in the Lhasa terrane. Gondwana Res. 28, 625–641 (2015).

    Article  Google Scholar 

  60. van Hinsbergen, D. J. J. et al. Reconstructing Greater India: paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760, 69–94 (2019).

    Article  Google Scholar 

  61. Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India–Asia collision. Natl. Sci. Rev. 8, nwaa173 (2021).

    Google Scholar 

  62. Huang, W. et al. Remagnetization of the Paleogene Tibetan Himalayan carbonate rocks in the Gamba area: implications for reconstructing the lower plate in the India–Asia collision. J. Geophys. Res. Solid. Earth 122, 808–825 (2017).

    Article  Google Scholar 

  63. Rowley, D. B. Comparing paleomagnetic study means with apparent wander paths: a case study and paleomagnetic test of the Greater India versus Greater Indian Basin hypotheses. Tectonics 38, 722–740 (2019).

    Article  Google Scholar 

  64. Garzanti, E. & Hu, X. Latest Cretaceous Himalayan tectonics: obduction, collision or Deccan-related uplift? Gondwana Res. 28, 165–178 (2015).

    Article  Google Scholar 

  65. Aitchison, J. C. et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth Planet. Sci. Lett. 183, 231–244 (2000).

    Article  Google Scholar 

  66. Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475–479 (2015).

    Article  Google Scholar 

  67. Martin, C. R. et al. Paleocene latitude of the Kohistan–Ladakh arc indicates multistage India–Eurasia collision. Proc. Natl Acad. Sci. USA 117, 29487–29494 (2020).

    Article  Google Scholar 

  68. Van der Voo, R., Spakman, W. & Bijwaard, H. Tethyan subducted slabs under India. Earth Planet. Sci. Lett. 171, 7–20 (1999).

    Article  Google Scholar 

  69. DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene–Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India–Asia collision. Tectonics 33, 824–849 (2014).

    Article  Google Scholar 

  70. Hu, X., Garzanti, E., Moore, T. & Raffi, I. Direct stratigraphic dating of India–Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 43, 859–862 (2015).

    Article  Google Scholar 

  71. Ding, L., Kapp, P. & Wan, X. Paleocene–Eocene record of ophiolite obduction and initial India–Asia collision, south-central Tibet. Tectonics 24, TC3001 (2005).

    Article  Google Scholar 

  72. Meng, J., Gilder, S. A., Li, Y., Wang, C. & Liu, T. Expanse of Greater India in the late Cretaceous. Earth Planet. Sci. Lett. 542, 116330 (2020).

    Article  Google Scholar 

  73. Ding, L. et al. The India–Asia collision in north Pakistan: insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet. Sci. Lett. 455, 49–61 (2016).

    Article  Google Scholar 

  74. Qasim, M. et al. Tectonic implications of detrital zircon ages from Lesser Himalayan Mesozoic–Cenozoic strata, Pakistan. Geochem. Geophys. Geosyst. 19, 1636–1659 (2018).

    Article  Google Scholar 

  75. Baral, U. et al. Detrital zircon U–Pb geochronology of a Cenozoic foreland basin in northeast India: implications for zircon provenance during the collision of the Indian and Asian plates. Terra Nova 31, 18–27 (2019).

    Article  Google Scholar 

  76. Klootwijk, C. T., Conaghan, P. J. & Powell, C. M. The Himalayan Arc: large-scale continental subduction, oroclinal bending and back-arc spreading. Earth Planet. Sci. Lett. 75, 167–183 (1985).

    Article  Google Scholar 

  77. Rowley, D. B. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145, 1–13 (1996).

    Article  Google Scholar 

  78. Garzione, C. N., Quade, J., DeCelles, P. G. & English, N. B. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet. Sci. Lett. 183, 215–229 (2000).

    Article  Google Scholar 

  79. Rowley, D. B., Pierrehumbert, R. T. & Currie, B. S. A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet. Sci. Lett. 188, 253–268 (2001).

    Article  Google Scholar 

  80. Quade, J., Breecker, D., Daeron, M. & Eiler, J. The paleoaltimetry of Tibet: an isotopic perspective. Am. J. Sci. 311, 77–115 (2011).

    Article  Google Scholar 

  81. Li, L. & Garzione, C. N. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: implications for paleoelevation reconstruction. Earth Planet. Sci. Lett. 460, 302–314 (2017).

    Article  Google Scholar 

  82. Quade, J. et al. Resetting southern Tibet: the serious challenge of obtaining primary records of paleoaltimetry. Glob. Planet. Change 191, 103194 (2020).

    Article  Google Scholar 

  83. Wei, Y. et al. Low palaeoelevation of the northern Lhasa terrane during late Eocene: fossil foraminifera and stable isotope evidence from the Gerze Basin. Sci. Rep. 6, 27508 (2016).

    Article  Google Scholar 

  84. Huang, W. et al. Hydrothermal events in the Linzizong Group: implications for Paleogene exhumation and paleoaltimetry of the southern Tibetan Plateau. Earth Planet. Sci. Lett. 583, 117390 (2022).

    Article  Google Scholar 

  85. Currie, B. S. et al. Multiproxy paleoaltimetry of the Late Oligocene–Pliocene Oiyug Basin, southern Tibet. Am. J. Sci. 316, 401–436 (2016).

    Article  Google Scholar 

  86. Ingalls, M., Rowley, D. B., Currie, B. S. & Colman, A. S. Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Tibet. Am. J. Sci. 320, 479–532 (2020).

    Article  Google Scholar 

  87. Xiong, Z. et al. The rise and demise of the Paleogene central Tibetan valley. Sci. Adv. 8, eabj0944 (2022).

    Article  Google Scholar 

  88. Wang, Z., Schauble, E. A. & Eiler, J. M. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim. Cosmochim. Acta. 69, 4779–4797 (2004).

    Article  Google Scholar 

  89. Eiler, J. M. “Clumped-isotope” geochemistry — the study of naturally-occurring, multiply substituted isotopologues. Earth Planet. Sci. Lett. 262, 309–327 (2007).

    Article  Google Scholar 

  90. Spicer, R. A. et al. Constant elevation of southern Tibet over the past 15 million years. Nature 421, 622–624 (2003).

    Article  Google Scholar 

  91. Su, T. et al. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc. Natl Acad. Sci. USA 117, 32989–32995 (2020).

    Article  Google Scholar 

  92. Botsyun, S. & Ehlers, T. A. How can climate models be used in paleoelevation reconstructions? Front. Earth Sci. 9, 624542 (2021).

    Article  Google Scholar 

  93. Botsyun, S., Sepulchre, P., Risi, C. & Donnadieu, Y. Impacts of Tibetan Plateau uplift on atmospheric dynamics and associated precipitation δ18O. Clim. Past. 12, 1401–1420 (2016).

    Article  Google Scholar 

  94. Shen, H. & Poulsen, C. J. Precipitation δ18O on the Himalaya–Tibet orogeny and its relationship to surface elevation. Clim. Past. 15, 169–187 (2019).

    Article  Google Scholar 

  95. Botsyun, S. et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science 363, eaaq1436 (2019).

    Article  Google Scholar 

  96. Valdes, P. J. et al. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”. Science https://doi.org/10.1126/science.aax8474 (2019).

    Article  Google Scholar 

  97. Botsyun, S. et al. Response to comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”. Science https://doi.org/10.1126/science.aax8990 (2019).

    Article  Google Scholar 

  98. Xu, Q. et al. Paleogene high elevations in the Qiangtang terrane, central Tibetan Plateau. Earth Planet. Sci. Lett. 362, 31–42 (2013).

    Article  Google Scholar 

  99. Ingalls, M. et al. Paleocene to Pliocene low-latitude, high-elevation basins of southern Tibet: implications for tectonic models of India–Asia collision, Cenozoic climate, and geochemical weathering. Geol. Soc. Am. Bull. 130, 307–330 (2018).

    Article  Google Scholar 

  100. Spicer, R. A. et al. Why ‘the uplift of the Tibetan Plateau’ is a myth? Natl Sci. Rev. 8, nwaa091 (2020).

    Article  Google Scholar 

  101. DeCelles, P. G., Kapp, P., Quade, J. & Gehrels, G. E. Oligocene–Miocene Kailas Basin, southwestern Tibet: record of postcollisional upper-plate extension in the Indus–Yarlung suture zone. Geol. Soc. Am. Bull. 123, 1337–1362 (2011).

    Article  Google Scholar 

  102. Ding, L., Kapp, P., Zhong, D. & Deng, W. Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J. Petrol. 44, 1833–1865 (2003).

    Article  Google Scholar 

  103. Leech, M. L., Singh, S., Jain, A. K., Klemperer, S. L. & Manickavasagam, R. M. The onset of India–Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 234, 83–97 (2005).

    Article  Google Scholar 

  104. Ding, L. et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45, 215–218 (2017).

    Article  Google Scholar 

  105. Orme, D. A., Carrapa, B. & Kapp, P. Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze forearc basin, southern Tibet. Basin Res. 27, 387–411 (2015).

    Article  Google Scholar 

  106. Najman, Y. et al. Timing of India–Asia collision: geological, biostratigraphic, and palaeomagnetic constraints. J. Geophys. Res. 115, B12416 (2010).

    Article  Google Scholar 

  107. Zhang, Q., Willems, H., Ding, L., Grafe, K.-U. & Appel, E. Initial India–Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology. J. Geol. 120, 175–189 (2012).

    Article  Google Scholar 

  108. Currie, B. S., Rowley, D. B. & Tabor, N. J. Middle Miocene paleoaltimetry of southern Tibet: implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology 33, 181–184 (2005).

    Article  Google Scholar 

  109. Khan, M. A. et al. Miocene to Pleistocene floras and climate of the eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling–Oiyug Basin, Tibet. Glob. Planet. Change 113, 1–10 (2014).

    Article  Google Scholar 

  110. Bai, Y., Chen, C., Xu, Q. & Fang, X. Paleoaltimetry potentiality of branched GDGTs from southern Tibet. Geochem., Geophys., Geosyst. 19, 551–564 (2018).

    Article  Google Scholar 

  111. Chung, S.-L. et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci. Rev. 68, 173–196 (2005).

    Article  Google Scholar 

  112. Mo, X. et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96, 225–242 (2007).

    Article  Google Scholar 

  113. Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–620 (1984).

    Article  Google Scholar 

  114. Gibbons, A. D., Zahirovic, S., Müller, R. D., Whittaker, J. M. & Yatheesh, V. A tectonic model for reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Res. 28, 451–492 (2015).

    Article  Google Scholar 

  115. Laskowski, A. K., Kapp, P., Ding, L., Campbell, C. & Liu, X. H. Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet. Tectonics 36, 108–136 (2017).

    Article  Google Scholar 

  116. Ding, L., Kapp, P., Yue, Y. & Lai, Q. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth Planet. Sci. Lett. 254, 28–38 (2007).

    Article  Google Scholar 

  117. Guo, Z. & Wilson, M. Late Oligocene–early Miocene transformation of postcollisional magmatism in Tibet. Geology 47, 776–780 (2019).

    Article  Google Scholar 

  118. Li, Y., Wang, C., Zhao, X., Yin, A. & Ma, C. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Res. 22, 482–492 (2012).

    Article  Google Scholar 

  119. Law, R. & Allen, M. B. Diachronous Tibetan Plateau landscape evolution derived from lava field geomorphology. Geology 48, 263–267 (2020).

    Article  Google Scholar 

  120. Kapp, P. et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22, 1043 (2003).

    Article  Google Scholar 

  121. Pullen, A., Kapp, P., Gehrels, G. E., Ding, L. & Zhang, Q. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure. Geol. Soc. Am. Bull. 123, 585–600 (2011).

    Article  Google Scholar 

  122. Clark, M. K. et al. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J. Geophys. Res. 111, F03002 (2006).

    Google Scholar 

  123. Horton, B. K., Yin, A., Spurlin, M. S., Zhou, J. & Wang, J. Paleocene–Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet. Geol. Soc. Am. Bull. 114, 771–786 (2002).

    Article  Google Scholar 

  124. Spurlin, M. S., Yin, A., Horton, B. K., Zhou, J. & Wang, J. Structural evolution of the Yushu–Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Geol. Soc. Am. Bull. 117, 1293–1317 (2005).

    Article  Google Scholar 

  125. Li, L. et al. Carbonate stable and clumped isotopic evidence for late Eocene moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications. Geol. Soc. Am. Bull. 131, 831–844 (2018).

    Article  Google Scholar 

  126. Xiong, Z. et al. The early Eocene rise of the Gonjo Basin, SE Tibet: from low desert to high forest. Earth Planet. Sci. Lett. 543, 116312 (2020).

    Article  Google Scholar 

  127. Su, T. et al. Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet. Natl Sci. Rev. 6, 495–504 (2019).

    Article  Google Scholar 

  128. Liu-Zeng, J. et al. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth Planet. Sci. Lett. 490, 62–76 (2018).

    Article  Google Scholar 

  129. Jackson, W. T. Jr, Robinson, D. M., Weislogel, A. L., Jian, X. & McKay, M. P. Cenozoic development of the nonmarine Mula basin in the southern Yidun terrane: deposition and deformation in the eastern Tibetan Plateau associated with the India–Asia collision. Tectonics 37, 2446–2465 (2018).

    Article  Google Scholar 

  130. Jackson, W. T. Jr, Robinson, D. M., Weislogel, A. L. & Jian, X. Cenozoic reactivation along the Late Triassic Ganzi–Litang suture, eastern Tibetan Plateau. Geosci. Front. 11, 1069–1080 (2020).

    Article  Google Scholar 

  131. Hoke, G. D., Liu-Zeng, J., Hren, M. T., Wissink, G. K. & Garzione, C. N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sci. Lett. 394, 270–278 (2014).

    Article  Google Scholar 

  132. Nie, J. et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nat. Geosci. 11, 944–948 (2018).

    Article  Google Scholar 

  133. Xu, Q., Ding, L., Hetzel, R., Yue, Y. & Rades, E. F. Low elevation of the northern Lhasa terrane in the Eocene: implications for relief development in south Tibet. Terra Nova 27, 458–466 (2015).

    Article  Google Scholar 

  134. Wu, F., Miao, D., Chang, M.-M., Shi, G. & Wang, N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci. Rep. 7, 878 (2017).

    Article  Google Scholar 

  135. Fang, X. et al. Revised chronology of central Tibet uplift (Lunpola Basin). Sci. Adv. 6, eaba7298 (2020).

    Article  Google Scholar 

  136. Polissar, P. J., Freeman, K. H., Rowley, D. B., McInerney, F. A. & Currie, B. S. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet. Sci. Lett. 287, 64–76 (2009).

    Article  Google Scholar 

  137. DeCelles, P. G. et al. High and dry in central Tibet during the Late Oligocene. Earth Planet. Sci. Lett. 253, 389–401 (2007).

    Article  Google Scholar 

  138. Sun, J. et al. Palynological evidence for the latest Oligocene–early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 21–30 (2014).

    Article  Google Scholar 

  139. Farnsworth, A. et al. Paleoclimate model-derived thermal lapse rates: towards increasing precision in paleoaltimetry studies. Earth Planet. Sci. Lett. 564, 116903 (2021).

    Article  Google Scholar 

  140. Li, Z.-H., Liu, M. & Gerya, T. Lithosphere delamination in continental collisional orogens: a systematic numerical study. J. Geophys. Res. Solid. Earth 121, 5186–5211 (2016).

    Article  Google Scholar 

  141. DeCelles, P. G., Robinson, D. M. & Zandt, G. Implications of shortening in the Himalayan fold–thrust belt for uplift of the Tibetan Plateau. Tectonics 21, 1062 (2002).

    Article  Google Scholar 

  142. Kelly, S., Butler, J. P. & Beaumont, C. Continental collision with a sandwiched accreted terrane: insights into Himalayan–Tibetan lithospheric mantle tectonics? Earth Planet. Sci. Lett. 455, 176–195 (2016).

    Article  Google Scholar 

  143. Husson, L. et al. Dynamic ups and downs of the Himalaya. Geology 42, 839–842 (2014).

    Article  Google Scholar 

  144. Leary, R. et al. Along-strike diachroneity in the deposition of the Kailas Formation in central southern Tibet: implications for Indian slab dynamics. Geosphere 12, 1198–1223 (2016).

    Article  Google Scholar 

  145. Kohn, M. J. Himalayan metamorphism and its tectonic implications. Annu. Rev. Earth Planet. Sci. 42, 381–419 (2014).

    Article  Google Scholar 

  146. Wang, J.-M. et al. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: implications for collisional tectonics on early Earth. Earth Planet. Sci. Lett. 558, 116760 (2021).

    Article  Google Scholar 

  147. Searle, M. P., Cottle, J. M., Streule, M. J. & Waters, D. J. Crustal melt granites and migmatites along the Himalaya: melt sources, segregation, transport and granite emplacement mechanisms. Earth Environ. Sci. Trans. R. Soc. 100, 219–233 (2010).

    Google Scholar 

  148. Lin, C. et al. Himalayan Miocene adakitic rocks, a case study of the Mayum pluton: insights into geodynamic processes within the subducted Indian continental lithosphere and Himalayan mid-Miocene tectonic regime transition. Geol. Soc. Am. Bull. 133, 591–611 (2021).

    Article  Google Scholar 

  149. DeCelles, P. G. et al. Oligocene–Miocene Great Lakes in the India–Asia collision zone. Basin Res. 30, 228–247 (2016).

    Article  Google Scholar 

  150. Xu, Q. et al. Stable isotopes reveal southward growth of the Himalayan–Tibetan Plateau since the Paleocene. Gondwana Res. 54, 50–61 (2018).

    Article  Google Scholar 

  151. Gébelin, A. et al. The Miocene elevation of Mount Everest. Geology 41, 799–802 (2013).

    Article  Google Scholar 

  152. Gébelin, A. et al. Infiltration of meteoric water in the South Tibetan Detachment (Mount Everest, Himalaya): when and why? Tectonics 36, 690–713 (2017).

    Article  Google Scholar 

  153. Garzione, C. N., Dettman, D. L., Quade, J., DeCelles, P. G. & Butler, R. F. High times on the Tibetan plateau: paleoelevation of the Thakkhola graben, Nepal. Geology 28, 339–342 (2000).

    Article  Google Scholar 

  154. Saylor, J. E. et al. The Late Miocene through present paleoelevation history of southwestern Tibet. Am. J. Sci. 309, 1–42 (2009).

    Article  Google Scholar 

  155. Murphy, M. A., Saylor, J. E. & Ding, L. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history. Earth Planet. Sci. Lett. 282, 1–9 (2009).

    Article  Google Scholar 

  156. Huntington, K. W., Saylor, J., Quade, J. & Hudson, A. M. High late Miocene–Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry. Geol. Soc. Am. Bull. 127, 181–199 (2015).

    Article  Google Scholar 

  157. Clift, P. D. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 1, 875–880 (2008).

    Article  Google Scholar 

  158. Clift, P. D. & Webb, A. A. G. in Himalayan Tectonics: a Modern Synthesis (eds P. J. Treloar & M. P. Searle) 631–652 (Geological Society of London, 2019) [Special Publication 483].

  159. Cyr, A. J., Currie, B. S. & Rowley, D. B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet: implications for the paleoaltimetry of the Eocene Tibetan Plateau. J. Geol. 113, 517–533 (2005).

    Article  Google Scholar 

  160. Miao, Y. et al. A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation. Gondwana Res. 31, 241–252 (2016).

    Article  Google Scholar 

  161. Staisch, L. M., Niemi, N. A., Clark, M. K. & Chang, H. Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau. Tectonics 35, 862–895 (2016).

    Article  Google Scholar 

  162. Sun, B. et al. Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence. Sci. Rep. 5, 10379 (2015).

    Article  Google Scholar 

  163. Wu, Z., Barosh, P. J., Hu, D., Zhao, X. & Ye, P. Vast early Miocene lakes of the central Tibetan Plateau. Geol. Soc. Am. Bull. 120, 1326–1337 (2008).

    Article  Google Scholar 

  164. Yin, A., Dang, Y.-Q., Zhang, M., Chen, X.-H. & McRivette, M. W. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geol. Soc. Am. Bull. 120, 847–876 (2008).

    Article  Google Scholar 

  165. McRivette, M. W., Yin, A., Chen, X. & Gehrels, G. E. Cenozoic basin evolution of the central Tibetan plateau as constrained by U–Pb detrital zircon geochronology, sandstone petrology, and fission-track thermochronology. Tectonophysics 751, 150–179 (2019).

    Article  Google Scholar 

  166. Yuan, D.-Y. et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies. Tectonics 32, 1358–1370 (2013).

    Article  Google Scholar 

  167. Wu, C. et al. Late Mesozoic–Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low-temperature thermochronology. Geol. Soc. Am. Bull. 113, 2393–2417 (2021).

    Article  Google Scholar 

  168. Styron, R., Taylor, M. & Sundell, K. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust. Nat. Geosci. 8, 131–134 (2015).

    Article  Google Scholar 

  169. Taylor, M., Forte, A., Laskowski, A. & Ding, L. Active uplift of southern Tibet revealed. GSA Today 31, 4–10 (2021).

    Article  Google Scholar 

  170. Owens, T. J. & Zandt, G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387, 37–43 (1997).

    Article  Google Scholar 

  171. Tilmann, F., Ni, J. & Team, I. I. S. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science 300, 1424–1427 (2003).

    Article  Google Scholar 

  172. Nábělek, J. L. et al. Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325, 1371–1374 (2009).

    Article  Google Scholar 

  173. Zhao, J. et al. The boundary between the Indian and Asian tectonic plates below Tibet. PNAS 25, 11229–11233 (2010).

    Article  Google Scholar 

  174. Li, C., van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).

    Article  Google Scholar 

  175. Zhao, W. et al. Tibetan plate overriding the Asian plate in central and northern Tibet. Nat. Geosci. 4, 870–873 (2011).

    Article  Google Scholar 

  176. Liang, X. et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave fine-frequency tomography. Earth Planet. Sci. Lett. 443, 162–175 (2016).

    Article  Google Scholar 

  177. Liang, X. et al. A complex Tibetan upper mantle: a fragmented Indian slab and no south-verging subduction of Eurasian lithosphere. Earth Planet. Sci. Lett. 333–334, 101–111 (2012).

    Article  Google Scholar 

  178. Chen, Y., Li, W., Yuan, X., Badal, J. & Teng, J. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth Planet. Sci. Lett. 413, 13–24 (2015).

    Article  Google Scholar 

  179. Yin, A. Mode of Cenozoic east–west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision. J. Geophys. Res. 105, 21745–21759 (2000).

    Article  Google Scholar 

  180. Kind, R. et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science 298, 1219–1221 (2002).

    Article  Google Scholar 

  181. Kumar, P., Yuan, X., Kind, R. & Ni, J. Imaging the colliding Indian and Asian lithospheric plates beneath Tibet. J. Geophys. Res. 111, B06308 (2006).

    Google Scholar 

  182. Feng, M. et al. Structure of the crust and mantle down to 700 km depth beneath the East Qaidam basin and Qilian Shan from P and S receiver functions. Geophys. J. Int. 199, 1416–1429 (2014).

    Article  Google Scholar 

  183. Sippl, C. et al. Geometry of the Pamir–Hindu Kush intermediate-depth earthquake zone from local seismic data. J. Geophys. Res. 118, 1438–1457 (2013).

    Article  Google Scholar 

  184. Kufner, S.-K. et al. Deep India meets deep Asia: lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth Planet. Sci. Lett. 435, 171–184 (2016).

    Article  Google Scholar 

  185. Kufner, S.-K. et al. The Hindu Kush slab break-off as revealed by deep structure and crustal deformation. Nat. Commun. 12, 1685 (2021).

    Article  Google Scholar 

  186. Schneider, F. M. et al. Seismic imaging of subducting continental lower crust beneath the Pamir. Earth Planet. Sci. Lett. 375, 101–112 (2013).

    Article  Google Scholar 

  187. Replumaz, A., Negredo, A. M., Villasenor, A. & Guillot, S. Indian continental subduction and slab break-off during Tertiary collision. Terra Nova 22, 290–296 (2010).

    Google Scholar 

  188. Wittlinger, G. et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet. Sci. Lett. 221, 117–130 (2004).

    Article  Google Scholar 

  189. Schulte-Pelkum, V. et al. Imaging the Indian subcontinent beneath the Himalaya. Nature 435, 1222–1225 (2005).

    Article  Google Scholar 

  190. Hetényi, G. et al. Density distribution of the India plate beneath the Tibetan plateau: geophysical and petrological constraints on the kinetics of lower-crustal eclogitization. Earth Planet. Sci. Lett. 264, 226–244 (2007).

    Article  Google Scholar 

  191. Shi, D., Klemperer, S. L., Shi, J., Wu, Z. & Zhao, W. Localized foundering of Indian lower crust in the India–Tibet collision zone. Proc. Natl Acad. Sci. USA 117, 24742–24747 (2020).

    Article  Google Scholar 

  192. McNamara, D. E., Walter, W. R., Owens, T. J. & Ammon, C. J. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography. J. Geophys. Res. 102, 493–505 (1997).

    Article  Google Scholar 

  193. Zhao, W. et al. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys. J. Int. 145, 486–498 (2001).

    Article  Google Scholar 

  194. Barron, J. & Priestley, K. Observations of frequency-dependent Sn propagation in northern Tibet. Geophys. J. Int. 179, 475–488 (2009).

    Article  Google Scholar 

  195. Jimenez-Munt, I., Fernandez, M., Verges, J. & Platt, J. P. Lithopshere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth Planet. Sci. Lett. 267, 276–289 (2008).

    Article  Google Scholar 

  196. Chen, M. et al. Lithospheric foundering and underthrusting imaged beneath Tibet. Nat. Commun. 8, 15659 (2017).

    Article  Google Scholar 

  197. Liang, S. M. et al. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. Solid. Earth 118, 5722–5732 (2013).

    Article  Google Scholar 

  198. Nelson, K. D. et al. Partially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Nature 274, 1684–1688 (1996).

    Google Scholar 

  199. Gao, R. et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nat. Geosci. 9, 555–560 (2016).

    Article  Google Scholar 

  200. Makovsky, Y., Klemperer, S. L., Ratschbacher, L. & Alsdorf, D. Midcrustal reflector on INDEPTH wide-angle profiles: an ophiolitic slab beneath the India–Asia suture in southern Tibet? Tectonics 18, 793–808 (1999).

    Article  Google Scholar 

  201. Sternai, P. et al. On the influence of the asthenospheric flow on the tectonics and topography at a collision-subduction transition zones: comparison with the eastern Tibetan margin. J. Geodyn. 100, 184–197 (2016).

    Article  Google Scholar 

  202. Jolivet, L. et al. Mantle flow and deforming continents: from India–Asia convergence to Pacific subduction. Tectonics 37, 2887–2914 (2018).

    Article  Google Scholar 

  203. Faccenna, C., Becker, T. W., Conrad, C. P. & Husson, L. Mountain building and mantle dynamics. Tectonics 32, 80–93 (2013).

    Article  Google Scholar 

  204. Powell, C. M. & Conaghan, P. J. Plate tectonics and the Himalayas. Earth Planet. Sci. Lett. 20, 1–12 (1973).

    Article  Google Scholar 

  205. Zhao, W.-L. & Morgan, W. J. Injection of Indian crust into Tibetan lower crust: a two-dimensional finite element model study. Tectonics 6, 489–504 (1987).

    Article  Google Scholar 

  206. Ai, K. K. et al. The uppermost Oligocene Kailas flora from southern Tibetan Plateau and its implications for the uplift history of the southern Lhasa terrane. Palaeogeogr. Palaeoclimatol. Palaeoecol. 515, 143–151 (2019).

    Article  Google Scholar 

  207. Chen, C. et al. Lower-altitude of the Himalayas before the mid-Pliocene as constrained by hydrological and thermal conditions. Earth Planet. Sci. Lett. 545, 116422 (2020).

    Article  Google Scholar 

  208. Xu, Q., Li, S. & Bai, Y. Modern-like elevation and climate in Tibet since the mid-Miocene (ca. 15 Ma). Geol. Soc. Am. Bull. https://doi.org/10.1130/B36198.1 (2022).

    Article  Google Scholar 

  209. Jia, G., Bai, Y., Ma, Y., Sun, J. & Peng, P. Paleoelevation of Tibetan Lunpola basin in the Oligocene–Miocene transition estimated from leaf wax lipid dual isotopes. Glob. Planet. Change 126, 14–22 (2015).

    Article  Google Scholar 

  210. Wu, J. et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 510, 93–108 (2018).

    Article  Google Scholar 

  211. Li, S., Currie, B. S., Rowley, D. B. & Ingalls, M. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet. Sci. Lett. 432, 415–424 (2015).

    Article  Google Scholar 

  212. Dal Zilio, L., Het é nyi, G., Hubbard, J. & Bollinger, L. Building the Himalaya from tectonic to earthquake scales. Nat. Rev. Earth Environ. 2, 251–268 (2021).

    Article  Google Scholar 

  213. Kar, N. et al. Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction. Earth Planet. Sci. Lett. 447, 33–47 (2016).

    Article  Google Scholar 

  214. Yang, J., Spicer, R. A., Spicer, T. E. V. & Li, C.-S. ‘CLAMP Online’: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobio. Palaeoenv 91, 163–183 (2011).

    Article  Google Scholar 

  215. Forest, C. E., Wolfe, J. A., Molnar, P. & Emanuel, K. A. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate. Geol. Soc. Am. Bull. 111, 497–511 (1999).

    Article  Google Scholar 

  216. Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).

    Article  Google Scholar 

  217. Schouten, S., Hopmans, E. C. & Sinninghe Damst é, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipds: a review. Org. Geochem. 54, 19–61 (2013).

    Article  Google Scholar 

  218. Ghosh, P., Garzione, C. N. & Eiler, J. Rapid uplift of the Altiplano revealed through 13C–18O bonds in paleosol carbonates. Science 311, 511–515 (2006).

    Article  Google Scholar 

  219. Garzione, C. N., Molnar, P., Libarkin, J. C. & MacFadden, B. J. Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet. Sci. Lett. 241, 543–556 (2006).

    Article  Google Scholar 

  220. Utescher, T. et al. The coexistence approach — theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr. Palaeoclimatol. Palaeoecol. 410, 58–73 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0708), the National Natural Science Foundation of China BSCTPES project (Grant No. 41988101), the Chinese Academy of Sciences (XDA20070301) and the National Science Foundation of the United States (OISE-1545859 and EAR-2048656). The authors thank L. Bai, L. Zhang, H. Zhang and F. Ping for assistance with figure preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing of the manuscript and development of the figures.

Corresponding authors

Correspondence to Lin Ding or Fulong Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks D. Robinson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Tibetan Plateau

The vast high-elevation plateau extending north of the Himalayan Mountains.

Terranes

Fault-bounded crustal fragments, or composites of crustal fragments, with a distinctive geological history.

Suture zones

Locations at the surface where a former oceanic basin subducted and disappeared between two terranes.

Initial continental collision

The time of final disappearance of oceanic lithosphere at the surface between two converging continents, equivalent to the time when a continent enters the trench.

Eastern Tibet

Referred to here as any part of the physiographic Tibetan Plateau that extends east of the eastern Himalayan syntaxis (EHS).

Delamination

Peeling away (downward) of dense mantle lithosphere from the overlying crust.

Rayleigh distillation

The heavy isotopes of precipitation are successively removed from the vapour as it condenses with rising elevation.

Thermal lapse rate

The change in surface temperature with elevation; can be divided into dry adiabatic, saturated adiabatic, environmental and terrestrial lapse rates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Kapp, P., Cai, F. et al. Timing and mechanisms of Tibetan Plateau uplift. Nat Rev Earth Environ 3, 652–667 (2022). https://doi.org/10.1038/s43017-022-00318-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00318-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing