Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Chicxulub impact and its environmental consequences

Abstract

The extinction of the dinosaurs and around three-quarters of all living species was almost certainly caused by a large asteroid impact 66 million years ago. Seismic data acquired across the impact site in Mexico have provided spectacular images of the approximately 200-kilometre-wide Chicxulub impact structure. In this Review, we show how studying the impact site at Chicxulub has advanced our understanding of formation of large craters and the environmental and palaeontological consequences of this impact. The Chicxulub crater’s asymmetric shape and size suggest an oblique impact and an impact energy of about 1023 joules, information that is important for quantifying the climatic effects of the impact. Several thousand gigatonnes of asteroidal and target material were ejected at velocities exceeding 5 kilometres per second, forming a fast-moving cloud that transported dust, soot and sulfate aerosols around the Earth within hours. These impact ejecta and soot from global wildfires blocked sunlight and caused global cooling, thus explaining the severity and abruptness of the mass extinction. However, it remains uncertain whether this impact winter lasted for many months or for more than a decade. Further combined palaeontological and proxy studies of expanded Cretaceous–Palaeogene transitions should further constrain the climatic response and the precise cause and selectivity of the extinction.

Key points

  • The Chicxulub impact ended the Mesozoic era and was almost certainly the principal cause of the Cretaceous–Palaeogene (K–Pg) mass extinction.

  • Seismic images of the approximately 200-km-wide Chicxulub impact structure reveal that it has the same morphology as the largest impact basins on other solid planetary bodies, such as the Lise Meitner and Klenova craters on Venus.

  • Rocks from the impact site and asteroid were ejected within an impact plume and ejecta curtain. Ejection velocity is a function of shock pressure, with the most-shocked rocks leaving the impact site at >11 km s–1 (escape velocity).

  • The high-velocity ejecta interacted with the Earth’s atmosphere to form a fast-moving cloud that carried dust, soot, sulfate aerosols and other ejecta around the Earth within 4–5 hours of impact.

  • Ejecta within the cloud, along with soot from wildfires, caused the Earth to become dark and cold for about a decade, and induced longer-term (decadal to millennial) temperature changes and chemical changes in the ocean.

  • This extended impact winter explains the abruptness and severity of the mass extinction, as well as its selective impact on different organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The stages of complex impact crater formation.
Fig. 2: The Chicxulub impact structure.
Fig. 3: Numerical simulation of the Chicxulub ejecta curtain and its interaction with the Earth’s atmosphere.
Fig. 4: Modelled pre- and post-impact climate and ocean chemistry.
Fig. 5: Sediment and fossil record at the Chicxulub impact site.

Similar content being viewed by others

References

  1. Russell, D. A. The enigma of the extinction of the dinosaurs. Ann. Rev. Earth Planet. Sci. 7, 163–182 (1979).

    Article  Google Scholar 

  2. Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327, 1214–1218 (2010).

    Article  Google Scholar 

  3. Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Ann. Rev. Earth Planet. Sci. 48, 403–429 (2020).

    Article  Google Scholar 

  4. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 1095–1108 (1980).

    Article  Google Scholar 

  5. Smit, J. & Hertogen, J. An extraterrestrial event at the Cretaceous–Tertiary boundary. Nature 285, 198–200 (1980).

    Article  Google Scholar 

  6. Byrnes, J. S. & Karlstrom, L. Anomalous K–Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatism. Sci. Adv. 4, eaao2994 (2018).

    Article  Google Scholar 

  7. Schoene, B. et al. U–Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347, 182–184 (2015).

    Article  Google Scholar 

  8. Hull, P. M. et al. On impact and volcanism across the Cretaceous–Paleogene boundary. Science 367, 266–272 (2020).

    Article  Google Scholar 

  9. Renne, P. R. et al. Time scales of critical events around the Cretaceous–Paleogene boundary. Science 339, 684–687 (2013).

    Article  Google Scholar 

  10. Norris, R. D., Huber, B. T. & Self-Trail, B. T. Synchroneity of the K–T oceanic mass extinction and meteorite impact: Blake Nose, western North. Atlantic. Geol. 27, 419 (1999).

    Article  Google Scholar 

  11. MacLeod, K. G., Whitney, D. L., Huber, B. T. & Koeberl, C. Impact and extinction in remarkably complete Cretaceous–Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Geol. Soc. Am. Bull. 119, 101 (2007).

    Article  Google Scholar 

  12. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989).

  13. Camargo-Zanoguera, A. & Suarez-Reynoso, G. Evidencia sismica del crater impacto de Chicxulub. G. Bol. Asoc. Mex. Geof. Expl. 34, 1–28 (1994).

    Google Scholar 

  14. Morgan, J. V. et al. Size and morphology of the Chicxulub impact crater. Nature 390, 472–476 (1997).

    Article  Google Scholar 

  15. Gulick, S. P. S. et al. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nat. Geosci. 1, 131–135 (2008).

    Article  Google Scholar 

  16. Morgan, J. V. et al. Peak-ring formation in large impact craters. Earth Planet. Sci. Lett. 183, 347–354 (2000).

    Article  Google Scholar 

  17. Collins, G., Melosh, H. J., Morgan, J. V. & Warner, M. R. Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus 157, 24–33 (2002).

    Article  Google Scholar 

  18. Morgan, J. V. et al. The formation of peak rings in large impact craters. Science 354, 878–882 (2016).

    Article  Google Scholar 

  19. Collins, G. S. et al. A steeply-inclined trajectory for the Chicxulub impact. Nat. Comm. 11, 1480 (2020).

    Article  Google Scholar 

  20. Riller, U. et al. Rock fluidization during peak-ring formation of large impact structures. Nature 562, 511–518 (2018).

    Article  Google Scholar 

  21. Lowery, C. M. et al. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558, 288–291 (2018).

    Article  Google Scholar 

  22. Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).

    Article  Google Scholar 

  23. Bralower, T. J. et al. The habitat of the nascent Chicxulub crater. AGU Adv. 1, e2020AV000208 (2020).

    Article  Google Scholar 

  24. Jones, H. L., Lowery, C. M. & Bralower, T. J. Calcareous nannoplankton “boom-bust” successions in the Cretaceous–Paleogene (K–Pg) impact crater suggests ecological experimentation at “ground zero”. Geology 47, 753–756 (2019).

    Article  Google Scholar 

  25. Artemieva, N. & Morgan, J. Global K–Pg layer deposited from a dust cloud. Geophys. Res. Lett. 47, 1–8 (2020).

    Article  Google Scholar 

  26. Bardeen, C. G., Garcia, R. R., Toon, O. B. & Conley, A. J. On transient climate change at the Cretaceous–Paleogene boundary due to atmospheric soot injections. Proc. Natl Acad. Sci. USA 114, E7415–E7424 (2017).

    Article  Google Scholar 

  27. Brugger, J., Feulner, G. & Petri, S. Baby, it’s cold outside: climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophys. Res. Lett. 44, 419–427 (2017).

    Article  Google Scholar 

  28. Brugger, J., Feulner, G., Hofmann, M. & Petri, S. A pronounced spike in ocean productivity triggered by the Chicxulub impact. Geophys. Res. Lett. 48, e2020GL092260 (2021).

    Article  Google Scholar 

  29. Tabor, C. R., Bardeen, C. G., Otto-Bliesner, B. L., Garcia, R. R. & Toon, O. B. Causes and climatic consequences of the impact winter at the Cretaceous–Paleogene boundary. Geophys. Res. Lett. 47, e60121 (2020).

    Article  Google Scholar 

  30. Senel, C. et al. Relative roles of impact-generated aerosols on photosynthetic activity following the Chicxulub asteroid impact. GSA Connects 53, 6 (2021); https://doi.org/10.1130/abs/2021AM-368627

  31. Stöffler, D. et al. Cratering history and lunar chronology. Rev. Mineral. Geochem. 60, 519–596 (2006).

    Article  Google Scholar 

  32. Grieve, R. A. F. & Head, J. W. Impact cratering, a geological process on the planets. Episodes 4, 3–9 (1981).

    Article  Google Scholar 

  33. Kenkmann, K. The terrestrial impact crater record: a statistical analysis of morphologies, structures, ages, lithologies, and more. Meteorit. Planet. Sci. 56, 1024–1070 (2021).

    Article  Google Scholar 

  34. Hildebrand, A. R. et al. Mapping Chicxulub crater structure with gravity and seismic reflection data. Geol. Soc. Lond. Spec. Publ. 140, 153–173 (1998).

    Article  Google Scholar 

  35. Alexopoulus, J. S. & McKinnon, W. B. Multiringed impact craters on venus: an overview from Arecibo and Venera images and initial Magellan data. Icarus 100, 347–363 (1992).

    Article  Google Scholar 

  36. Alexopoulos, J. & McKinnon, W. B. Large impact craters and basins on Venus, with implications for ring mechanics on the terrestrial planets. Geol. Soc. Am. Spec. Pap. 293, 29–50 (1994).

    Google Scholar 

  37. Kyte, F. T., Zhou, Z. & Wasson, J. T. Siderophile-enriched sediments from the Cretaceous–Tertiary boundary. Nature 288, 651–656 (1980).

    Article  Google Scholar 

  38. Bohor, B., Foord, E. E., Modreski, P. J. & Triplehorn, D. M. Mineralogic evidence for an impact event at the Cretaceous–Tertiary boundary. Science 224, 867–869 (1984).

    Article  Google Scholar 

  39. Stöffler, D., Hamann, C. & Metzler, K. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteorit. Planet. Sci. 53, 5–49 (2018).

    Article  Google Scholar 

  40. French, B. M. & Koeberl, C. The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci. Rev. 98, 123–170 (2010).

    Article  Google Scholar 

  41. Bohor, B. F. & Izett, G. A. Worldwide size distribution of shocked quartz at the K/T boundary: evidence for a North American impact site. Lunar Planet. Sci. 17, 68–69 (1986).

    Google Scholar 

  42. Hildebrand, A. R. et al. Chicxulub crater: a possible cretaceous/tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19, 867–871 (1991).

    Article  Google Scholar 

  43. Swisher, C. C. et al. Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous–Tertiary boundary tektite. Science 257, 954–958 (1992).

    Article  Google Scholar 

  44. Pilkington, M., Hildebrand, A. & Ortiz-Aleman, C. Gravity and magnetic field modeling and structure of the Chicxulub crater, Mexico. J. Geophys. Res. 99, 13147–13162 (1994).

    Article  Google Scholar 

  45. Sharpton, V. L. et al. Model of the Chicxulub impact basin. Geol. Soc. Am. Spec. Pap. 307, 55–74 (1996).

    Google Scholar 

  46. Espindola, J. M., Mena, M., Fuente, J. O. & Campos-Enriquez, J. O. A model of the Chicxulub impact structure (Yucatán, Mexico) based on gravity and magnetic signatures. Phys. Earth Planet. Int. 92, 271–278 (1995).

    Article  Google Scholar 

  47. Urrutia-Fucugauchi, J., Marin, L. & Trejo-Garcia, A. UNAM scientific drilling program of the Chicxulub impact structure — evidence for a 300-kilometre crater diameter. Geophys. Res. Lett. 23, 1565–1568 (1996).

    Article  Google Scholar 

  48. Kring, D. A. The dimensions of the Chicxulub impact crater and impact melt sheet. J. Geophys. Res. 100, 16979–16986 (2005).

    Article  Google Scholar 

  49. Morgan, J. & Warner, M. The third dimension of a multi-ring impact basin. Geology 27, 407–410 (1999).

    Article  Google Scholar 

  50. Grieve, R., Reimold, U., Morgan, J. V., Riller, U. & Pilkington, M. Observations and interpretations at Vredefort, Sudbury and Chicxulub: towards a composite model of a terrestrial impact basin. Meteorit. Planet. Sci. 43, 855–882 (2008).

    Article  Google Scholar 

  51. Christeson, G. et al. Mantle topography beneath the Chicxulub impact crater. Earth Planet. Sci. Lett. 284, 249–257 (2009).

    Article  Google Scholar 

  52. Christenson, G. L., Morgan, J. V. & Gulick, S. P. S. Mapping the Chicxulub impact stratigraphy and peak ring using drilling and seismic data. J. Geophys. Res. Planets 126, e2021JE006938 (2021).

    Google Scholar 

  53. Barton, P. J. et al. Seismic images of Chicxulub impact melt sheet and comparison with the Sudbury structure. Geol. Soc. Am. Spec. Pap. 465, 103–114 (2010).

    Google Scholar 

  54. Vermeesch, P. M. & Morgan, J. V. Structural uplift beneath the Chicxulub impact crater. J. Geophys. Res. 113, B07103 (2008).

    Google Scholar 

  55. Gulick, S. P. S. et al. The first day of the Cenozoic. Proc. Natl Acad. Sci. USA 113, 19342–19351 (2019).

    Article  Google Scholar 

  56. Whalen, M. T. et al. Winding down the Chicxulub impact: the transition between impact and normal marine sedimentation near ground zero. Mar. Geol. 430, 106368 (2020).

    Article  Google Scholar 

  57. Ormö, J. et al. Assessing event magnitude and target water depth for marine-target impacts: ocean resurge deposits in the Chicxulub M0077A drill core compared. Earth Planet. Sci. Lett. 564, 116915 (2021).

    Article  Google Scholar 

  58. Kaskes, P. et al. Formation of the crater suevite sequence from the Chicxulub peak ring: a petrographic, geochemical, and sedimentological characterization. GSA Bull. 134, 895–927 (2021).

    Article  Google Scholar 

  59. Morgan, J. V. et al. Full-waveform tomographic images of the peak ring at the Chicxulub impact crater. J. Geophys. Res. 116, B06303 (2011).

    Google Scholar 

  60. Christeson, G. L. et al. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth Planet. Sci. Lett. 495, 1–11 (2018).

    Article  Google Scholar 

  61. Gulick, S. P. S. et al. Geophysical characterization of the Chicxulub impact crater. Rev. Geophys. 51, 31–52 (2013).

    Article  Google Scholar 

  62. Elbeshausen, D., Wünnemann, K. & Collins, G. S. Scaling of oblique impacts in frictional targets: implications for crater size and formation mechanisms. Icarus 204, 716–731 (2009).

    Article  Google Scholar 

  63. Artemieva, N. & Morgan, J. Modeling the formation of the K–Pg boundary layer. Icarus 201, 768–780 (2009).

    Article  Google Scholar 

  64. Artemieva, N. et al. Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub. Geophys. Res. Lett. 44, 10180–10188 (2017).

    Article  Google Scholar 

  65. Schultz, P. H. Effect of impact angle on vaporization. J. Geophys. Res. 100, 21117–21135 (1996).

    Article  Google Scholar 

  66. Pierazzo, E. & Melosh, H. J. Understanding oblique impacts from experiments, observations, and modeling. Ann. Rev. Earth Planet. Sci. 98, 10–96 (2000).

    Google Scholar 

  67. Collins, G. S. et al. Dynamic modeling suggests asymmetries in the Chicxulub crater are caused by target heterogeneity. Earth Planet. Sci. Lett. 270, 221–230 (2008).

    Article  Google Scholar 

  68. Baker, D. M. et al. The formation of peak-ring basins: working hypothesis and path forward to constrain models of impact-basin formation. Icarus 273, 146–163 (2016).

    Article  Google Scholar 

  69. Rae, A. S. P. et al. Stress–strain evolution during peak-ring formation: a case study of the Chicxulub impact structure. J. Geophys. Res. Planets 124, 396–417 (2019).

    Article  Google Scholar 

  70. Ivanov, B. A. Numerical modelling of the largest terrestrial meteorite craters. Sol. Syst. Res. 39, 381–409 (2005).

    Article  Google Scholar 

  71. Head, J. W. Transition from complex craters to multi-ringed basins on terrestrial planetary bodies: scale-dependent role of the expanding melt cavity and progressive interaction with the displaced zone. Geophys. Res. Lett. 37, L02203 (2010).

    Article  Google Scholar 

  72. Rae, A. S. P. et al. Impact-induced porosity and micro-fracturing at the Chicxulub impact structure. J. Geophys. Res. 124, 1960–1978 (2019).

    Article  Google Scholar 

  73. Melosh, H. J. Acoustic fluidization: a new geologic process? J. Geophys. Res. Solid. Earth 84, 7513 (1979).

    Article  Google Scholar 

  74. Schultz, P. H. & D’Hondt, S. Cretaceous–Tertiary (Chicxulub) impact angle and its consequences. Geology 24, 963–967 (1996).

    Article  Google Scholar 

  75. Hildebrand, A. R. et al. Mapping Chicxulub crater structure with overlapping gravity and seismic surveys. In 29th Lunar and Planetary Science Conference Abstract 1821 (Lunar and Planetary Institute, 1998).

  76. Gault, D. E. & Wedekind, J. Experimental studies of oblique impact. In Proc. 9th Lunar and Planetary Science Conference 3843–3875 (Lunar and Planetary Institute, 1978).

  77. Chapman, C. R. & McKinnnon, W. B. Cratering of planetary satellites. In Satellites 492–580 (Univ. Arizona Press, 1986).

  78. Collins, G. S., Melosh, H. J. & Marcus, R. A. Earth Impact Effects Program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 40, 817–840 (2005).

    Article  Google Scholar 

  79. Koeberl, C. & Sigurdsson, H. Geochemistry of impact glasses from the K/T boundary in Haiti: relation to smectites, and a new type of glass. Geochim. Cosmochim. Acta 56, 2113–2129 (1992).

    Article  Google Scholar 

  80. Belza, J. S., Goderis, S., Montanari, A., Vanhaecke, F. & Claeys, P. Petrography and geochemistry of distal spherules from the K–Pg boundary in the Umbria–Marche region (Italy) and their origin as fractional condensates and melts in the Chicxulub impact plume. Geochim. Cosmochim. Acta 202, 231–263 (2017).

    Article  Google Scholar 

  81. Smit, J. The global stratigraphy of the Cretaceous–Tertiary boundary impact ejecta. Ann. Rev. Earth Planet. Sci. 27, 75–113 (1999).

    Article  Google Scholar 

  82. Goderis, S. et al. Globally distributed iridium layer preserved within the Chicxulub impact structure. Sci. Adv. 7, eabe3647 (2020).

    Article  Google Scholar 

  83. Kyte, F. T. & Smit, J. Regional variations in spinel compositions: an important key to the Cretaceous/Tertiary event. Geology 14, 485–487 (1986).

    Article  Google Scholar 

  84. Argyle, E. The global fallout signature of the K–T bolide impact. Icarus 77, 220–222 (1989).

    Article  Google Scholar 

  85. Melosh, H. J., Schneider, N. M., Zahnle, K. J. & Latham, D. Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature 343, 251–254 (1990).

    Article  Google Scholar 

  86. Alvarez, W., Claeys, P. & Kieffer, S. Emplacement of Cretaceous–Tertiary boundary shocked quartz from Chicxulub crater. Science 269, 930–935 (1995).

    Article  Google Scholar 

  87. Kring, D. A. & Durda, D. D. Trajectories and distribution of material ejected from the Chicxulub impact crater: implications for post-impact wildfires. J. Geophys. Res. 107, 5062 (2002).

    Article  Google Scholar 

  88. Johnson, B. C. & Melosh, H. J. Formation of spherules in impact produced vapor plumes. Icarus 217, 416–430 (2012).

    Article  Google Scholar 

  89. Pierazzo, E. & Melosh, H. J. Hydrocode modeling of oblique impacts: the fate of the projectile. Met. Planet. Sci. 35, 117–130 (2000).

    Article  Google Scholar 

  90. McGregor, P. J., Nicholson, P. D. & Allen, M. G. CASPIR observations of the collision of comet Shoemaker-Levy 9 with Jupiter. Icarus 121, 361–388 (1996).

    Article  Google Scholar 

  91. Colgate, S. A. & Petschek, A. G. Cometary Impacts And Global Distributions Of Resulting Debris By Floating. Report LA-UR-84-3911 (Los Alamos National Laboratory, 1985).

  92. Goldin, T. J. Atmospheric Interactions During Global Deposition Of Chicxulub Impact Ejecta. PhD thesis, Univ. Arizona Tucson (2008).

  93. Goldin, T. J. & Melosh, H. J. Self-shielding of thermal radiation by Chicxulub impact ejecta: firestorm or fizzle? Geology 37, 1135–1138 (2009).

    Article  Google Scholar 

  94. Lyons, S. L. et al. Organic matter from the Chicxulub crater exacerbated the K–Pg impact winter. Proc. Natl Acad. Sci. USA 117, 25327–25334 (2020).

    Article  Google Scholar 

  95. Pope, K. O., Baines, K. H., Ocampo, A. C. & Ivanov, B. A. Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth Planet. Sci. Lett. 128, 719–725 (1994).

    Article  Google Scholar 

  96. Pope, K. O., Baines, K. H., Ocampo, A. C. & Ivanov, B. A. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J. Geophys. Res. Planets 102, 21645–21664 (1997).

    Article  Google Scholar 

  97. Pierazzo, E., Hahmann, A. N. & Sloan, L. C. Chicxulub and climate: radiative perturbations of impact-produced S-bearing gases. Astrobiology 3, 99–118 (2003).

    Article  Google Scholar 

  98. Kring, D. A. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 255, 4–21 (2007).

    Article  Google Scholar 

  99. Kaiho, K. et al. Global climate change driven by soot at the K–Pg boundary as the cause of the mass extinction. Sci. Rep. 6, 28427 (2016).

    Article  Google Scholar 

  100. Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K/Pg extinction: re-evaluation of the heat/fire hypothesis. J. Geophys. Res. Biogeosci. 118, 329–336 (2013).

    Article  Google Scholar 

  101. Morgan, J. V., Artemieva, N. & Goldin, T. Revisiting wildfires at the K–Pg boundary. J. Geophys. Res. Biogeosci. 118, 1508–1520 (2013).

    Article  Google Scholar 

  102. Belcher, C. M. et al. An experimental assessment of the ignition of forest fuels by the thermal pulse generated by the Cretaceous–Palaeogene impact at Chicxulub. J. Geol. Soc. 172, 175–185 (2015).

    Article  Google Scholar 

  103. Wolbach, W. S., Gilmour, I., Anders, E., Orth, C. J. & Brook, R. R. Global fire at the Cretaceous–Tertiary boundary. Nature 334, 665–669 (1988).

    Article  Google Scholar 

  104. Wolbach, W. S., Gilmour, I. & Anders, E. Major wildfires at the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap. 356, 391–400 (1990).

    Google Scholar 

  105. Svetsov, V. & Shuvalov, V. Thermal radiation from impact plumes. Meteorit. Planet. Sci. 54, 126–141 (2018).

    Article  Google Scholar 

  106. Toon, O. B. et al. Evolution of an impact-generated dust cloud and its effects on the atmosphere. Geol. Soc. Am. Spec. Pap. 190, 187–199 (1982).

    Google Scholar 

  107. Pope, K. O. Impact dust not the cause of the Cretaceous–Tertiary mass extinction. Geology 30, 99–102 (2002).

    Article  Google Scholar 

  108. Covey, C., Thompson, S. L., Weissman, P. R. & MacCracken, M. C. Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Glob. Planet. Change 9, 263–273 (1994).

    Article  Google Scholar 

  109. Toon, O. B., Bardeen, C. & Garcia, R. Designing global climate and atmospheric chemistry simulations for 1 and 10km diameter asteroid impacts using the properties of ejecta from the K–Pg impact. Atmos. Chem. Phys. 16, 13185–13212 (2016).

    Article  Google Scholar 

  110. Howitz, A. et al. Revision and recalibration of existing shock classifications for quartzose rocks using low-shock pressure (2.5–20 GPa) recovery experiments and mesoscale numerical modeling. Met. Planet. Sci. 51, 1741–1761 (2016).

    Article  Google Scholar 

  111. Wdowiak, T. J. et al. Presence of an iron-rich nanophase material in the upper layer of the Cretaceous–Tertiary boundary clay. Meteorit. Planet. Sci. 36, 123–133 (2010).

    Article  Google Scholar 

  112. López-Ramos, E. Geological summary of the Yucatán Peninsula. In Ocean Basins and Margins, the Gulf of Mexico and Caribbean (eds Nairn, A. E. M. & Stehli, F. G.) 257–282 (Plenum Press, 1975).

  113. Chiarenza, A. et al. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proc. Natl Acad. Sci. USA 117, 17084–17093 (2020).

    Article  Google Scholar 

  114. Ohno, S. et al. Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nat. Geosci. 7, 279–282 (2014).

    Article  Google Scholar 

  115. Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).

    Article  Google Scholar 

  116. Tyrrell, T., Merico, A. & Mckay, D. I. A. Severity of ocean acidification following the end Cretaceous asteroid impact. Proc. Natl Acad. Sci. USA 112, 6556–6561 (2015).

    Article  Google Scholar 

  117. Vellekoop, J. et al. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 111, 7537–7541 (2014).

    Article  Google Scholar 

  118. Vellekoop, J. et al. Shelf hypoxia in response to global warming after the Cretaceous–Paleogene boundary impact. Geology 46, 683–686 (2018).

    Article  Google Scholar 

  119. Milligan, J. N. et al. No evidence for a large atmospheric CO2 spike across the Cretaceous–Paleogene boundary. Geophys. Res. Lett. 46, 3462–3472 (2019).

    Article  Google Scholar 

  120. Lomax, B., Beerling, D., Upchurch, G. & Otto-Bliesner, B. Rapid (10-yr) recovery of terrestrial productivity in a simulation study of the terminal Cretaceous impact even. Earth Planet. Sci. Lett. 192, 137–144 (2001).

    Article  Google Scholar 

  121. Vellekoop, J. et al. Evidence for Cretaceous–Paleogene boundary bolide impact winter conditions from New Jersey, USA. Geology 44, 619–622 (2016).

    Article  Google Scholar 

  122. Henehan, M. J. et al. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc. Natl Acad. Sci. USA 116, 22500–22504 (2019).

    Article  Google Scholar 

  123. Pierazzo, E. et al. Ozone perturbation from medium-size asteroid impacts in the ocean. Earth Planet. Sci. Lett. 299, 263–272 (2010).

    Article  Google Scholar 

  124. Thierstein, H. R. Terminal Cretaceous plankton extinctions: a critical assessment. Geol. Soc. Am. Spec. Pap. 190, 358–399 (1982).

    Google Scholar 

  125. Sheehan, P. M. & Fastovksy, D. E. Major extinctions of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana. Geology 20, 556–560 (1992).

    Article  Google Scholar 

  126. D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).

    Article  Google Scholar 

  127. Thomas, E. in Large Ecosystem Perturbations: Causes and Consequences Vol. 424 (eds Monechi, S. et al.) https://doi.org/10.1130/2007.2424(01) (Geological Society of America, 2007).

  128. Sessa, J. A., Bralower, T. J., Patzkowsky, M. E., Handley, J. C. & Ivany, L. C. Environmental and biological controls on the diversity and ecology of Late Cretaceous through early Paleogene marine ecosystems in the U.S. Gulf Coastal Plain. Paleobiology 38, 218–239 (2012).

    Article  Google Scholar 

  129. Sheehan, P. M. & Hansen, T. A. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14, 868–870 (1986).

    Article  Google Scholar 

  130. Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival in the first hours of the Cenozoic. Geol. Soc. Am. Bull. 116, 760–768 (2004).

    Article  Google Scholar 

  131. D’Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D. & Lindinger, M. Organic carbon fluxes and ecological recovery from the Cretaceous–Tertiary mass extinction. Science 282, 276–279 (1998).

    Article  Google Scholar 

  132. Coxall, H. K., D’Hondt, S. & Zachos, J. C. Pelagic evolution and environmental recovery after the Cretaceous–Paleogene mass extinction. Geology 34, 297–300 (2006).

    Article  Google Scholar 

  133. Kiessling, W. & Baron-Szabo, R. Extinction and recovery patterns of scleractinian corals at the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 195–223 (2004).

    Article  Google Scholar 

  134. Dishon, G. et al. Evolutionary traits that enable scleractinian corals to survive mass extinction events. Sci. Rep. 10, 3903 (2020).

    Article  Google Scholar 

  135. Erickson, D. J. & Dickson, S. M. Global trace-element biogeochemistiry at the K/T boundary: oceanic and biotic response to a hypothetical meteorite impact. Geology 15, 1014–1017 (1987).

    Article  Google Scholar 

  136. Hollis, C., Rodgers, K. & Parker, R. Siliceous plankton bloom in the earliest Tertiary of Marlborough, New Zealand. Geology 23, 835–838 (1995).

    Article  Google Scholar 

  137. Brinkhuis, H., Bujak, J., Smit, J., Versteegh, G. & Visscher, H. Dinoflagellate-based sea surface temperature reconstructions across the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141, 67–83 (1998).

    Article  Google Scholar 

  138. Wendler, J. & Willems, H. Distribution pattern of calcareous dinoflagellate cysts across the Cretaceous–Tertiary boundary (Fish Clay, Stevns Klint, Denmark): implications for our understanding of species-selective extinction. Geol. Soc. Am. Spec. Pap. 356, 265–276 (2002).

    Google Scholar 

  139. Sepúlveda, J. et al. Stable isotope constraints on marine productivity across the Cretaceous-Paleogene mass extinction. Paleoceanogr. Paleoclimatol. 34, 1195–1217 (2019).

    Article  Google Scholar 

  140. Sibert, E. C., Hull, P. M. & Norris, R. D. Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction. Nat. Geosci. 7, 667–670 (2014).

    Article  Google Scholar 

  141. Carvalho, M. R. et al. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science 372, 63–68 (2021).

    Article  Google Scholar 

  142. Fastovsky, D. E. & Sheehan, P. M. The extinction of the dinosaurs in North America. GSA Today 15, 4–10 (2005).

    Article  Google Scholar 

  143. D’Hondt, S., Pilson, M. E., Sigurdsson, H., Hanson, A. K. & Carey, S. Surface-water acidification and extinction at the Cretaceous–Tertiary boundary. Geology 22, 983–986 (1994).

    Article  Google Scholar 

  144. Maruoka, T. & Koeberl, C. Acid-neutralizing scenario after the K–T impact event. Geology 31, 489–492 (2003).

    Article  Google Scholar 

  145. Gulick, S. et al. Site M0077: Upper peak ring. In Proceedings of the International Ocean Discovery Program Vol. 364 (IODP, 2017).

  146. Gulick, S., et al. Site M0077: post impact sedimentary rocks. In Proceedings of the International Ocean Discovery Program Vol. 364 (IODP, 2017).

  147. Rodríguez-Tovar, F. J., Lowery, C. M., Bralower, T. J., Gulick, S. P. & Jones, H. L. Rapid macrobenthic diversification and stabilization after the end-Cretaceous mass extinction event. Geology 48, 1048–1052 (2020).

    Article  Google Scholar 

  148. Berggren, W. A., Kent, D. V., Swisher III, C. C. & Aubry, M. P. A Revised Cenozoic Geochronology And Chronostratigraphy (SEPM, 1995).

  149. Hull, P. M. & Norris, R. D. Diverse patterns of ocean export productivity change across the Cretaceous–Paleogene boundary: new insights from biogenic barium. Paleoceanography 26, PA3205 (2011).

    Article  Google Scholar 

  150. Lowery, C. M. et al. Early Paleocene paleoceanography and export productivity in the Chicxulub crater. Paleoceanogr. Paleoclimatol. 36, e2021PA004241 (2021).

    Article  Google Scholar 

  151. Seilacher, A., Reif, W.-E. & Westphal, F. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Phil. Trans. R. Soc. Lond. 31, 5–23 (1985).

    Google Scholar 

  152. Briggs, D. E. G. Exceptionally preserved fossils. In Palaeobiology 2 (eds Briggs, D. E. G. & Crowther, P. R.) 328–332 (Blackwell Publishing, 2001).

  153. Bown, P. R. et al. A Paleogene calcareous microfossil Konservat-Lagerstätte from the Kilwa group of coastal Tanzania. Geol. Soc. Am. Bull. 120, 3–12 (2008).

    Article  Google Scholar 

  154. Kring, D. A. et al. Probing the hydrothermal system of the Chicxulub crater. Sci. Adv. 6, eaaz3053 (2020).

    Article  Google Scholar 

  155. Alegret, L., Thomas, E. & Lohmann, K. C. End-Cretaceous marine mass extinction not caused by productivity collapse. Proc. Natl Acad. Sci. USA 109, 728–732 (2012).

    Article  Google Scholar 

  156. Hull, P. M., Norris, R. D., Bralower, T. J. & Schueth, J. D. A role for chance in marine recovery from the end-Cretaceous extinction. Nat. Geosci. 4, 856–860 (2011).

    Article  Google Scholar 

  157. Alvarez, S. A. et al. Diversity decoupled from ecosystem function and resilience during mass extinction recovery. Nature 574, 242–245 (2019).

    Article  Google Scholar 

  158. Gibbs, S. J. et al. Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness. Sci. Adv. 6, eabc9123 (2020).

    Article  Google Scholar 

  159. Sepúlveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K. U. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326, 129–132 (2009).

    Article  Google Scholar 

  160. Zachos, J. C., Arthur, M. A. & Dean, W. E. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337, 61–64 (1989).

    Article  Google Scholar 

  161. Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. In Coccolithophore 481–508 (Springer, 2004).

  162. Lyson, T. R. et al. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366, 977–983 (2019).

    Article  Google Scholar 

  163. Cockell, C. S. et al. Shaping of the present-day deep biosphere at Chicxulub by the impact catastrophe that ended the Cretaceous. Front. Microbiol. 12, 1413 (2021).

    Article  Google Scholar 

  164. Bralower, T. J. et al. Origin of a global carbonate layer deposited in the aftermath of the Cretaceous–Paleogene boundary impact. Earth Planet. Sci. Lett. 548, 116476 (2020).

    Article  Google Scholar 

  165. Schenk, P. et al. Compositional control on impact crater formation on mid-sized planetary bodies: dawn at Ceres and Vesta, Cassini at Saturn. Icarus 359, 114343 (2021).

    Article  Google Scholar 

  166. Bray, V. J., Collins, G. S., Morgan, J. V., Melosh, H. J. & Schenk, P. M. Hydrocode simulation of Ganymede and Europa cratering trends — how thick is Europa’s crust? Icarus 231, 394–406 (2014).

    Article  Google Scholar 

  167. Kyte, F. T. & Bostwick, J. A. Magnesioferrite spinel in Cretaceous–Tertiary boundary sediments of the Pacific basin: hot, early condensates of the Chicxulub impact. Earth Planet. Sci. Lett. 132, 113–127 (1995).

    Article  Google Scholar 

  168. Ebel, D. S. & Grossman, L. Spinel-bearing spherules condensed from the Chicxulub impact-vapor plume. Geology 33, 293–296 (2005).

    Article  Google Scholar 

  169. DePalma, R. A. et al. A seismically induced onshore surge deposit at the K–Pg boundary, North Dakota. Proc. Natl Acad. Sci. USA 116, 8190–8199 (2019).

    Article  Google Scholar 

  170. Stillwell, J. D. Patterns of biodiversity and faunal rebound following the K–T boundary extinction event in Austral Palaeocene molluscan faunas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 195, 319–356 (2003).

    Article  Google Scholar 

  171. Rebolledo–Vieyra, M., Urrutia–Fucugauchi, J. & López–Loera, H. Aeromagnetic anomalies and structural model of the Chicxulub multiring impact crater, Yucatan, Mexico. Rev. Mex. Cienc. Geol. 27, 185–195 (2010).

    Google Scholar 

  172. Shuvalov, V. Atmospheric erosion induced by oblique impacts. Meteorit. Planet. Sci. 44, 1095–1105 (2009).

    Article  Google Scholar 

  173. Collins, G. S. et al. The impact-cratering process. Elements 8, 25–30 (2012).

    Article  Google Scholar 

  174. Pierazzo, E. & Artemieva, N. Local and global environmental effects of impacts on Earth. Elements 8, 55–60 (2012).

    Article  Google Scholar 

  175. Turtle, E. P. et al. Impact structures: what does crater diameter mean? Geol. Soc. Am. Spec. Pap. 384, 1–24 (2005).

    Google Scholar 

  176. Melosh, H. J. & Ivanov, B. A. Impact crater collapse. Annu. Rev. Earth Planet. Sci. 27, 385–415 (1999).

    Article  Google Scholar 

  177. O’Keefe, J. D. & Ahrens, T. J. Planetary cratering mechanics. J. Geophys. Res. 98, 17011–17028 (1993).

    Article  Google Scholar 

  178. Wünnemann, K. & Ivanov, B. A. Numerical modeling of the impact crater depth-diameter dependence in an acoustically fluidized target. Planet. Space Sci. 51, 831–845 (2003).

    Article  Google Scholar 

  179. Senft, L. & Stewart, S. T. Dynamic fault weakening and the formation of large impact craters. Earth Planet. Sci. Lett. 287, 471–482 (2009).

    Article  Google Scholar 

  180. Spray, J. G. & Thompson, L. M. Friction melt distribution in a multi-ring impact basin. Nature 373, 130–132 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Gulick and the rest of the Expedition 364 scientists for their invaluable contributions and thoughtful discussions. Expedition 364 was jointly funded by the European Consortium for Ocean Research Drilling (ECORD) and ICDP, with contributions and logistical support from the Yucatán State Government and Universidad Nacional Autónoma de México (UNAM). J.V.M. was funded by NERC grant NE/P005217/1. T.J.B. was funded by NSF-OCE 1736951. J.B. was funded through the VeWA consortium (“Past Warm Periods as Natural Analogues of our High-CO2 Climate Future”) by the LOEWE programme of the Hessen Ministry of Higher Education, Research and the Arts, Germany.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this manuscript.

Corresponding author

Correspondence to Joanna V. Morgan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks O. Toon, C. Koeberl, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cretaceous–Palaeogene (K–Pg) boundary

The boundary between the Mesozoic and Cenozoic eras, that marks the transition from the Cretaceous (K) period to the Palaeogene (Pg) period.

Peak ring

A circular feature within an impact basin composed of a ring of hills.

Impact structure

An impact crater that is covered, eroded or altered in some way.

Transient crater

The maximum size of the shock-induced bowl-shape cavity formed after collision. We note that the transient crater is rather a virtual construct, because the excavation flow ceased along the crater wall at different times. Collapse first occurs at the deepest point of the cavity and last near the pre-impact surface.

Ejecta curtain

Ejecta leaving the growing crater in the shape of a gradually expanding inverted cone.

Impact crater

The depression in the ground formed by a meteorite impact.

Impact melt rock

Solidified melt formed by high-pressure melting of rocks during an impact.

Impactites

Rocks created or modified by one or more impacts of a meteorite.

Suevitic impact breccia (or suevite)

A polymict impact breccia containing shocked and unshocked lithic and mineral clasts, and particles of impact melt rock.

Impact plume

Cloud of gas and fine debris that rapidly expands away from the impact site at high velocity.

Pα zone

Interval defined by the total range of the planktonic foraminifer Parvulorugoglobigerina eugubina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, J.V., Bralower, T.J., Brugger, J. et al. The Chicxulub impact and its environmental consequences. Nat Rev Earth Environ 3, 338–354 (2022). https://doi.org/10.1038/s43017-022-00283-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00283-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing