Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Causes, impacts and patterns of disastrous river floods


Disastrous floods have caused millions of fatalities in the twentieth century, tens of billions of dollars of direct economic loss each year and serious disruption to global trade. In this Review, we provide a synthesis of the atmospheric, land surface and socio-economic processes that produce river floods with disastrous consequences. Disastrous floods have often been caused by processes fundamentally different from those of non-disastrous floods, such as unusual but recurring atmospheric circulation patterns or failures of flood defences, which lead to high levels of damage because they are unexpected both by citizens and by flood managers. Past trends in economic flood impacts show widespread increases, mostly driven by economic and population growth. However, the number of fatalities and people affected has decreased since the mid-1990s because of risk reduction measures, such as improved risk awareness and structural flood defences. Disastrous flooding is projected to increase in many regions, particularly in Asia and Africa, owing to climate and socio-economic changes, although substantial uncertainties remain. Assessing the risk of disastrous river floods requires a deeper understanding of their distinct causes. Transdisciplinary research is needed to understand the potential for surprise in flood risk systems better and to operationalize risk management concepts that account for limited knowledge and unexpected developments.

Key points

  • The causative mechanisms of floods with disastrous consequences tend to be different from those of non-disastrous floods, and show anomalies in one or several flood- and loss-generating processes.

  • Past trends in flood hazard show both upward and downward changes. In some regions, anthropogenic warming is already strong enough to override other drivers of change.

  • Flood hazards and impacts are projected to increase for many regions around the globe. Future flooding hotspots are expected in Asia and Africa, owing to climate and socio-economic changes.

  • Reducing vulnerability is a particularly effective way of reducing flood impacts. Global decreases in flood-affected people and fatalities since the mid-1990s (despite a growing population) are signs of effective risk reduction.

  • Disastrous floods often come as a surprise. Effective risk reduction requires an understanding of the causative processes that make these events distinct and to address the sources of surprise, including cognitive biases.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Key processes that can cause or prevent disastrous river floods.
Fig. 2: Global distribution of disastrous river floods in 1985–2019 and flood protection standards.
Fig. 3: Observed flooding-related trends.
Fig. 4: Past changes in flood levels in Europe and the USA.
Fig. 5: Projections of extreme river floods.
Fig. 6: Projections of river flood impacts.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files. Other data can be provided by the authors on request.


  1. 1.

    Doocy, S., Daniels, A., Murray, S. & Kirsch, T. D. The human impact of floods: a historical review of events 1980−2009 and systematic review. PLOS Curr. (2013).

  2. 2.

    United Nations Office for Disaster Risk Reduction GAR2015 — Global Assessment Report on Disaster Risk Reduction. (UNDRR, 2015).

  3. 3.

    Jongman, B., Ward, P. J. & Aerts, J. C. J. H. Global exposure to river and coastal flooding: long term trends and changes. Glob. Environ. Change 22, 823–835 (2012).

    Article  Google Scholar 

  4. 4.

    Dottori, F. et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Change 8, 781–786 (2018).

    Article  Google Scholar 

  5. 5.

    Barendrecht, M. H., Viglione, A. & Blöschl, G. A dynamic framework for flood risk. Water Secur. 1, 3–11 (2017).

    Article  Google Scholar 

  6. 6.

    Vorogushyn, S. et al. Evolutionary leap in large-scale flood risk assessment needed. Wiley Interdisc. Rev. Water 5, e1266 (2018).

    Article  Google Scholar 

  7. 7.

    Di Baldassarre, G. et al. Debates — perspectives on socio-hydrology: capturing feedbacks between physical and social processes. Water Resour. Res. 51, 4770–4781 (2015).

    Article  Google Scholar 

  8. 8.

    Merz, B. et al. Floods and climate: emerging perspectives for flood risk assessment and management. Natural Haz. Earth Syst. Sci. 14, 1921–1942 (2014).

    Article  Google Scholar 

  9. 9.

    Merz, B., Hall, J., Disse, M. & Schumann, A. Fluvial flood risk management in a changing world. Natural Haz. Earth Syst. Sci. 10, 509–527 (2010a).

    Article  Google Scholar 

  10. 10.

    Chen, Y. et al. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China. Ambio 41, 682–698 (2012).

    Article  Google Scholar 

  11. 11.

    Munoz, S. E. et al. Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 556, 95–98 (2018).

    Article  Google Scholar 

  12. 12.

    Blöschl, G. et al. Increasing river floods: fiction or reality? Wiley Interdisc. Rev. Water 2, 329–344 (2015).

    Article  Google Scholar 

  13. 13.

    Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).

    Article  Google Scholar 

  14. 14.

    Ho, M. et al. The future role of dams in the United States of America. Water Resour. Res. 53, 982–998 (2017).

    Article  Google Scholar 

  15. 15.

    Kreibich, H. et al. Adaptation to flood risk: results of international paired flood event studies. Earth’s Future 5, 953–965 (2017).

    Article  Google Scholar 

  16. 16.

    Lempérière, F. Dams and floods. Engineering 3, 144–149 (2017).

    Article  Google Scholar 

  17. 17.

    Kundzewicz, Z. W. et al. Differences in flood hazard projections in Europe — their causes and consequences for decision making. Hydrol. Sci. J. 62, 1–14 (2017).

    Google Scholar 

  18. 18.

    Tarasova, L. et al. Causative classification of river flood events. Wiley Interdisc. Rev. Water 6, e1353 (2019).

  19. 19.

    Smith, J. A., Cox, A. A., Baeck, M. L., Yang, L. & Bates, P. Strange floods: the upper tail of flood peaks in the United States. Water Resour. Res. 54, 6510–6542 (2018).

    Article  Google Scholar 

  20. 20.

    Rosbjerg, D. et al. (eds.) In Runoff Prediction in Ungauged Basins 189−226 (Cambridge Univ. Press, 2013).

  21. 21.

    Villarini, G. & Smith, J. A. Flood peak distributions for the eastern United States. Water Resour. Res. 46, (2010).

  22. 22.

    Berghuijs, W. R., Woods, R. A., Hutton, C. J. & Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett. 43, 4382–4390 (2016).

    Article  Google Scholar 

  23. 23.

    Villarini, G. On the seasonality of flooding across the continental United States. Adv. Water Resour. 87, 80–91 (2016).

    Article  Google Scholar 

  24. 24.

    Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Article  Google Scholar 

  25. 25.

    Merz, R. & Blöschl, G. A process typology of regional floods. Water Resour. Res. 39, (2003).

  26. 26.

    Hirschboeck, K. K. Flood hydroclimatology. In Flood Geomorphology (eds Baker, V. R., Kockel, R. C. & Patton, P. C.) 27–49 (John Wiley & Sons, 1988).

  27. 27.

    Nakamura, J., Lall, U., Kushnir, Y., Robertson, A. W. & Seager, R. Dynamical structure of extreme floods in the U.S. Midwest and the United Kingdom. J. Hydrometeorol. 14, 485–504 (2013).

    Article  Google Scholar 

  28. 28.

    Teegavarapu, R. Extreme precipitation and floods. In Floods in a Changing Climate: Extreme Precipitation International Hydrology Series 115−147 (Cambridge Univ. Press, 2012).

  29. 29.

    McGregor, G. R. Climate and rivers. River Res. Appl. 35, 1119–1140 (2019).

    Google Scholar 

  30. 30.

    Stohl, A. & James, P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeorol. 5, 656–678 (2004).

    Article  Google Scholar 

  31. 31.

    Petvirojchai, P. & SaraPa, S. Current technology for alerting and warning tropical cyclones in Thailand. Trop. Cyclone Res. Rev. 7, 193–200 (2018).

    Google Scholar 

  32. 32.

    Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, (2012).

  33. 33.

    Hong, C.-C., Hsu, H.-H., Lin, N.-H. & Chiu, H. Roles of European blocking and tropical−extratropical interaction in the 2010 Pakistan flooding. Geophys. Res. Lett. 38, (2011).

  34. 34.

    Grams, C. M., Binder, H., Pfahl, S., Piaget, N. & Wernli, H. Atmospheric processes triggering the central European floods in June 2013. Nat. Hazards Earth Syst. Sci. 14, 1691–1702 (2014).

    Article  Google Scholar 

  35. 35.

    Petrow, T., Merz, B., Lindenschmidt, K. E. & Thieken, A. H. Aspects of seasonality and flood generating circulation patterns in a mountainous catchment in south-eastern Germany. Hydrol. Earth Syst. Sci. 11, 1455–1468 (2007).

    Article  Google Scholar 

  36. 36.

    Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).

    Article  Google Scholar 

  37. 37.

    Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J. & Eylander, J. Defining “atmospheric river”: how the glossary of meteorology helped resolve a debate. Bull. Am. Meteorol. Soc. 99, 837–839 (2018).

    Article  Google Scholar 

  38. 38.

    Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., Stringer, M. A. & Lavers, D. A. How do atmospheric rivers form? Bull. Am. Meteorol. Soc. 96, 1243–1255 (2015).

    Article  Google Scholar 

  39. 39.

    Young, A. M., Skelly, K. T. & Cordeira, J. M. High-impact hydrologic events and atmospheric rivers in California: an investigation using the NCEI Storm Events Database. Geophys. Res. Lett. 44, 3393–3401 (2017).

    Article  Google Scholar 

  40. 40.

    Barth, N. A., Villarini, G., Nayak, M. A. & White, K. Mixed populations and annual flood frequency estimates in the western United States: the role of atmospheric rivers. Water Resour. Res. 53, 257–269 (2017).

    Article  Google Scholar 

  41. 41.

    Lavers, D. A., Villarini, G., Allan, R. P., Wood, E. F. & Wade, A. J. The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res. Atmos. 117, (2012).

  42. 42.

    Eiras-Barca, J. et al. The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst. Dynam. 9, 91–102 (2018).

    Article  Google Scholar 

  43. 43.

    Lu, M., Lall, U., Schwartz, A. & Kwon, H. Precipitation predictability associated with tropical moisture exports and circulation patterns for a major flood in France in 1995. Water Resour. Res. 49, 6381–6392 (2013).

    Article  Google Scholar 

  44. 44.

    Dhana Lakshmi, D. & Satyanarayana, A. N. V. Influence of atmospheric rivers in the occurrence of devastating flood associated with extreme precipitation events over Chennai using different reanalysis data sets. Atmos. Res. 215, 12–36 (2019).

    Article  Google Scholar 

  45. 45.

    Kingston, D. G., Lavers, D. A. & Hannah, D. M. Floods in the southern Alps of New Zealand: the importance of atmospheric rivers. Hydrol. Process. 30, 5063–5070 (2016).

    Article  Google Scholar 

  46. 46.

    Porter, K. et al. Overview of the ARkStorm scenario. In U.S. Geological Survey Open-File Report 2010−1312 183 (USGS, 2011).

  47. 47.

    Porter, K., Cox, D., Dettinger, M. & Ralph, F. M. Special issue on the ARkStorm scenario: California’s other big one. Natural Haz. Rev. 17, (2016).

  48. 48.

    Kundzewicz, Z. W., Szwed, M. & Pińskwar, I. Climate variability and floods — a global review. Water 11, 1399 (2019).

    Article  Google Scholar 

  49. 49.

    Waylen, P. R. & Caviedes, C. N. El Nino and annual floods on the north Peruvian littoral. J. Hydrol. 89, 141–156 (1986).

    Article  Google Scholar 

  50. 50.

    Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).

    Article  Google Scholar 

  51. 51.

    Kiem, A. S., Franks, S. W. & Kuczera, G. Multi-decadal variability of flood risk. Geophys. Res. Lett. 30, (2003).

  52. 52.

    Ward, P. J., Kummu, M. & Lall, U. Flood frequencies and durations and their response to El Niño Southern Oscillation: global analysis. J. Hydrol. 539, 358–378 (2016).

    Article  Google Scholar 

  53. 53.

    Steirou, E., Gerlitz, L., Apel, H., Sun, X. & Merz, B. Climate influences on flood probabilities across Europe. Hydrol. Earth Syst. Sci. 23, 1305–1322 (2019).

    Article  Google Scholar 

  54. 54.

    Delgado, J. M., Merz, B. & Apel, H. A climate-flood link for the lower Mekong River. Hydrol. Earth Syst. Sci. 16, 1533–1541 (2012).

    Article  Google Scholar 

  55. 55.

    Messmer, M., Gómez-Navarro, J. J. & Raible, C. C. Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe. Earth Syst. Dynam. 6, 541–553 (2015).

    Article  Google Scholar 

  56. 56.

    Swierczynski, T. et al. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quat. Sci. Rev. 80, 78–90 (2013).

    Article  Google Scholar 

  57. 57.

    Hall, J. et al. Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. Earth Syst. Sci. 18, 2735–2772 (2014).

    Article  Google Scholar 

  58. 58.

    Merz, B., Nguyen, V. D. & Vorogushyn, S. Temporal clustering of floods in Germany: do flood-rich and flood-poor periods exist? J. Hydrol. 541, 824–838 (2016).

    Article  Google Scholar 

  59. 59.

    Hodgkins, G. A. et al. Climate-driven variability in the occurrence of major floods across North America and Europe. J. Hydrol. 552, 704–717 (2017).

    Article  Google Scholar 

  60. 60.

    Lun, D., Fischer, S., Viglione, A. & Blöschl, G. Detecting flood-rich and flood-poor periods in annual peak discharges across Europe. Water Resour. Res. 56, e2019WR026575 (2020).

    Article  Google Scholar 

  61. 61.

    Ward, P. J. et al. Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc. Natl Acad. Sci. USA 111, 15659–15664 (2014).

    Article  Google Scholar 

  62. 62.

    Nobre, G. G., Jongman, B., Aerts, J. & Ward, P. J. The role of climate variability in extreme floods in Europe. Environ. Res. Lett. 12, 084012 (2017).

    Article  Google Scholar 

  63. 63.

    Zanardo, S., Nicotina, L., Hilberts, A. G. J. & Jewson, S. P. Modulation of economic losses from European floods by the North Atlantic Oscillation. Geophys. Res. Lett. 46, 2563–2572 (2019).

    Article  Google Scholar 

  64. 64.

    Kwon, H.-H., Brown, C. & Lall, U. Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling. Geophys. Res. Lett. 35, L05404 (2008).

    Article  Google Scholar 

  65. 65.

    Lima, C. H. R., Lall, U., Troy, T. J. & Devineni, N. A climate informed model for nonstationary flood risk prediction: application to Negro River at Manaus, Amazonia. J. Hydrol. 522, 594–602 (2015).

    Article  Google Scholar 

  66. 66.

    Schröter, K., Kunz, M., Elmer, F., Mühr, B. & Merz, B. What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol. Earth Syst. Sci. 19, 309–327 (2015).

    Article  Google Scholar 

  67. 67.

    Merz, R. & Blöschl, G. Process controls on the statistical flood moments — a data based analysis. Hydrol. Process. 23, 675–696 (2009).

    Article  Google Scholar 

  68. 68.

    Norbiato, D., Borga, M., Merz, R., Blöschl, G. & Carton, A. Controls on event runoff coefficients in the eastern Italian Alps. J. Hydrol. 375, 312–325 (2009).

    Article  Google Scholar 

  69. 69.

    Bennett, B., Leonard, M., Deng, Y. & Westra, S. An empirical investigation into the effect of antecedent precipitation on flood volume. J. Hydrol. 567, 435–445 (2018).

    Article  Google Scholar 

  70. 70.

    Tromp-van Meerveld, H. J. & McDonnell, J. J. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour. Res. 42, (2006).

  71. 71.

    Rogger, M. et al. Step changes in the flood frequency curve: process controls. Water Resour. Res. 48, (2012).

  72. 72.

    Rogger, M., Viglione, A., Derx, J. & Blöschl, G. Quantifying effects of catchments storage thresholds on step changes in the flood frequency curve. Water Resour. Res. 49, 6946–6958 (2013).

    Article  Google Scholar 

  73. 73.

    Blöschl, G., Merz, R. & Reszler, C. Floods in Austria. In Extreme Hydrological Events: New Concepts for Security. NATO Science Series (eds Vasiliev, O., van Gelder, P., Plate, E. & Bolgov, M.) Vol. 78 (Springer, 2006).

  74. 74.

    Sivapalan, M., Blöschl, G., Merz, R. & Gutknecht, D. Linking flood frequency to long-term water balance: Incorporating effects of seasonality. Water Resour. Res. 41, (2005).

  75. 75.

    Blöschl, G., Nester, T., Komma, J., Parajka, J. & Perdigão, R. A. P. The June 2013 flood in the upper Danube basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol. Earth Syst. Sci. 17, 5197–5212 (2013).

    Article  Google Scholar 

  76. 76.

    Guse, B. et al. The role of flood wave superposition in the severity of large floods. Hydrol. Earth Syst. Sci. 24, 1633–1648 (2020).

    Article  Google Scholar 

  77. 77.

    Mirza, M. M. Q. Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Glob. Environ. Change 12, 127–138 (2002).

    Article  Google Scholar 

  78. 78.

    O’Connell, E., Ewen, J., O’Donnell, G. & Quinn, P. Is there a link between agricultural land-use management and flooding? Hydrol. Earth Syst. Sci. 11, 96–107 (2007).

    Article  Google Scholar 

  79. 79.

    Rogger, M. et al. Land use change impacts on floods at the catchment scale: challenges and opportunities for future research. Water Resour. Res. 53, 5209–5219 (2017).

    Article  Google Scholar 

  80. 80.

    Bronstert, A. et al. Multi-scale modelling of land-use change and river training effects on floods in the Rhine basin. River Res. Appl. 23, 1102–1125 (2007).

    Article  Google Scholar 

  81. 81.

    Te Linde, A. H., Aerts, J. C. J. H. & Kwadijk, J. C. J. Effectiveness of flood management measures on peak discharges in the Rhine basin under climate change. J. Flood Risk Manag. 3, 248–269 (2010).

    Article  Google Scholar 

  82. 82.

    Hooijer, A., Klijn, F., Pedroli, G. B. M. & Van Os, A. G. Towards sustainable flood risk management in the Rhine and Meuse riverbasins: synopsis of the findings of IRMA-SPONGE. River Res.Applic. 20, 343–357 (2004).

    Article  Google Scholar 

  83. 83.

    Salazar, S. et al. A comparative analysis of the effectiveness of flood management measures based on the concept of “retaining water in the landscape” in different European hydro-climatic regions. Natural Haz. Earth Syst. Sci. 12, 3287–3306 (2012).

    Article  Google Scholar 

  84. 84.

    Pattison, I. & Lane, S. N. The link between land-use management and fluvial flood risk: a chaotic conception? Prog. Phys. Geogr. Earth Environ. 36, 72–92 (2012).

    Article  Google Scholar 

  85. 85.

    Yang, L. et al. River networks system changes and its impact on storage and flood control capacity under rapid urbanization. Hydrol. Process. 30, 2401–2412 (2016).

    Article  Google Scholar 

  86. 86.

    Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Article  Google Scholar 

  87. 87.

    Van Khanh Triet, N. et al. Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream? Hydrol. Earth Syst. Sci. 21, 3991–4010 (2017).

    Article  Google Scholar 

  88. 88.

    Remo, J. W. F., Pinter, N. & Heine, R. The use of retro- and scenario-modeling to assess effects of 100+ years river of engineering and land-cover change on Middle and Lower Mississippi River flood stages. J. Hydrol. 376, 403–416 (2009).

    Article  Google Scholar 

  89. 89.

    Apel, H., Merz, B. & Thieken, A. H. Influence of dike breaches on flood frequency estimation. Comput. Geosci. 35, 907–923 (2009).

    Article  Google Scholar 

  90. 90.

    de Bruijn, K. M., Diermanse, F. L. M. & Beckers, J. V. L. An advanced method for flood risk analysis in river deltas, applied to societal flood fatality risk in the Netherlands. Natural Haz. Earth Syst. Sci. 14, 2767–2781 (2014).

    Article  Google Scholar 

  91. 91.

    Graf, W. L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79, 336–360 (2006).

    Article  Google Scholar 

  92. 92.

    Ayalew, T. B., Krajewski, W. F., Mantilla, R., Wright, D. B. & Small, S. J. Effect of spatially distributed small dams on flood frequency: insights from the Soap Creek watershed. J. Hydrol. Eng. 22, 04017011 (2017).

    Article  Google Scholar 

  93. 93.

    Mei, X., Van Gelder, P. H. A. J. M., Dai, Z. & Tang, Z. Impact of dams on flood occurrence of selected rivers in the United States. Front. Earth Sci. 11, 268–282 (2017).

    Article  Google Scholar 

  94. 94.

    Wang, W. et al. Nonlinear filtering effects of reservoirs on flood frequency curves at the regional scale. Water Resour. Res. 53, 8277–8292 (2017).

    Article  Google Scholar 

  95. 95.

    Volpi, E., Di Lazzaro, M., Bertola, M., Viglione, A. & Fiori, A. Reservoir effects on flood peak discharge at the catchment scale. Water Resour. Res. 54, 9623–9636 (2018).

    Article  Google Scholar 

  96. 96.

    Delle Rose, M. Decision-making errors and socio-political disputes over the Vajont dam disaster. Disaster Adv. 5, 144–152 (2012).

    Google Scholar 

  97. 97.

    Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article  Google Scholar 

  98. 98.

    Wahl, T., Jain, S., Bender, J., Meyers, S. D. & Luther, M. E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Change 5, 093–1097 (2015).

    Article  Google Scholar 

  99. 99.

    Ganguli, P. & Merz, B. Extreme coastal water levels exacerbate fluvial flood hazards in northwestern Europe. Sci. Rep. 9, 1–14 (2019).

    Article  Google Scholar 

  100. 100.

    Couasnon, A. et al. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Natural Haz. Earth Syst. Sci. 20, 489–504 (2020).

    Article  Google Scholar 

  101. 101.

    Syvitski, J. P. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681 (2009).

    Article  Google Scholar 

  102. 102.

    Ganguli, P., Paprotny, D., Hasan, M., Güntner, A. & Merz, B. Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe. Earth’s Future 8, e2020EF001752 (2020).

    Article  Google Scholar 

  103. 103.

    Douben, K.-J. Characteristics of river floods and flooding: a global overview, 1985–2003. Irrig. Drain. 55, S9–S21 (2006).

    Article  Google Scholar 

  104. 104.

    Kreibich, H. et al. Costing natural hazards. Nat. Clim. Change 4, 303–306 (2014).

    Article  Google Scholar 

  105. 105.

    Allaire, M. Socio-economic impacts of flooding: a review of the empirical literature. Water Security 3, 18–26 (2018).

    Article  Google Scholar 

  106. 106.

    Jonkman, S. N. Global perspectives on loss of human life caused by floods. Natural Haz. 34, 151–175 (2005).

    Article  Google Scholar 

  107. 107.

    Hu, P., Zhang, Q., Shi, P. J., Chen, B. & Fang, J. Y. Flood-induced mortality across the globe: spatiotemporal pattern and influencing factors. Sci. Total. Environ. 643, 171–182 (2018).

    Article  Google Scholar 

  108. 108.

    Jongman, B. et al. Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl Acad. Sci. USA 112, E2271–E2280 (2015).

    Article  Google Scholar 

  109. 109.

    Jonkman, S. N. & Vrijling, J. K. Loss of life due to floods. J. Flood Risk Manag. 1, 43–56 (2008).

    Article  Google Scholar 

  110. 110.

    Ashley, S. T. & Ashley, W. S. Flood fatalities in the United States. J. Appl. Meteorol. Climatol. 47, 805–818 (2008).

    Article  Google Scholar 

  111. 111.

    Du, W., FitzGerald, G. J., Clark, M. & Hou, X.-Y. Health impacts of floods. Prehosp. Disaster Med. 25, 265–272 (2012).

    Article  Google Scholar 

  112. 112.

    Elliott, J. R. Natural hazards and residential mobility: general patterns and racially unequal outcomes in the United States. Soc. Forces 93, 1723–1747 (2014).

    Article  Google Scholar 

  113. 113.

    Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Allaire, M. & Matthew, R. A. What is nuisance flooding? Defining and monitoring an emerging challenge. Water Resour. Res. 54, 4218–4227 (2018).

    Article  Google Scholar 

  114. 114.

    Merz, B., Elmer, F. & Thieken, A. H. Significance of “high probability/low damage” versus “low probability/high damage” flood events. Natural Haz. Earth Syst. Sci. 9, 1033–1046 (2009).

    Article  Google Scholar 

  115. 115.

    World Meteorological Organization. Limpopo River basin: a proposal to improve the flood forecasting and early warning system. (WMO, 2012).

  116. 116.

    Koks, E. Moving flood risk modelling forwards. Nat. Clim. Change 8, 561–562 (2018).

    Article  Google Scholar 

  117. 117.

    Haraguchi, M. & Lall, U. Flood risks and impacts: a case study of Thailand’s floods in 2011 and research questions for supply chain decision making. Int. J. Dis. Risk Reduct. 14, 256–272 (2015).

    Article  Google Scholar 

  118. 118.

    World Economic Forum. Global risks 2012 and 2013. (WEF, 2013).

  119. 119.

    Helbing, D. Globally networked risks and how to respond. Nature 497, 51–59 (2013).

    Article  Google Scholar 

  120. 120.

    United Nations Office for Disaster Risk Reduction. Global assessment report on disaster risk reduction. (UNDRR, 2019).

  121. 121.

    Weiping, W., Yang, S., Stanley, H. E. & Gao, J. Local floods induce large-scale abrupt failures of road networks. Nat. Commun. 10, 2114 (2019).

    Article  Google Scholar 

  122. 122.

    Sieg, T. et al. Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification. PLoS ONE 14, e0212932 (2019).

    Article  Google Scholar 

  123. 123.

    Thieken, A. H., Müller, M., Kreibich, H. & Merz, B. Flood damage and influencing factors: new insights from the August 2002 flood in Germany. Water Resour. Res. 41, 1–16 (2005).

    Article  Google Scholar 

  124. 124.

    Merz, B., Kreibich, H., Schwarze, R. & Thieken, A. Review article “Assessment of economic flood damage”. Natural Haz. Earth Syst. Sci. 10, 1697–1724 (2010).

    Article  Google Scholar 

  125. 125.

    Wing, O. E. J., Pinter, N., Bates, P. D. & Kousky, C. New insights into US flood vulnerability revealed from flood insurance big data. Nat. Commun. 11, 1444 (2020).

    Article  Google Scholar 

  126. 126.

    Jonkman, S. N. & Kelman, I. An analysis of the causes and circumstances of flood disaster deaths. Disasters 29, 75–97 (2005).

    Article  Google Scholar 

  127. 127.

    Bubeck, P., Botzen, W. J. W., Kreibich, H. & Aerts, J. C. J. H. Long-term development and effectiveness of private flood mitigation measures: an analysis for the German part of the river Rhine. Natural Haz. Earth Syst. Sci. 12, 3507–3518 (2012b).

    Article  Google Scholar 

  128. 128.

    Haer, T., Botzen, W. J. W. & Aerts, J. C. J. H. Advancing disaster policies by integrating dynamic adaptive behaviour in risk assessments using an agent-based modelling approach. Environ. Res. Lett. 14, 044022 (2019).

    Article  Google Scholar 

  129. 129.

    Kryspin-Watson, J., Dharmavaram, S., Stanton-Geddes, Z. & Chia, B. Urban Floods Community of Practice. Land use planning for urban flood risk management. (eds Himmelfarb, A. & Mora, J.) (World Bank, 2017).

  130. 130.

    United Nations International Strategy for Disaster Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030 (UNISDR, 2015).

  131. 131.

    Tasantab, J. C. Beyond the plan: how land use control practices influence flood risk in Sekondi-Takoradi. JÀMBÁ J. Disaster Risk Stud. 11, 1–9 (2019).

    Article  Google Scholar 

  132. 132.

    Brody, S. D., Zahran, S., Highfield, W. E., Bernhardt, S. P. & Vedlitz, A. Policy learning for flood mitigation: a longitudinal assessment of the community rating system in florida. Risk Anal. 29, 912–929 (2009).

    Article  Google Scholar 

  133. 133.

    Miao, Q. Are we adapting to floods? Evidence from global flooding fatalities. Risk Anal. 39, 1298–1313 (2019).

    Article  Google Scholar 

  134. 134.

    Kellens, W., Terpstra, T. & De Maeyer, P. Perception and communication of flood risks: a systematic review of empirical research. Risk Anal. 33, 24–49 (2013).

    Article  Google Scholar 

  135. 135.

    Aerts, J. C. J. H. et al. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Change 8, 193–199 (2018).

    Article  Google Scholar 

  136. 136.

    Kingdon, J. W. Agendas, Alternatives, and Public Policies 2nd edn (Longman, 1995).

  137. 137.

    Fleming, G. et al. Learning to live with rivers. Report of the Institution of Civil Engineers. (ICE, 2001).

  138. 138.

    EU directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. The EU Floods Directive (EU, 2007).

  139. 139.

    Kreibich, H. et al. Recent changes in flood preparedness of private households and businesses in Germany. Reg. Environ. Change 11, 59–71 (2011).

    Article  Google Scholar 

  140. 140.

    Gallagher, J. Learning about an infrequent event: evidence from flood insurance take-up in the United States. Am. Econ. J. Appl. Econ. 6, 206–233 (2014).

    Article  Google Scholar 

  141. 141.

    Atreya, A., Ferreira, S. & Kriesel, W. Forgetting the flood? An analysis of the flood risk discount over time. Land. Econ. 89, 577–596 (2013).

    Article  Google Scholar 

  142. 142.

    Brouwer, R., Akter, S., Brander, L. & Haque, E. Socioeconomic vulnerability and adaptation to environmental risk: a case study of climate change and flooding in Bangladesh. Risk Anal. 27, 313–326 (2007).

    Article  Google Scholar 

  143. 143.

    Karim, A. & Noy, I. Poverty and natural disasters: a regression meta-analysis. Rev. Econ. Inst. 7, (2016).

  144. 144.

    Kellenberg, D. K. & Mobarak, A. M. Does rising income increase or decrease damage risk from natural disasters? J. Urban. Econ. 63, 788–802 (2008).

    Article  Google Scholar 

  145. 145.

    Fankhauser, S. & McDermott, T. K. J. Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries? Glob. Environ. Change 27, 9–18 (2014).

    Article  Google Scholar 

  146. 146.

    Schumacher, I. & Strobl, E. Economic development and losses due to natural disasters: the role of hazard exposure. Ecol. Econ. 72, 97–105 (2011).

    Article  Google Scholar 

  147. 147.

    Muttarak, R. & Lutz, W. Is education a key to reducing vulnerability to natural disasters and hence unavoidable climate change? Ecol. Soc. 19, 42 (2014).

  148. 148.

    Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L. Increasing risk of great floods in a changing climate. Nature 415, 514–517 (2002).

    Article  Google Scholar 

  149. 149.

    Slater, L. et al. Global changes in 20-year, 50-year, and 100-year river floods. Geophys. Res. Lett. 48, e2020GL091824 (2021).

    Article  Google Scholar 

  150. 150.

    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article  Google Scholar 

  151. 151.

    Slater, L. J. & Villarini, G. Recent trends in U.S. flood risk. Geophys. Res. Lett. 43, 12428–12436 (2016).

    Article  Google Scholar 

  152. 152.

    Hirsch, R. M. & Ryberg, K. R. Has the magnitude of floods across the USA changed with global CO2 levels? Hydrolog. Sci. J. 57, 1–9 (2012).

    Article  Google Scholar 

  153. 153.

    Mallakpour, I. & Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Change 5, 250–254 (2015).

    Article  Google Scholar 

  154. 154.

    Archfield, S. A., Hirsch, R. M., Viglione, A. & Blöschl, G. Fragmented patterns of flood change across the United States. Geophys. Res. Lett. 43, 10232–10239 (2016).

    Article  Google Scholar 

  155. 155.

    Do, H. X., Westra, S. & Leonard, M. A global-scale investigation of trends in annual maximum streamflow. J. Hydrol. 552, 28–43 (2017).

    Article  Google Scholar 

  156. 156.

    Gudmundsson, L., Leonard, M., Do, H. X., Westra, S. & Seneviratne, S. I. Observed trends in global indicators of mean and extreme streamflow. Geophys. Res. Lett. 46, 756–766 (2019).

    Article  Google Scholar 

  157. 157.

    Bartiko, D., Oliveira, D. Y., Bonumá, N. B. & Chaffe, P. L. B. Spatial and seasonal patterns of flood change across Brazil. Hydrol. Sci. J. 64, 1071–1079 (2019).

    Article  Google Scholar 

  158. 158.

    Ishak, E. & Rahman, A. Examination of changes in flood data in Australia. Water 11, 1734 (2019).

    Article  Google Scholar 

  159. 159.

    Yang, L., Wang, L., Li, X. & Gao, J. On the flood peak distributions over China. Hydrol. Earth Syst. Sci. 23, 5133–5149 (2019).

    Article  Google Scholar 

  160. 160.

    Merz, B., Vorogushyn, S., Uhlemann, S., Delgado, J. & Hundecha, Y. HESS Opinions: “More efforts and scientific rigour are needed to attribute trends in flood time series”. Hydrol. Earth Syst. Sci. 16, 1379–1387 (2012).

    Article  Google Scholar 

  161. 161.

    Viglione, A. et al. Attribution of regional flood changes based on scaling fingerprints. Water Resour. Res. 52, 5322–5340 (2016).

    Article  Google Scholar 

  162. 162.

    Kemter, M., Merz, B., Marwan, N., Vorogushyn, S. & Blöschl, G. Joint trends in flood magnitudes and spatial extents across Europe. Geophys. Res. Lett. 47, e2020GL087464 (2020).

    Article  Google Scholar 

  163. 163.

    Intergovernmental Panel on Climate Change (IPCC). Managing the risks of extreme events and disasters to advance climate change adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 582 (Cambridge Univ. Press, 2012).

  164. 164.

    Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 4, 704–709 (2014).

    Article  Google Scholar 

  165. 165.

    Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl Acad. Sci. USA 110, 5336–5341 (2013).

    Article  Google Scholar 

  166. 166.

    Coumou, D., Di Capua, G., Vavrus, S., Wang, L. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).

    Article  Google Scholar 

  167. 167.

    Stadtherr, L., Coumou, D., Petoukhov, V., Petri, S. & Rahmstorf, S. Record Balkan floods of 2014 linked to planetary wave resonance. Sci. Adv. 2, e1501428 (2016).

    Article  Google Scholar 

  168. 168.

    Delgado, J. M., Apel, H. & Merz, B. Flood trends and variability in the Mekong river. Hydrol. Earth Syst. Sci. 14, 407–418 (2010).

    Article  Google Scholar 

  169. 169.

    Bertola, M., Viglione, A., Lun, D., Hall, J. & Blöschl, G. Flood trends in Europe: are changes in small and big floods different? Hydrol. Earth Syst. Sci. 24, 1805–1822 (2020).

    Article  Google Scholar 

  170. 170.

    Hosking, J. R. M. & Wallis, J. R. Regional Frequency Analysis: an Approach Based on L-Moments (Cambridge Univ. Press, 1997).

  171. 171.

    Dartmouth Flood Observatory. Space-based Measurement, Mapping, and Modeling of Surface Water For Research, Humanitarian, and Water Resources Applications (DFO, 2020).

  172. 172.

    EmDAT. The CRED/OFDA International Disaster Database (Université Catholique de Louvain, 2020).

  173. 173.

    DesInventar Sendai. Migrating DesInventar to Sendai Framework format. (United Nations Office for Disaster Risk Reduction, 2020).

  174. 174.

    SHELDUS. The spatial hazard events and losses database for the United States. Version 19. Center for Emergency Management and Homeland Security (Arizona State University, 2020).

  175. 175.

    Kron, W., Steuer, M., Löw, P., & Wirtz, A. How to deal properly with a natural catastrophe database – analysis of flood losses. Nat. Hazards Earth Syst. Sci., 12, 535–550 (2012).

  176. 176.

    Bouwer, L. M. & Jonkman, S. N. Global mortality from storm surges is decreasing. Environ. Res. Lett. 13, 014008 (2018).

    Article  Google Scholar 

  177. 177.

    Di Baldassarre, G. et al. Flood fatalities in Africa: from diagnosis to mitigation. Geophys. Res. Lett. 37, L22402 (2010).

  178. 178.

    Paprotny, D., Sebastian, A., Morales-Nápoles, O. & Jonkman, S. N. Trends in flood losses in Europe over the past 150 years. Nat. Commun. 9, 1985 (2018).

    Article  Google Scholar 

  179. 179.

    Bouwer, L. M. Have disaster losses increased due to anthropogenic climate change? Bull. Am. Meteorol. Soc. 92, 39–46 (2011).

    Article  Google Scholar 

  180. 180.

    Visser, H., Petersen, A. C. & Ligtvoet, W. On the relation between weather-related disaster impacts, vulnerability and climate change. Clim. Change 125, 461–477 (2014).

    Article  Google Scholar 

  181. 181.

    Kriegler, E. et al. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob. Environ. Change 22, 807–822 (2012).

    Article  Google Scholar 

  182. 182.

    Haer, T., Husby, T. G., Botzen, W. J. W. & Aerts, J. C. J. H. The safe development paradox: an agent-based model for flood risk under climate change in the European Union. Glob. Environ. Change 60, 102009 (2020).

    Article  Google Scholar 

  183. 183.

    Ward, P. J. et al. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Change 7, 642 (2017).

    Article  Google Scholar 

  184. 184.

    Kinoshita, Y., Tanoue, M., Watanabe, S. & Hirabayashi, Y. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments. Environ. Res. Lett. 13, 014006 (2018).

    Article  Google Scholar 

  185. 185.

    Willner, S. N., Levermann, A., Zhao, F. & Frieler, K. Adaptation required to preserve future high-end river flood risk at present levels. Sci. Adv. 4, eaao1914 (2018).

  186. 186.

    Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816−821 (2013).

    Article  Google Scholar 

  187. 187.

    Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).

    Article  Google Scholar 

  188. 188.

    Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).

    Article  Google Scholar 

  189. 189.

    Jiang, T. et al. Each 0.5 °C of warming increases annual flood losses in China by more than US$60 billion. Bull. Am. Meteorol. Soc. 101, E1464–E1474 (2020).

    Article  Google Scholar 

  190. 190.

    Dankers, R. et al. First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proc. Natl Acad. Sci. USA 111, 3257–3261 (2014).

    Article  Google Scholar 

  191. 191.

    Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change 134, 387–401 (2016).

    Article  Google Scholar 

  192. 192.

    Do, H. X. et al. Historical and future changes in global flood magnitude — evidence from a model–observation investigation. Hydrol. Earth Syst. Sci. 24, 1543–1564 (2020).

    Article  Google Scholar 

  193. 193.

    Alfieri, L., Dottori, F., Betts, R., Salamon, P. & Feyen, L. Multi-model projections of river flood risk in Europe under global warming. Climate 6, 6 (2018).

    Article  Google Scholar 

  194. 194.

    Shepherd, T. G. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim. Change 151, 555–571 (2018).

    Article  Google Scholar 

  195. 195.

    Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article  Google Scholar 

  196. 196.

    Knutti, R., Masson, D. & Gettelman, A. Climate model genealogy: generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199 (2013).

    Article  Google Scholar 

  197. 197.

    Scussolini, P. et al. FLOPROS: an evolving global database of flood protection standards. Natural Haz. Earth Syst. Sci. 16, 1049–1061 (2016).

    Article  Google Scholar 

  198. 198.

    Jonkman, S. N. Advanced flood risk analysis required. Nat. Clim. Change 3, 1004–1004 (2013).

    Article  Google Scholar 

  199. 199.

    Huizinga, J., de Moel, H. & Szewczyk, W. Global flood depth-damage functions. Methodology and the database with guidelines. EUR 28552 EN (European Union, 2017).

  200. 200.

    Sairam, N., Schröter, K., Lüdtke, S., Merz, B. & Kreibich, H. Quantifying flood vulnerability reduction via private precaution. Earth’s Future 7, 235–249 (2019).

    Article  Google Scholar 

  201. 201.

    Lumbroso, D. Flood risk management in Africa. J. Flood Risk Manag. 13, e12612 (2020).

    Article  Google Scholar 

  202. 202.

    March, J. G., Sproull, L. S. & Tamuz, M. Learning from samples of one or fewer. Org. Sci. 2, 1–13 (1991).

    Article  Google Scholar 

  203. 203.

    Burton, I. Forensic disaster investigations in depth: a new case study model. Environ. Sci. Policy Sustain. Dev. 52, 36–41 (2010).

    Article  Google Scholar 

  204. 204.

    Ciullo, A., Viglione, A., Castellarin, A., Crisci, M. & Di Baldassarre, G. Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems. Hydrolog. Sci. J. 62, 880–891 (2017).

    Article  Google Scholar 

  205. 205.

    Berner, C. L., Staid, A., Flage, R. & Guikema, S. D. The use of simulation to reduce the domain of “black swans” with application to hurricane impacts to power systems. Risk Anal. 37, 1879–1897 (2017).

    Article  Google Scholar 

  206. 206.

    Wardekker, J. A., de Jong, A., Knoop, J. M. & van der Sluijs, J. P. Operationalising a resilience approach to adapting an urban delta to uncertain climate changes. Technol. Forecast. Soc. Change 77, 987–998 (2010).

    Article  Google Scholar 

  207. 207.

    Merz, B., Vorogushyn, S., Lall, U., Viglione, A. & Blöschl, G. Charting unknown waters — on the role of surprise in flood risk assessment and management. Water Resour. Res. 51, 6399–6416 (2015).

    Article  Google Scholar 

  208. 208.

    Parker, W. S. & Risbey, J. S. False precision, surprise and improved uncertainty assessment. Phil. Trans. R. Soc. A 373, 20140453 (2015).

    Article  Google Scholar 

  209. 209.

    Jain, S. & Lall, U. Floods in a changing climate: does the past represent the future? Water Resour. Res. 37, 3193–3205 (2001).

    Article  Google Scholar 

  210. 210.

    Leonard, M. et al. A compound event framework for understanding extreme impacts. Wiley Interdisc. Rev. Clim. Change 5, 113–128 (2014).

    Article  Google Scholar 

  211. 211.

    Kahneman, D. Thinking, Fast and Slow 499 (Farrar, Straus and Giroux, 2011).

  212. 212.

    Woo, G. Downward counterfactual search for extreme events. Front. Earth Sci. (2019).

  213. 213.

    Brysse, K., Oreskes, N., O’Reilly, J. & Oppenheimer, M. Climate change prediction: erring on the side of least drama? Glob. Environ. Change 23, 327–337 (2013).

    Article  Google Scholar 

  214. 214.

    Croskerry, P., Singhal, G. & Mamede, S. Cognitive debiasing. 1: Origins of bias and theory of debiasing. BMJ Qual. Saf. 22, ii58–ii64 (2013).

    Article  Google Scholar 

  215. 215.

    Taleb, N. N. The Black Swan: The Impact of the Highly Improbable 444 (Random House, 2007).

  216. 216.

    Ben-Haim, Y. Why risk analysis is difficult, and some thoughts on how to proceed. Risk Anal. 32, 1638–1646 (2012).

    Article  Google Scholar 

  217. 217.

    IRGC. Introduction to the IRGC Risk Governance Framework, revised version 2017. (EPFL International Risk Governance Center, 2017).

  218. 218.

    Kwakkel, J. H., Walker, W. E. & Haasnoot, M. Coping with the wickedness of public policy problems: approaches for decision making under deep uncertainty. J. Water Resour. Plan. Manag. 142, 01816001 (2016).

    Article  Google Scholar 

  219. 219.

    Simpson, M. et al. Decision analysis for management of natural hazards. Annu. Rev. Environ. Resour. 41, 489–516 (2016).

    Article  Google Scholar 

  220. 220.

    Lempert, R. et al. Ensuring Robust Flood Risk Management in Ho Chi Minh City. World Bank Policy Research Working Paper No. 6465 (SSRN, 2013).

  221. 221.

    Kalra, N. et al. Agreeing on robust decisions: new processes for decision making under deep uncertainty. Policy Research Working Paper No. 6906. 35 (World Bank, 2014).

  222. 222.

    Sayers, P. et al. Flood Risk Management: A Strategic Approach (UNESCO, 2013).

  223. 223.

    Haasnoot, M., Kwakkel, J. H., Walker, W. E. & ter Maat, J. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498 (2013).

    Article  Google Scholar 

  224. 224.

    Korteling, B., Dessai, S. & Kapelan, Z. Using information-gap decision theory for water resources planning under severe uncertainty. Water Resour. Manag. 27, 1149–1172 (2013).

    Article  Google Scholar 

  225. 225.

    Brown, C., Ghile, Y., Laverty, M. & Li, K. Decision scaling: linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resour. Res. 48, W09537 (2012).

    Google Scholar 

  226. 226.

    Restemeyer, B., van den Brink, M. & Woltjer, J. Resilience unpacked — framing of ‘uncertainty’ and ‘adaptability’ in long-term flood risk management strategies for London and Rotterdam. Eur. Plan. Stud. 26, 1559–1579 (2018).

    Article  Google Scholar 

  227. 227.

    Disse, M., Johnson, T. G., Leandro, J. & Hartmann, T. Exploring the relation between flood risk management and flood resilience. Water Secur. 9, 100059 (2020).

    Article  Google Scholar 

  228. 228.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  229. 229.

    Kriegler, E., et al. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change 42, 297–315 (2017).

    Article  Google Scholar 

  230. 230.

    Gall, M., Borden, K. A. & Cutter, S. L. When do losses count?: Six fallacies of natural hazards loss data. Bull. Am. Meteorol. Soc. 90, 799–810 (2009).

    Article  Google Scholar 

  231. 231.

    Panwar, V. & Sen, S. Disaster damage records of EM-DAT and DesInventar: a systematic comparison. Econ. Dis. Clim. Change 4, 295–317 (2020).

    Google Scholar 

  232. 232.

    Adelekan, I. O. Flood risk management in the coastal city of Lagos, Nigeria. J. Flood Risk Manag. 9, 255–264 (2016).

    Article  Google Scholar 

Download references


This work was supported by the DFG projects ‘SPATE’ (FOR 2416) and ‘NatRiskChange’ (GRK 2043/1), the FWF ‘SPATE’ project (I 3174), the ERC Advanced Grant ‘FloodChange’ project (number 291152), the Horizon 2020 ETN ‘System Risk’ project (number 676027) and the Helmholtz Climate Initiative. P.B. was supported by a Royal Society Wolfson Research Merit award. J.C.J.H.A. was supported by an ERC Advanced Grant COASTMOVE (number 884442) and a NWO-VICI grant (number 453-13-006).

Author information




B.M. suggested the original concept and coordinated the writing. G.B., S.V. and F.D. made major contributions to the writing. B.M., M.K., E.M. and S.V. generated the figures. All authors discussed the concepts and contributed to the writing.

Corresponding author

Correspondence to Bruno Merz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Seth Westra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information


Annual average loss

(AAL). A widespread indicator for risk, it is the estimated average loss per year considering the full range of scenarios from frequent events (zero or small loss) to extreme events (large loss or worst-case scenario).

Rain-on-snow events

Fall of rain onto existing snow, leading to flood runoff composed of snowmelt and rainfall.

Atmospheric rivers

Long, narrow and transient corridors of strong horizontal water vapour, transporting on average more than double the flow of the Amazon river and delivering moisture as heavy precipitation.

Runoff coefficient

The fraction of the event water input (precipitation or snowmelt within the catchment) that is not retained in the catchment and that directly contributes to discharge during the event.

Direct impacts

Consequences occurring in the inundated region during a flooding event.

Indirect impacts

Consequences occurring far away from the flooded region and/or after a flooding event.

Intangible impacts

Consequences of a flooding event that are difficult or impossible to monetarize, such as loss of life or loss of memorabilia.


The ratio of the number of people who lose their lives in a flood to the number of people affected by the flooding event.

Annual maximum flows

The highest streamflow peak in each year.

Flood timing

The dates of the year when floods occur.

Flood extent

The distance over which flooding occurs simultaneously.

Major flood level

Level at which a flood causes extensive inundation, significant evacuations, or property transfer to higher ground.

Action flood level

Level at which a flood does not cause damage but requires mitigation action in preparation for more substantial flooding.

People displaced

According to the DFO, either the total number of people left homeless after the incident, or the number of people evacuated during the flood.


Coupled Model Intercomparison Project Phase 5; for coordinated climate change experiments for the Fifth Assessment Report AR5 of the Intergovernmental Panel on Climate Change and beyond.

Return period

An indicator expressing the exceedance probability or rarity of an event. For instance, a 100-year flood discharge has a probability of 1/100 of being exceeded in a given year.

Flood frequency curve

Relation between flood discharge and the associated return period.

Risk-based decision-making

Optimizing risk reduction measures based on the best available knowledge.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merz, B., Blöschl, G., Vorogushyn, S. et al. Causes, impacts and patterns of disastrous river floods. Nat Rev Earth Environ 2, 592–609 (2021).

Download citation

Further reading


Quick links