Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drivers, dynamics and impacts of changing Arctic coasts

Abstract

Arctic coasts are vulnerable to the effects of climate change, including rising sea levels and the loss of permafrost, sea ice and glaciers. Assessing the influence of anthropogenic warming on Arctic coastal dynamics, however, is challenged by the limited availability of observational, oceanographic and environmental data. Yet, with the majority of permafrost coasts being erosive, coupled with projected intensification of erosion and flooding, understanding these changes is critical. In this Review, we describe the morphological diversity of Arctic coasts, discuss important drivers of coastal change, explain the specific sensitivity of Arctic coasts to climate change and provide an overview of pan-Arctic shoreline change and its multifaceted impacts. Arctic coastal changes impact the human environment by threatening coastal settlements, infrastructure, cultural sites and archaeological remains. Changing sediment fluxes also impact the natural environment through carbon, nutrient and pollutant release on a magnitude that remains difficult to predict. Increasing transdisciplinary and interdisciplinary collaboration efforts will build the foundation for identifying sustainable solutions and adaptation strategies to reduce future risks for those living on, working at and visiting the rapidly changing Arctic coast.

Key points

  • Arctic coasts are some of the most rapidly changing coasts on Earth. Most change occurs during the sea-ice-free period, which can be up to 3 months.

  • The erosion of permafrost coasts has increased since the early 2000s when compared with the late twentieth century (1960s–1990s), coinciding with an intensification of environmental drivers linked to anthropogenic warming.

  • Mean annual erosion rates along stretches of unlithified permafrost coasts in Alaska, Canada and Siberia have more than doubled since the early 2000s compared with the latter half of the twentieth century.

  • Coastal erosion along permafrost coasts is expected to continue at high rates or even accelerate in response to further climate warming.

  • Rapid environmental and social change in the Arctic highlights the need for coordinated interdisciplinary and transdisciplinary efforts of scientists, stakeholders and policymakers, together with the local coastal population, to develop adaptive strategies around Arctic coasts in transition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of different Arctic coastal landforms.
Fig. 2: Map of Arctic coastal type, permafrost distribution and sea-ice extent.
Fig. 3: Variability of backshore height, ground-ice content and shoreline change rates along the Arctic coast.
Fig. 4: Physical processes that contribute to morphodynamic changes along permafrost coasts.
Fig. 5: Impacts of climate warming on Arctic coastal environments.
Fig. 6: Changes to an ice-rich permafrost coast characterized by thermokarst lakes and ice wedges as derived from remote sensing technology.

References

  1. Nielsen, D. M., Dobrynin, M., Baehr, J., Razumov, S. & Grigoriev, M. Coastal erosion variability at the southern Laptev Sea linked to winter sea ice and the Arctic Oscillation. Geophys. Res. Lett. 47, e2019GL086876 (2020).

    Google Scholar 

  2. Lim, M. et al. Massive ice control on permafrost coast erosion and sensitivity. Geophys. Res. Lett. 47, e2020GL087917 (2020).

    Google Scholar 

  3. Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).

    Google Scholar 

  4. Jones, B. M. et al. Arctic Report Card 2020: coastal permafrost erosion (NOAA, 2020).

  5. Lantuit, H. et al. The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coast. 35, 383–400 (2011). The inital description of the only pan-Arctic database of Arctic coastal change to date, this paper describes Arctic coastal dynamics at the turn of the century.

    Google Scholar 

  6. Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H. & Fritz, M. Coastal erosion of permafrost soils along the Yukon Coastal Plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406–422 (2018).

    Google Scholar 

  7. Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021). Highlights the importance of coastal erosion on ocean ecosystems and fisheries.

    Google Scholar 

  8. Schaefer, K. et al. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 11, 4650 (2020).

    Google Scholar 

  9. Kupilik, M., Ulmgren, M. & Brunswick, D. Bayesian parameter estimation for Arctic coastal erosion under the effects of climate change. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 3595–3604 (2020).

    Google Scholar 

  10. Arctic Monitoring and Assessment Programme. Artic climate change update 2019: an update to key findings of snow, water, ice and permafrost in the Arctic (SWIPA) 2017 (AMAP, 2019).

  11. Ballinger, T. J. et al. Arctic Report Card 2020: surface air temperature (NOAA, 2020).

  12. National Snow and Ice Data Center. Sea Ice Extent Anomalies (NSIDC, 2021).

  13. Farquharson, L. M. et al. Temporal and spatial variability in coastline response to declining sea-ice in northwest Alaska. Mar. Geol. 404, 71–83 (2018).

    Google Scholar 

  14. Ogorodov, S. A. et al. Coastal dynamics of the Pechora and Kara Seas under changing climatic conditions and human disturbances. Geogr. Environ. Sustain. 9, 53–73 (2016).

    Google Scholar 

  15. Lantuit, H. et al. The ACD classification of Arctic coasts. Pangaea https://doi.org/10.1594/PANGAEA.919573 (2020).

    Article  Google Scholar 

  16. Lantuit, H., Overduin, P. P. & Wetterich, S. Recent progress regarding permafrost coasts. Permafr. Periglac. Process. 24, 120–130 (2013).

    Google Scholar 

  17. Overduin, P. P. et al. in Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences (eds Martini, I. P. & Wanless, H. R.) 103–129 (Geological Society of London, 2014).

  18. Forbes, D. L. State of the Arctic Coast 2010 (Helmholtz-Zentrum Geesthacht, 2011). Provides a comprehensive integration of physical, ecological and socio-economical aspects related to coastal change, and explores factors that influence the capability of Arctic coastal communities to respond to coastal changes.

  19. Perovich, D. et al. Arctic Report Card 2020: sea ice (NOAA, 2020).

  20. Fritz, M., Vonk, J. E. & Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Chang. 7, 6–7 (2017).

    Google Scholar 

  21. Kroon, A. et al. Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland. Ambio 46, 132–145 (2017).

    Google Scholar 

  22. Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 1777–1799 (2014). Discusses the effect of sea ice on waves and water levels, and how changes in sea ice affect coastal erosion.

    Google Scholar 

  23. Sinitsyn, A. O., Guegan, E., Shabanova, N., Kokin, O. & Ogorodov, S. Fifty four years of coastal erosion and hydrometeorological parameters in the Varandey region, Barents Sea. Coast. Eng. 157, 103610 (2020).

    Google Scholar 

  24. Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G. & Grigoriev, M. N. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences 10, 4297–4318 (2013).

    Google Scholar 

  25. Baranskaya, A. et al. The role of thermal denudation in erosion of ice-rich permafrost coasts in an enclosed bay (Gulf of Kruzenstern, western Yamal, Russia). Front. Earth Sci. 8, 659 (2021).

    Google Scholar 

  26. Novikova, A. et al. Dynamics of permafrost coasts of Baydaratskaya Bay (Kara Sea) based on multi-temporal remote sensing data. Remote Sens. 10, 1481 (2018).

    Google Scholar 

  27. Irrgang, A. M. et al. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 123, 779–800 (2018).

    Google Scholar 

  28. Lim, M., Whalen, D., Mann, P. J., Fraser, P. & Berry, H. B. Effective monitoring of permafrost coast erosion: Wide-scale storm impacts on outer islands in the Mackenzie Delta area. Front. Earth Sci. 8, 561322 (2020).

    Google Scholar 

  29. Jones, B. M. et al. A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environ. Res. Lett. 13, 115001 (2018).

    Google Scholar 

  30. Strzelecki, M. C. et al. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard. Sci. Total. Environ. 607–608, 443–453 (2017).

    Google Scholar 

  31. Smith, S. L. et al. The changing thermal state of permafrost. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00240-1 (2022).

    Article  Google Scholar 

  32. Kanevskiy, M. et al. Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Reg. Sci. Technol. 85, 56–70 (2013).

    Google Scholar 

  33. Schirrmeister, L. et al. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. J. Geophys. Res. Biogeosci. 116, G00M02 (2011).

    Google Scholar 

  34. Murton, J. B. Ground-ice stratigraphy and formation at North Head, Tuktoyaktuk Coastlands, western Arctic Canada: a product of glacier–permafrost interactions. Permafr. Periglac. Process. 16, 31–50 (2005).

    Google Scholar 

  35. Gaglioti, B. V. et al. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska. Quat. Sci. Rev. 182, 175–190 (2018).

    Google Scholar 

  36. Rampton, V. N. Quaternary Geology of the Yukon Coastal Plain (Geological Survey of Canada, 1982).

  37. Dinter, D. A., Carter, L. D. & Brigham-Grette, J. in The Arctic Ocean Region (eds Grantz, A., Johnson, L. & Sweeney, J. F.) (Geological Society of America, 1990).

  38. French, H. & Shur, Y. The principles of cryostratigraphy. Earth Sci. Rev. 101, 190–206 (2010).

    Google Scholar 

  39. French, H. M. & Harry, D. G. Observations on buried glacier ice and massive segregated ice, western arctic coast, Canada. Permafr. Periglac. Process. 1, 31–43 (1990).

    Google Scholar 

  40. Fritz, M. et al. Eastern Beringia and beyond: Late Wisconsinan and Holocene landscape dynamics along the Yukon Coastal Plain, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 319–320, 28–45 (2012).

    Google Scholar 

  41. Burn, C. R. in Landscapes and Landforms of Western Canada Beaufort Sea (ed. Slaymaker, O.) 335–348 (Springer, 2016).

  42. Strzelecki, M. C. et al. New fjords, new coasts, new landscapes: the geomorphology of paraglacial coasts formed after recent glacier retreat in Brepollen (Hornsund, southern Svalbard). Earth Surf. Process. Landf. 45, 1325–1334 (2020).

    Google Scholar 

  43. Bendixen, M. et al. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104 (2017). Illuminates understanding of deltaic coastal change as it relates to sea ice and land-based ice mass loss.

    Google Scholar 

  44. St-Hilaire-Gravel, D., Bell, T. J. & Forbes, D. L. Raised gravel beaches as proxy indicators of past sea-ice and wave conditions, Lowther Island, Canadian Arctic Archipelago. Arctic 63, 213–226 (2010).

    Google Scholar 

  45. Kasprzak, M. et al. On the potential for a bottom active layer below coastal permafrost: the impact of seawater on permafrost degradation imaged by electrical resistivity tomography (Hornsund, SW Spitsbergen). Geomorphology 293, 347–359 (2017).

    Google Scholar 

  46. Szczuciński, W., Zajaczkowski, M. & Scholten, J. Sediment accumulation rates in subpolar fjords-Impact of post-Little Ice Age glaciers retreat, Billefjorden, Svalbard. Estuar. Coast. Shelf Sci. 85, 345–356 (2009).

    Google Scholar 

  47. Strzelecki, M. C. et al. The role of rapid glacier retreat and landscape transformation in controlling the post-Little Ice Age evolution of paraglacial coasts in central Spitsbergen (Billefjorden, Svalbard). Land Degrad. Dev. 29, 1962–1978 (2018).

    Google Scholar 

  48. Kroon, A. in Coastal Environments and Global Change (eds Masselink, G. & Gehrels, R.) 338–355 (Wiley, 2014).

  49. Boisson, A., Allard, M. & Sarrazin, D. Permafrost aggradation along the emerging eastern coast of Hudson Bay, Nunavik (northern Québec, Canada). Permafr. Periglac. Process. 31, 128–140 (2020).

    Google Scholar 

  50. Hansell, R. I. C., Scott, P. A., Staniforth, R. & Svoboda, J. Permafrost development in the intertidal zone at Churchill, Manitoba: A possible mechanism for accelerated beach uplift. Arctic 36, 198–203 (1983).

    Google Scholar 

  51. Angelopoulos, M. et al. Thermokarst lake to lagoon transitions in eastern Siberia: Do submerged taliks refreeze? J. Geophys. Res. Earth Surf. 125, e2019JF005424 (2020).

    Google Scholar 

  52. Overduin, P. P. et al. Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia. Cryosphere 10, 1449–1462 (2016).

    Google Scholar 

  53. Iwahana, G., Cooper, Z. S., Carpenter, S. D., Deming, J. W. & Eicken, H. Intra-ice and intra-sediment cryopeg brine occurrence in permafrost near Utqiaġvik (Barrow). Permafr. Periglac. Process. 32, 427–446 (2021).

    Google Scholar 

  54. Romanovskii, N. N., Gravis, G. F., Melnikov, E. S. & Leibman, M. O. in Geoindicators: Assessing Rapid Environmental Changes in Earth Systems 47–68 (A. A. Balkema, 1996).

  55. Gibbs, A. E., Snyder, A. G. & Richmond, B. M. National assessment of shoreline change — historical shoreline change along the north coast of Alaska, Icy Cape to Cape Prince of Wales (US Geological Survey, 2019).

  56. Manson, G. K., Solomon, S. M., Forbes, D. L., Atkinson, D. E. & Craymer, M. Spatial variability of factors influencing coastal change in the western Canadian Arctic. Geomarine Lett. 25, 138–145 (2005).

    Google Scholar 

  57. Barnhart, K. R. et al. Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. J. Geophys. Res. Earth Surf. 119, 1155–1179 (2014).

    Google Scholar 

  58. Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future expansion of Arctic open water. Nat. Clim. Chang. 6, 280–285 (2015).

    Google Scholar 

  59. Casas-Prat, M. & Wang, X. L. Sea ice retreat contributes to projected increases in extreme Arctic ocean surface waves. Geophys. Res. Lett. 47, e2020GL088100 (2020).

    Google Scholar 

  60. Manson, G. K. & Solomon, S. M. Past and future forcing of Beaufort Sea coastal change. Atmos. Ocean 45, 107–122 (2007).

    Google Scholar 

  61. Atkinson, D. Observed storminess patterns and trends in the circum-Arctic coastal regime. Geo-Mar. Lett. 25, 98–109 (2005).

    Google Scholar 

  62. Meyssignac, B. & Cazenave, A. Sea level: A review of present-day and recent-past changes and variability. J. Geodyn. 58, 96–109 (2012).

    Google Scholar 

  63. Belova, N. G. et al. Erosion of permafrost coasts of Kara Sea near Kharasavey Cape, Western Yamal. Earth’s Cryosph. 21, 85–96 (2017).

    Google Scholar 

  64. French, H. M. The Periglacial Environment (Wiley, 2017).

  65. Shabanova, N. N., Ogorodov, S., Shabanov, P. & Baranskaya, A. Hydrometeorological forcing of western Russian Arctic coastal dynamics: XX-century history and current state. Geogr. Environ. Sustain. 11, 113–129 (2018).

    Google Scholar 

  66. Günther, F. et al. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 9, 151–178 (2015).

    Google Scholar 

  67. Aré, F. E. Thermal abrasion of sea coasts (part I). Polar Geogr. Geol. 12, 1–86 (1988).

    Google Scholar 

  68. Frederick, J. M., Thomas, M. A., Bull, D. L., Jones, C. A. & Roberts, J. D. The Arctic coastal erosion problem (Sandia National Laboratories, 2016).

  69. Aré, F. E. Thermal abrasion of sea coasts (Part II). Polar Geogr. Geol. 12, 87–157 (1988). A landmark study published in two parts comprehensively describing the effect of ice on coastal dynamics.

    Google Scholar 

  70. Ramage, J. L., Irrgang, A. M., Morgenstern, A. & Lantuit, H. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean. Biogeosciences 15, 1483–1495 (2018).

    Google Scholar 

  71. Kobayashi, N. Formation of thermoerosional niches into frozen bluffs due to storm surges on the Beaufort Sea coast. J. Geophys. Res. Oceans 90, 11983–11988 (1985). One of the first, or perhaps the first, studies that presents a model of permafrost bluff niching, erosion and recession.

    Google Scholar 

  72. Hoque, M. A. & Pollard, W. H. Arctic coastal retreat through block failure. Can. Geotech. J. 46, 1103–1115 (2009).

    Google Scholar 

  73. Hoque, M. A. & Pollard, W. H. Stability of permafrost dominated coastal cliffs in the Arctic. Polar Sci. 10, 79–88 (2016).

    Google Scholar 

  74. Thomson, J. et al. Emerging trends in the sea state of the Beaufort and Chukchi seas. Ocean Model. 105, 1–12 (2016).

    Google Scholar 

  75. Ahmad, N., Bihs, H., Chella, M. A., Kamath, A. & Arntsen, Ø. A. CFD modeling of arctic coastal erosion due to breaking waves. Int. J. Offshore Polar Eng. 29, 33–41 (2019).

    Google Scholar 

  76. Brown, J., Hinkel, K. M. & Nelson, F. E. The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr. 24, 166–258 (2000).

    Google Scholar 

  77. Nicolsky, D. J., Romanovsky, V. E., Panda, S. K., Marchenko, S. S. & Muskett, R. R. Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope. J. Geophys. Res. Earth Surf. 122, 50–75 (2017).

    Google Scholar 

  78. Hume, J. D. & Schalk, M. Shoreline processes near Barrow, Alaska: a comparison of the normal and the catastrophic. Arctic 20, 86–103 (1967).

    Google Scholar 

  79. Kempama, E. W., Reimnitz, E. & Barnes, P. Sea ice sediment entrainment and rafting in the Arctic. J. Sediment. Res. 59, 308–317 (1989).

    Google Scholar 

  80. Hume, J. D. & Schalk, M. The effects of ice push on Arctic beaches. Am. J. Sci. 262, 267–273 (1964).

    Google Scholar 

  81. Manson, G. K., Davidson-Arnott, R. G. D. & Ollerhead, J. Attenuation of wave energy by nearshore sea ice: Prince Edward Island, Canada. J. Coast. Res. 32, 253–263 (2016).

    Google Scholar 

  82. Wegner, C. et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene. Polar Res. 34, 24964 (2015).

    Google Scholar 

  83. Bendixen, M. & Kroon, A. Conceptualizing delta forms and processes in Arctic coastal environments. Earth Surf. Process. Landf. 42, 1227–1237 (2017).

    Google Scholar 

  84. Golubeva, E., Platov, G., Iakshina, D. & Kraineva, M. A simulated distribution of Siberian river runoff in the Arctic Ocean. IOP Conf. Ser. Earth Environ. Sci. 386, 012022 (2019).

    Google Scholar 

  85. Bauch, D. et al. Correlation of river water and local sea-ice melting on the Laptev Sea shelf (Siberian Arctic). J. Geophys. Res. Oceans 118, 550–561 (2013).

    Google Scholar 

  86. Kuzin, V. I., Platov, G. A. & Golubeva, E. N. Influence that interannual variations in Siberian river discharge have on redistribution of freshwater fluxes in Arctic Ocean and North Atlantic. Izv. Atmos. Ocean. Phys. 46, 770–783 (2010).

    Google Scholar 

  87. Farquharson, L. et al. Alaskan marine transgressions record out-of-phase Arctic Ocean glaciation during the last interglacial. Geology 46, 783–786 (2018).

    Google Scholar 

  88. Horton, B. P. et al. Mapping sea-level change in time, space, and probability. Annu. Rev. Environ. Resour. 43, 481–521 (2018).

    Google Scholar 

  89. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Google Scholar 

  90. European Space Agency. Modelling tides in the Arctic Ocean (ESA, 2021).

  91. Gibbs, A. E., Nolan, M., Richmond, B. M., Snyder, A. G. & Erikson, L. H. Assessing patterns of annual change to permafrost bluffs along the North Slope coast of Alaska using high-resolution imagery and elevation models. Geomorphology 336, 152–164 (2019).

    Google Scholar 

  92. Héquette, A., Desrosiers, M., Hill, P. & Forbes, D. The influence of coastal morphology on shoreface sediment transport under storm-combined flows, Canadian Beaufort Sea. J. Coast. Res. 17, 507–516 (2001).

    Google Scholar 

  93. Kim, J., Murphy, E., Nistor, I., Ferguson, S. & Provan, M. Numerical analysis of storm surges on Canada’s western Arctic coastline. J. Mar. Sci. Eng. 9, 326 (2021).

    Google Scholar 

  94. Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Google Scholar 

  95. Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Google Scholar 

  96. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    Google Scholar 

  97. Lund, M., Hansen, B. U., Pedersen, S. H., Stiegler, C. & Tamstorf, M. P. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010. Tellus B Chem. Phys. Meteorol. 66, 21631 (2014).

    Google Scholar 

  98. Blunden, J. & Arndt, D. S. State of the Climate in 2016 Vol. 98 (American Meteorological Society, 2017).

  99. Heijmans, M. M. P. D. et al. Tundra vegetation change trajectories across permafrost environments and consequences for permafrost thaw. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00233-0 (2022).

    Article  Google Scholar 

  100. Arp, C. D., Jones, B. M., Schmutz, J. A., Urban, F. E. & Jorgenson, M. T. Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline. Polar Biol. 33, 1629–1640 (2010).

    Google Scholar 

  101. Jorgenson, J. C., Raynolds, M. K., Reynolds, J. H. & Benson, A.-M. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arctic Antarct. Alp. Res. 47, 785–806 (2015).

    Google Scholar 

  102. Johansson, M., Christensen, T. R., Akerman, J. H. & Callaghan, T. V. What determines the current presence or absence of permafrost in the Torneträsk region, a sub-arctic landscape in northern Sweden? Ambio 35, 190–197 (2006).

    Google Scholar 

  103. Torre Jorgenson, M. et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. 8, 035017 (2013).

    Google Scholar 

  104. Dallimore, S. R., Wolfe, S. & Solomon, S. M. Influence of ground ice and permafrost on coastal evolution, Richards Island, Beaufort Sea coast, N.W.T. Can. J. Earth Sci. 33, 664–675 (1996).

    Google Scholar 

  105. Aré, F. E. & Reimnitz, E. The A and m coefficients in the Bruun/Dean equilibrium profile equation seen from the Arctic. J. Coast. Res. 24, 243–249 (2008).

    Google Scholar 

  106. Angelopoulos, M., Overduin, P. P., Miesner, F., Grigoriev, M. N. & Vasiliev, A. A. Recent advances in the study of Arctic submarine permafrost. Permafr. Periglac. Process. 31, 442–453 (2020).

    Google Scholar 

  107. Aré, F., Reimnitz, E., Grigoriev, M., Hubberten, H.-W. & Rachold, V. The influence of cryogenic processes on the erosional Arctic shoreface. J. Coast. Res. 241, 110–121 (2008). Establishes that profile models used in ice-free environments are conditionally viable for permafrost coasts.

    Google Scholar 

  108. Reimnitz, E., Graves, S. M. & Barnes, P. W. Beaufort Sea Coastal Erosion, Sediment Flux, Shoreline Evolution, and the Erosional Shelf Proflie (US Geological Survey, 1988).

  109. Carvalho, K. S. & Wang, S. Sea surface temperature variability in the Arctic Ocean and its marginal seas in a changing climate: Patterns and mechanisms. Glob. Planet. Change 193, 103265 (2020).

    Google Scholar 

  110. Timmermans, M.-L. & Labe, Z. Arctic Report Card 2020: sea surface temperature (NOAA, 2020).

  111. Richter-Menge, J. & Druckmiller, M. L. State of the climate in 2019. Bull. Amer. Meteor. Soc. 101, S185–S238 (2020).

    Google Scholar 

  112. Levitus, S., Matishov, G., Seidov, D. & Smolyar, I. Barents Sea multidecadal variability. Geophys. Res. Lett. 36, L19604 (2009).

    Google Scholar 

  113. Dmitrenko, I. A. et al. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. J. Geophys. Res. Ocean 116, C10027 (2011).

    Google Scholar 

  114. Vermaire, J. C. et al. Arctic climate warming and sea ice declines lead to increased storm surge activity. Geophys. Res. Lett. 40, 1386–1390 (2013).

    Google Scholar 

  115. Casas-Prat, M. & Wang, X. L. Projections of extreme ocean waves in the Arctic and potential implications for coastal inundation and erosion. J. Geophys. Res. Ocean 125, e2019JC015745 (2020). Presents the first end-of-twenty-first century, multimodel ensemble of projected extreme waves along the circum-Arctic coast.

    Google Scholar 

  116. Kwok, R. et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res. 114, C07005 (2009).

    Google Scholar 

  117. Maslanik, J. A. et al. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett. 34, 2004–2008 (2007).

    Google Scholar 

  118. Comiso, J. C., Meier, W. N. & Gersten, R. Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res. Ocean 122, 6883–6900 (2017).

    Google Scholar 

  119. Ogorodov, S., Aleksyutina, D., Baranskaya, A., Shabanova, N. & Shilova, O. Coastal erosion of the Russian Arctic: An overview. J. Coast. Res. 95, 599–604 (2020).

    Google Scholar 

  120. Shabanov, P. A. & Shabanova, N. N. Ice-free period detection method in the Arctic coastal zone. Russ. J. Earth Sci. 20, ES6016 (2020).

    Google Scholar 

  121. Mioduszewski, J., Vavrus, S. & Wang, M. Diminishing Arctic sea ice promotes stronger surface winds. J. Clim. 31, 8101–8119 (2018).

    Google Scholar 

  122. Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 45010 (2019).

    Google Scholar 

  123. Obu, J. et al. Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data. Geomorphology 293, 331–346 (2017).

    Google Scholar 

  124. Cunliffe, A. et al. Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. Cryosphere 13, 1513–1528 (2019).

    Google Scholar 

  125. Lantuit, H. & Pollard, W. H. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 95, 84–102 (2008).

    Google Scholar 

  126. Radosavljevic, B. et al. Erosion and flooding — threats to coastal infrastructure in the Arctic: a case study from Herschel Island, Yukon Territory, Canada. Estuaries Coast. 39, 900–915 (2015).

    Google Scholar 

  127. Lim, M. et al. Arctic rock coast responses under a changing climate. Remote Sens. Environ. 236, 111500 (2020).

    Google Scholar 

  128. Zagórski, P. et al. Multidecadal (1960–2011) shoreline changes in Isbjørnhamna (Hornsund, Svalbard). Pol. Polar Res. 36, 369–390 (2015).

    Google Scholar 

  129. Gibbs, A. E. & Richmond, B. M. National assessment of shoreline change — summary statistics for updated vector shorelines and associated shoreline change data for the north coast of Alaska, US-Canadian Border to Icy Cape (US Geological Survey, 2017).

  130. Gibbs, A. E. & Richmond, B. M. National assessment of shoreline change: historical shoreline change along the north coast of Alaska, US-Canadian border to Icy Cape (US Geological Survey, 2015).

  131. Klein, K. P. et al. Long-term high-resolution sediment and sea surface temperature spatial patterns in Arctic nearshore waters retrieved using 30-year Landsat archive imagery. Remote Sens. 11, 2791 (2019).

    Google Scholar 

  132. Juhls, B. et al. Dissolved organic matter at the fluvial–marine transition in the Laptev Sea using in situ data and ocean colour remote sensing. Biogeosciences 16, 2693–2713 (2019).

    Google Scholar 

  133. St-Hilaire-Gravel, D., Forbes, D. L. & Bell, T. Multitemporal analysis of a gravel-dominated coastline in the central Canadian Arctic Archipelago. J. Coast. Res. 28, 421–441 (2012).

    Google Scholar 

  134. Bartsch, A., Ley, S., Nitze, I., Pointner, G. & Vieira, G. Feasibility study for the application of Synthetic Aperture Radar for coastal erosion rate quantification across the Arctic. Front. Environ. Sci. 8, 143 (2020).

    Google Scholar 

  135. Boak, E. H. & Turner, I. L. Shoreline definition and detection: a review. J. Coast. Res. 214, 688–703 (2005).

    Google Scholar 

  136. Brown, J., Jorgenson, M., Smith, O. & Lee, W. in Permafrost: proceedings of the 8th International Conference on Permafrost (A.A. Balkema, 2003).

  137. Davidson-Arnott, R. G. D. in Introduction to Coastal Processes and Geomorphology (ed. Davidson-Arnott, R. G. D.) 280–324 (Cambridge Univ. Press, 2010).

  138. Maslakov, A. & Kraev, G. Erodibility of permafrost exposures in the coasts of Eastern Chukotka. Polar Sci. 10, 374–381 (2016).

    Google Scholar 

  139. Belova, N. G., Novikova, A. V., Günther, F. & Shabanova, N. N. Spatiotemporal variability of coastal retreat rates at western Yamal Peninsula, Russia, based on remotely sensed data. J. Coast. Res. 95, 367–371 (2020).

    Google Scholar 

  140. Gavrilov, A. V. & Pizhankova, E. I. Dynamics of permafrost in the coastal zone of Eastern-Asian sector of the Arctic. Geogr. Environ. Sustain. 11, 20–37 (2018).

    Google Scholar 

  141. Wangensteen, B., Eiken, T., Ødegård, R. S. & Sollid, J. L. Measuring coastal cliff retreat in the Kongsfjorden area, Svalbard, using terrestrial photogrammetry. Polar Res. 26, 14–21 (2007).

    Google Scholar 

  142. Zagórski, P., Jarosz, K. & Superson, J. Integrated assessment of shoreline change along the Calypsostranda (Svalbard) from remote sensing, field survey and GIS. Mar. Geod. 43, 433–471 (2020).

    Google Scholar 

  143. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Google Scholar 

  144. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Google Scholar 

  145. Rachold, V. et al. Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas. Int. J. Earth Sci. 89, 450–460 (2000).

    Google Scholar 

  146. Wagner, A., Lohmann, G. & Prange, M. Arctic river discharge trends since 7 ka BP. Glob. Planet. Change 79, 48–60 (2011).

    Google Scholar 

  147. Dunton, K. H., Weingartner, T. & Carmack, E. C. The nearshore western Beaufort Sea ecosystem: Circulation and importance of terrestrial carbon in arctic coastal food webs. Prog. Oceanogr. 71, 362–378 (2006).

    Google Scholar 

  148. Dunton, K. H., Schonberg, S. V. & Cooper, L. W. Food web structure of the Alaskan nearshore shelf and estuarine lagoons of the Beaufort Sea. Estuaries Coast. 35, 416–435 (2012).

    Google Scholar 

  149. Abbott, B. W. & Jones, J. B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Chang. Biol. 21, 4570–4587 (2015).

    Google Scholar 

  150. Tanski, G. et al. Permafrost carbon and CO2 pathways differ at contrasting coastal erosion sites in the Canadian Arctic. Front. Earth Sci. 9, 630493 (2021).

    Google Scholar 

  151. Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00230-3 (2022).

    Article  Google Scholar 

  152. Tanski, G. et al. Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett. 46, 11244–11252 (2019).

    Google Scholar 

  153. Vonk, J. E. et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489, 137–140 (2012).

    Google Scholar 

  154. Janout, M. A. et al. On the variability of stratification in the freshwater-influenced Laptev Sea Region. Front. Mar. Sci. 7, 543489 (2020).

    Google Scholar 

  155. Grotheer, H. et al. Burial and origin of permafrost-derived carbon in the nearshore zone of the southern Canadian Beaufort Sea. Geophys. Res. Lett. 47, e2019GL085897 (2020).

    Google Scholar 

  156. Jong, D. et al. Nearshore zone dynamics determine pathway of organic carbon from eroding permafrost coasts. Geophys. Res. Lett. 47, e2020GL088561 (2020).

    Google Scholar 

  157. Brady, M. B. & Leichenko, R. The impacts of coastal erosion on Alaska’s North Slope communities: A co-production assessment of land use damages and risks. Polar Geogr. 43, 259–279 (2020).

    Google Scholar 

  158. Irrgang, A. M., Lantuit, H., Gordon, R. R., Piskor, A. & Manson, G. K. Impacts of past and future coastal changes on the Yukon coast — threats for cultural sites, infrastructure, and travel routes. Arct. Sci. 5, 107–126 (2019).

    Google Scholar 

  159. Jensen, A. M. in Public Archaeology and Climate Change (eds Dawson, T., Nimura, C., López-Romero, E. & Daire, M.-Y.) 126–137 (Oxbow Books, 2019).

  160. Jaskólski, M. W., Pawłowski, Ł. & Strzelecki, M. C. High Arctic coasts at risk — the case study of coastal zone development and degradation associated with climate changes and multidirectional human impacts in Longyearbyen (Adventfjorden, Svalbard). Land Degrad. Dev. 29, 2514–2524 (2018).

    Google Scholar 

  161. Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).

    Google Scholar 

  162. Hjort, J. et al. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00247-8 (2022).

    Article  Google Scholar 

  163. US Department of the Interior. Biological opinion for the relocation of the Kaktovik Airport (DOI, 2011).

  164. Ramage, J. et al. Population living on permafrost in the Arctic. Popul. Environ. 43, 22–38 (2021).

    Google Scholar 

  165. Larson, M., Hanson, H., Member, A., Kraus, N. C. & Newe, J. Short- and long-term responses of beach fills determined by EOF analysis. J. Waterw. Port Coast. Ocean Eng. 125, 285–293 (1999).

    Google Scholar 

  166. Nyland, K. E. et al. Traditional Iñupiat ice cellars (SIĠḷUAQ) in Barrow, Alaska: characteristics, temperature monitoring, and distribution. Geogr. Rev. 107, 143–158 (2017).

    Google Scholar 

  167. Government of Northwest Territories. Alfred Moses: Tuktoyaktuk shoreline relocation project (GNWT, 2018).

  168. Bronen, R. & Chapin, F. S. Adaptive governance and institutional strategies for climate-induced community relocations in Alaska. Proc. Natl Acad. Sci. USA 110, 9320–9325 (2013).

    Google Scholar 

  169. Landauer, M. & Juhola, S. Loss and Damage from Climate Change (Springer, 2019).

  170. Kritsuk, L. N., Dubrovinm, V. A. & Yastreba, N. V. Results of complex study of the Kara Sea shore dynamics in the area of the meteorological station Marre-Sale, using GIS-technologies. Earths Cryosph. 18, 59–69 (2014).

    Google Scholar 

  171. Strzelecki, M. C. & Jaskólski, M. W. Arctic tsunamis threaten coastal landscapes and communities–survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland. Nat. Hazards Earth Syst. Sci. 20, 2521–2534 (2020).

    Google Scholar 

  172. Svennevig, K. et al. Evolution of events before and after the 17 June 2017 rock avalanche at Karrat Fjord, West Greenland - A multidisciplinary approach to detecting and locating unstable rock slopes in a remote Arctic area. Earth Surf. Dyn. 8, 1021–1038 (2020).

    Google Scholar 

  173. O’Rourke, M. J. E. Archaeological site vulnerability modelling: the influence of high impact storm events on models of shoreline erosion in the western Canadian Arctic. Open Archaeol. 3, 1–16 (2017).

    Google Scholar 

  174. Elberling, B. et al. Paleo-Eskimo kitchen midden preservation in permafrost under future climate conditions at Qajaa, West Greenland. J. Archaeol. Sci. 38, 1331–1339 (2011).

    Google Scholar 

  175. Jones, B. M., Hinkel, K. M., Arp, C. D. & Eisner, W. R. Modern erosion rates and loss of coastal features and sites, Beaufort Sea coastline, Alaska. Arctic 61, 361–372 (2008).

    Google Scholar 

  176. Mudryk, L. R. et al. Impact of 1, 2 and 4°C of global warming on ship navigation in the Canadian Arctic. Nat. Clim. Chang. 11, 29–31 (2021).

    Google Scholar 

  177. Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. Proc. Natl Acad. Sci. USA 110, E1191–E1195 (2013).

    Google Scholar 

  178. Stewart, E., Dawson, J. & Johnston, M. Risks and opportunities associated with change in the cruise tourism sector: Community perspectives from Arctic Canada. Polar J. 5, 403–427 (2015).

    Google Scholar 

  179. Wobus, C. et al. Thermal erosion of a permafrost coastline: improving process-based models using time-lapse photography. Arctic Antarct. Alp. Res. 43, 474–484 (2011).

    Google Scholar 

  180. Li, J., Ma, Y., Liu, Q., Zhang, W. & Guan, C. Growth of wave height with retreating ice cover in the Arctic. Cold Reg. Sci. Technol. 164, 102790 (2019).

    Google Scholar 

  181. Obu, J., Westermann, S., Kääb, A. & Bartsch, A. Ground temperature map, 2000-2016, Northern Hemisphere permafrost. Pangaea https://doi.org/10.1594/PANGAEA.888600 (2018).

    Article  Google Scholar 

  182. Overduin, P. P. et al. Submarine Permafrost Map (SuPerMAP), modeled with CryoGrid 2, Circum-Arctic. Pangaea https://doi.org/10.1594/PANGAEA.910540 (2020).

    Article  Google Scholar 

  183. Gibbs, A. E. & Richmond, B. Oblique aerial photography of the Arctic coast of Alaska, Nulavik to Demarcation Point, August 7–10, 2006 (US Geological Survey, 2009).

  184. Stutz, M. L. & Pilkey, O. H. Open-ocean barrier islands: global influence of climatic, oceanographic, and depositional settings. J. Coast. Res. 27, 207–222 (2011).

    Google Scholar 

  185. Roelvink, D., Huisman, B., Elghandour, A., Ghonim, M. & Reyns, J. Efficient modeling of complex sandy coastal evolution at monthly to century time scales. Front. Mar. Sci. 7, 535 (2020).

    Google Scholar 

  186. Lauzon, R., Piliouras, A. & Rowland, J. C. Ice and permafrost effects on delta morphology and channel dynamics. Geophys. Res. Lett. 46, 6574–6582 (2019).

    Google Scholar 

  187. Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).

    Google Scholar 

  188. Lim, Y., Levy, J., Goudge, T. & Kim, W. Ice cover as a control on the morphodynamics and stratigraphy of Arctic deltas. Geology 47, 399–402 (2019).

    Google Scholar 

  189. Ravens, T. M., Jones, B. M., Zhang, J., Arp, C. D. & Schmutz, J. A. Process-based coastal erosion modeling for drew point, North Slope, Alaska. J. Waterw. Port Coast. Ocean Eng. 138, 122–130 (2012).

    Google Scholar 

  190. Kupilik, M., Witmer, F. D. W., MacLeod, E., Wang, C. & Ravens, T. Gaussian process regression for Arctic coastal erosion forecasting. IEEE Trans. Geosci. Remote Sens. 57, 1256–1264 (2019).

    Google Scholar 

  191. Bull, D. L. et al. Arctic coastal erosion: modeling and experimentation (Sandia National Laboratories, 2020).

  192. Islam, M. A., Lubbad, R. & Afzal, M. S. A probabilistic model of coastal bluff-top erosion in high latitudes due to thermoabrasion: a case study from Baydaratskaya Bay in the Kara Sea. J. Mar. Sci. Eng. 8, 169 (2020).

    Google Scholar 

  193. Thomas, M. A. et al. Geometric and material variability influences stress states relevant to coastal permafrost bluff failure. Front. Earth Sci. 8, 143 (2020).

    Google Scholar 

  194. Casas-Prat, M., Wang, X. L. & Swart, N. CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Model. 123, 66–85 (2018).

    Google Scholar 

  195. Liu, Q., Babanin, A. V., Zieger, S., Young, I. R. & Guan, C. Wind and wave climate in the Arctic Ocean as observed by altimeters. J. Clim. 29, 7957–7975 (2016).

    Google Scholar 

  196. Ribal, A. & Young, I. R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 6, 77 (2019).

    Google Scholar 

  197. Dodet, G. et al. The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations. Earth Syst. Sci. Data 12, 1929–1951 (2020).

    Google Scholar 

  198. Irrgang, C. et al. Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nat. Mach. Intell. 3, 667–674 (2021).

    Google Scholar 

Download references

Acknowledgements

A.M.I., P.P.O. and H.L. were supported by EU Horizon 2020 Nunataryuk project (grant number 773421). M.B. would like to acknowledge financial support from the Carlsberg Foundation (grant number CF20-0129). L.M.F. was supported by the US National Science Foundation (grant numbers 1927553 and 1927708). The work of A.V.B. was funded by the Russian Foundation for Basic Research (RFBR) (grant number 20-35-70002). S.A.O. was supported by the RFBR (grant number 18-05-60300). B.M.J. was supported by a grant from the US National Science Foundation (grant number OISE-1927553) and the Interdisciplinary Research for Arctic Coastal Environments (InteRFACE) project through the US Department of Energy. The authors thank A. Nereson (USGS) for developing Fig. 2 and Y. Nowak for developing Figs 4,5.

Author information

Authors and Affiliations

Authors

Contributions

B.M.J. was instrumental in initiating this paper. A.M.I. led the Review and organized the collaboration. All co-authors provided input on the manuscript text, figures and discussion of scientific content. In particular, L.M.F. drafted the Geodiversity of Arctic coasts section, A.V.B. and S.A.O. drafted the Drivers of Arctic coastal dynamics section, M.B. drafted the Climate sensitivity of Arctic coasts section, A.M.I. drafted the Arctic shoreline changes section, P.P.O. and H.L. drafted the Impacts of Arctic coastal erosion section and L.H.E. drafted Box 1. B.M.J. contributed to editing the paper. The work of A.M.I., M.B., L.M.F., A.E.G. and L.H.E. brought the paper to its final form.

Corresponding author

Correspondence to Anna M. Irrgang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks M. Lim, M. Strzelecki, J. Overbeck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Permafrost

Subsurface materials that remain continuously at or below 0 °C for at least 2 consecutive years.

Shoreline progradation

Seaward advance of the shoreline.

Periglacial

Processes influenced by intense freeze–thaw and/or permafrost.

Paraglacial

Non-glacial geomorphological processes conditioned by glaciation.

Bluff face

Sea-facing slope between bluff toe and bluff top.

Coastal dynamics

The ongoing transition of coastal processes caused by the interplay and combined effects of oceanographic, terrestrial, periglacial and paraglacial processes, and the resulting redistribution of sediment, carbon, nutrients and contaminants.

Unlithified

Composed of sediment clasts, not bedrock.

Lithified

The transformation and cementation of sediments into solid rock (singular, lithic).

Syngenetic

Ground-ice formation occurring in synchrony with sediment accumulation.

Epigenetic

Ice formation occurring post-deposition (in contrast to syngenetic).

Taliks

Ground in permafrost areas that remains unfrozen year round.

Thermokarst

Processes and landforms that result from the collapse of the land surface due to the melting of ground ice.

Cryopegs

A form of talik that remains unfrozen at temperatures below 0°C due to the presence of saline water (brines).

Active layer

Layer on top of permafrost that is subject to annual summer thaw and winter freeze.

IPCC SSP

Scenarios that describe alternative futures of socio-economic development in the absence of climate policy intervention.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irrgang, A.M., Bendixen, M., Farquharson, L.M. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat Rev Earth Environ 3, 39–54 (2022). https://doi.org/10.1038/s43017-021-00232-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00232-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing