Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The residence time of water vapour in the atmosphere

Abstract

Atmospheric water vapour residence time (WVRT) is an essential indicator of how atmospheric dynamics and thermodynamics mediate hydrological cycle responses to climate change. WVRT is also important in estimating moisture sources and sinks, linking evaporation and precipitation across spatial scales. In this Review, we outline how WVRT is shaped by the interaction between evaporation and precipitation, and, thus, reflects anthropogenic changes in the hydrological cycle. Estimates of WVRT differ owing to contrasting definitions, but these differences can be reconciled by framing WVRT as a probability density function with a mean of 8–10 days and a median of 4–5 days. WVRT varies spatially and temporally in response to regional, seasonal and synoptic-scale differences in evaporation, precipitation, long-range moisture transport and atmospheric mixing. Theory predicts, and observations confirm, that in most (but not all) regions, anthropogenic warming is increasing atmospheric humidity faster than it is speeding up rates of evaporation and precipitation. Warming is, thus, projected to increase global WVRT by 3–6% K−1, lengthening the distance travelled between evaporation sources and precipitation sinks. Future efforts should focus on data integration, joint measurement initiatives and intercomparisons, and dynamic simulations to provide a formal resolution of WVRT from both Lagrangian and Eulerian perspectives.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic depiction of the global lifetime distribution.
Fig. 2: Lifetime distribution of different surface conditions and water cycle components.
Fig. 3: Global patterns of water vapour residence time estimates and precipitation characteristics.
Fig. 4: The relation between water vapour residence time and stable isotope composition in atmospheric water vapour.
Fig. 5: Sensitivity of water vapour residence time and its components to global temperature.

References

  1. 1.

    Trenberth, K. E., Smith, L., Qian, T., Dai, A. & Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 8, 758–769 (2007).

    Article  Google Scholar 

  2. 2.

    Nieto, R. & Gimeno, L. A database of optimal integration times for Lagrangian studies of atmospheric moisture sources and sinks. Sci. Data 6, 59 (2019).

    Article  Google Scholar 

  3. 3.

    Trenberth, K. E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Clim. Change 39, 667–694 (1998).

    Article  Google Scholar 

  4. 4.

    Gimeno, L. et al. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 50, RG4003 (2012).

    Article  Google Scholar 

  5. 5.

    Dominguez, F., Hu, H. & Martinez, J. Two-layer dynamic recycling model (2L-DRM): learning from moisture tracking models of different complexity. J. Hydrometeorol. 21, 3–16 (2020).

    Article  Google Scholar 

  6. 6.

    Tuinenburg, O. & van der Ent, R. Land surface processes create patterns in atmospheric residence time of water. J. Geophys. Res. Atmos. 124, 583–600 (2019).

    Article  Google Scholar 

  7. 7.

    Sodemann, H. Beyond turnover time: constraining the lifetime distribution of water vapor from simple and complex approaches. J. Atmos. Sci. 77, 413–433 (2020).

    Article  Google Scholar 

  8. 8.

    Läderach, A. & Sodemann, H. A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett. 43, 924–933 (2016).

    Article  Google Scholar 

  9. 9.

    van der Ent, R. J. & Tuinenburg, O. A. The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci. 21, 779–790 (2017).

    Article  Google Scholar 

  10. 10.

    Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. Atmos. 104, 1957–1972 (1999).

    Article  Google Scholar 

  11. 11.

    Winschall, A., Sodemann, H., Pfahl, S. & Wernli, H. How important is intensified evaporation for Mediterranean precipitation extremes? J. Geophys. Res. Atmos. 119, 5240–5256 (2014).

    Article  Google Scholar 

  12. 12.

    Li, L. et al. The recycling rate of atmospheric moisture over the past two decades (1988–2009). Environ. Res. Lett. 6, 034018 (2011).

    Article  Google Scholar 

  13. 13.

    Kao, A. et al. A comparative study of atmospheric moisture recycling rate between observations and models. J. Clim. 31, 2389–2398 (2018).

    Article  Google Scholar 

  14. 14.

    Bosilovich, M. G., Schubert, S. D. & Walker, G. K. Global changes of the water cycle intensity. J. Clim. 18, 1591–1608 (2005).

    Article  Google Scholar 

  15. 15.

    Allan, R. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020). Addresses the challenges in better understanding the sensitivity of the water cycle to climate change.

    Article  Google Scholar 

  16. 16.

    Hodnebrog, Ø. et al. Water vapour adjustments and responses differ between climate drivers. Atmos. Chem. Phys. 19, 12887–12899 (2019).

    Article  Google Scholar 

  17. 17.

    Liu, B. et al. Global atmospheric moisture transport associated with precipitation extremes: Mechanisms and climate change impacts. Wiley Interdiscip. Rev. Water 7, e1412 (2020).

    Google Scholar 

  18. 18.

    Hoerling, M. & Kumar, A. The perfect ocean for drought. Science 299, 691–694 (2003).

    Article  Google Scholar 

  19. 19.

    Winschall, A., Pfahl, S., Sodemann, H. & Wernli, H. Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Q. J. R. Meteorol. Soc. 138, 1245–1258 (2012).

    Article  Google Scholar 

  20. 20.

    Fremme, A. & Sodemann, H. The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley. Hydrol. Earth Syst. Sci. 23, 2525–2540 (2019).

    Article  Google Scholar 

  21. 21.

    Aemisegger, F. & Papritz, L. A climatology of strong large-scale ocean evaporation events. Part I: Identification, global distribution, and associated climate conditions. J. Clim. 31, 7287–7312 (2018).

    Article  Google Scholar 

  22. 22.

    Byrne, M. P., Pendergrass, A. G., Rapp, A. D. & Wodzicki, K. R. Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Clim. Change Rep. 4, 355–370 (2018).

    Article  Google Scholar 

  23. 23.

    Mote, P. W. et al. An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res. Atmos. 101, 3989–4006 (1996).

    Article  Google Scholar 

  24. 24.

    Pfahl, S. & Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 10, 771–781 (2014).

    Article  Google Scholar 

  25. 25.

    Savenije, H. Water scarcity indicators; the deception of the numbers. Phys. Chem. Earth B: Hydrol. Oceans Atmos. 25, 199–204 (2000).

    Article  Google Scholar 

  26. 26.

    Bodnar, R. J. et al. Whole Earth geohydrologic cycle, from the clouds to the core: The distribution of water in the dynamic Earth system. Geol. Soc. Am. Spec. Pap. 500, 431–61 (2013).

    Google Scholar 

  27. 27.

    Berghuijs, W. R. & Kirchner, J. W. The relationship between contrasting ages of groundwater and streamflow. Geophys. Res. Lett. 44, 8925–8935 (2017).

    Article  Google Scholar 

  28. 28.

    Yoshimura, K., Oki, T., Ohte, N. & KANAE, S. Colored moisture analysis estimates of variations in 1998 Asian monsoon water sources. J. Meteorol. Soc. Japan. Ser. II 82, 1315–1329 (2004).

    Article  Google Scholar 

  29. 29.

    Van Heerwaarden, C. C., Vilà-Guerau de Arellano, J., Gounou, A., Guichard, F. & Couvreux, F. Understanding the daily cycle of evapotranspiration: A method to quantify the influence of forcings and feedbacks. J. Hydrometeorol. 11, 1405–1422 (2010).

    Article  Google Scholar 

  30. 30.

    Taylor, C., Ellis, R., Parker, D., Burton, R. & Thorncroft, C. Linking boundary-layer variability with convection: a case-study from jet2000. Q. J. Royal Meteorol. Soc. 129, 2233–2253 (2003).

    Article  Google Scholar 

  31. 31.

    Henkes, A., Fisch, G., Toledo Machado, L. A. & Chaboureau, J.-P. Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central amazon [preprint]. Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2021-87 (2021).

  32. 32.

    Keys, P. et al. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosci. Discuss. 8, 10487 (2011).

    Google Scholar 

  33. 33.

    Bagley, J. E., Desai, A. R., Dirmeyer, P. A. & Foley, J. A. Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets. Environ. Res. Lett. 7, 014009 (2012).

    Article  Google Scholar 

  34. 34.

    Miralles, D. G. et al. Contribution of water-limited ecoregions to their own supply of rainfall. Environ. Res. Lett. 11, 124007 (2016).

    Article  Google Scholar 

  35. 35.

    Guo, L. et al. Moisture sources for East Asian precipitation: Mean seasonal cycle and interannual variability. J. Hydrometeorol. 20, 657–672 (2019).

    Article  Google Scholar 

  36. 36.

    Miralles, D. G., Gentine, P., Seneviratne, S. I. & Teuling, A. J. Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N. Y. Acad. Sci. 1436, 19 (2019).

    Article  Google Scholar 

  37. 37.

    Van der Ent, R., Wang-Erlandsson, L., Keys, P. W. & Savenije, H. Contrasting roles of interception and transpiration in the hydrological cycle–Part 2: Moisture recycling. Earth Syst. Dyn. 5, 471–489 (2014).

    Article  Google Scholar 

  38. 38.

    Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Revealing invisible water: moisture recycling as an ecosystem service. PLoS One 11, e0151993 (2016).

    Article  Google Scholar 

  39. 39.

    Papritz, L. & Spengler, T. A Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic Seas and their role in shaping air–sea heat fluxes. J. Clim. 30, 2717–2737 (2017).

    Article  Google Scholar 

  40. 40.

    Or, D. & Lehmann, P. Surface evaporative capacitance: How soil type and rainfall characteristics affect global-scale surface evaporation. Water Resour. Res. 55, 519–539 (2019).

    Article  Google Scholar 

  41. 41.

    Worden, J., Noone, D. & Bowman, K. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445, 528–532 (2007).

    Article  Google Scholar 

  42. 42.

    Steen-Larsen, H. et al. Moisture sources and synoptic to seasonal variability of North Atlantic water vapor isotopic composition. J. Geophys. Res. Atmos. 120, 5757–5774 (2015).

    Article  Google Scholar 

  43. 43.

    Bonne, J.-L. et al. Resolving the controls of water vapour isotopes in the atlantic sector. Nature Commun. 10, 1632 (2019).

    Article  Google Scholar 

  44. 44.

    Wei, Z. et al. A global database of water vapor isotopes measured with high temporal resolution infrared laser spectroscopy. Sci. Data 6, 180302 (2019).

    Article  Google Scholar 

  45. 45.

    Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term “evapotranspiration”. Water Resour. Res. 56, e2020WR028055 (2020).

    Article  Google Scholar 

  46. 46.

    Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).

    Article  Google Scholar 

  47. 47.

    Coenders-Gerrits, A. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).

    Article  Google Scholar 

  48. 48.

    Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189, 115–117 (2014).

    Article  Google Scholar 

  49. 49.

    Yu, Y. et al. Observed positive vegetation-rainfall feedbacks in the Sahel dominated by a moisture recycling mechanism. Nature Commun. 8, 1873 (2017).

    Article  Google Scholar 

  50. 50.

    Hu, H. & Dominguez, F. Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeorol. 16, 19–35 (2015).

    Article  Google Scholar 

  51. 51.

    Li, R. & Wang, C. Precipitation recycling using a new evapotranspiration estimator for Asian-African arid regions. Theor. Appl. Climatol. 140, 1–13 (2020).

    Article  Google Scholar 

  52. 52.

    Notaro, M., Wang, F. & Yu, Y. Elucidating observed land surface feedbacks across sub-Saharan Africa. Clim. Dyn. 53, 1741–1763 (2019).

    Article  Google Scholar 

  53. 53.

    Wang, N., Zeng, X.-M., Zheng, Y., Zhu, J. & Jiang, S. The atmospheric moisture residence time and reference time for moisture tracking over China. J. Hydrometeorol. 19, 1131–1147 (2018).

    Article  Google Scholar 

  54. 54.

    Gat, J. R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225–262 (1996).

    Article  Google Scholar 

  55. 55.

    Galewsky, J. et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 54, 809–865 (2016).

    Article  Google Scholar 

  56. 56.

    Aggarwal, P. K. et al. Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geophys. Res. Lett. 39, L11705 (2012). Showed that the interpretation based on moisture residence time is a key factor in the use of stable isotopes in precipitation to monitor impacts of past climate changes.

    Article  Google Scholar 

  57. 57.

    Galewsky, J. & Samuels-Crow, K. Water vapor isotopic composition of a stratospheric air intrusion: Measurements from the Chajnantor Plateau, Chile. J. Geophys. Res. Atmos. 119, 9679–9691 (2014).

    Article  Google Scholar 

  58. 58.

    Galewsky, J. & Samuels-Crow, K. Summertime moisture transport to the southern South American Altiplano: Constraints from in situ measurements of water vapor isotopic composition. J. Clim. 28, 2635–2649 (2015).

    Article  Google Scholar 

  59. 59.

    Hanisco, T. F. Observations of deep convective influence on stratospheric water vapor and its isotopic composition. Geophys. Res. Lett. 34, L04814 (2007).

    Article  Google Scholar 

  60. 60.

    Sodemann, H. et al. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights. Atmos. Chem. Phys. 17, 6125–6151 (2017).

    Article  Google Scholar 

  61. 61.

    Steen-Larsen, H. C. et al. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos. Chem. Phys. 13, 4815–4828 (2013).

    Article  Google Scholar 

  62. 62.

    Aemisegger, F. & Sjolte, J. A climatology of strong large-scale ocean evaporation events. Part II: Relevance for the deuterium excess signature of the evaporation flux. J. Clim. 31, 7313–7336 (2018).

    Article  Google Scholar 

  63. 63.

    Araguás-Araguás, L., Froehlich, K. & Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 14, 1341–1355 (2000).

    Article  Google Scholar 

  64. 64.

    Graf, P., Wernli, H., Pfahl, S. & Sodemann, H. A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain. Atmos. Chem. Phys. 19, 747–765 (2019).

    Article  Google Scholar 

  65. 65.

    Bonne, J.-L. et al. The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event. J. Geophys. Res. Atmos. 120, 2970–2989 (2015).

    Article  Google Scholar 

  66. 66.

    Froehlich, K. et al. Deuterium excess in precipitation of Alpine regions–moisture recycling. Isotopes Environ. Health Stud. 44, 61–70 (2008).

    Article  Google Scholar 

  67. 67.

    Aemisegger, F. et al. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmos. Chem. Phys. 14, 4029–4054 (2014).

    Article  Google Scholar 

  68. 68.

    Wei, Z. & Lee, X. The utility of near-surface water vapor deuterium excess as an indicator of atmospheric moisture source. J. Hydrol. 577, 123923 (2019).

    Article  Google Scholar 

  69. 69.

    Penna, D. et al. Tracing ecosystem water fluxes using hydrogen and oxygen stable isotopes: challenges and opportunities from an interdisciplinary perspective. Biogeosci. Discuss. https://doi.org/10.5194/bg-2018-286 (2018).

  70. 70.

    Sprenger, M. et al. The demographics of water: A review of water ages in the critical zone. Rev. Geophys. 57, 800–834 (2019).

    Article  Google Scholar 

  71. 71.

    Jasechko, S. Global isotope hydrogeology—Review. Rev. Geophys. 57, 835–965 (2019).

    Article  Google Scholar 

  72. 72.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  73. 73.

    Khon, V., Park, W., Latif, M., Mokhov, I. & Schneider, B. Response of the hydrological cycle to orbital and greenhouse gas forcing. Geophys. Res. Lett. 37, L19705 (2010).

    Article  Google Scholar 

  74. 74.

    O’Gorman, P. A. & Schneider, T. The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Clim. 21, 3815–3832 (2008).

    Article  Google Scholar 

  75. 75.

    O’Gorman, P. A., Allan, R. P., Byrne, M. P. & Previdi, M. Energetic constraints on precipitation under climate change. Surv. Geophys. 33, 585–608 (2012).

    Article  Google Scholar 

  76. 76.

    O’Gorman, P. A. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 5, 697–700 (2012).

    Article  Google Scholar 

  77. 77.

    Stephens, G. L. & Ellis, T. D. Controls of global-mean precipitation increases in global warming GCM experiments. J. Clim. 21, 6141–6155 (2008).

    Article  Google Scholar 

  78. 78.

    Zhang, L., Wu, L. & Gan, B. Modes and mechanisms of global water vapor variability over the twentieth century. J. Clim. 26, 5578–5593 (2013).

    Article  Google Scholar 

  79. 79.

    Sherwood, S., Roca, R., Weckwerth, T. & Andronova, N. Tropospheric water vapor, convection, and climate. Rev. Geophys. 48, RG2001 (2010).

    Article  Google Scholar 

  80. 80.

    Gu, G. & Adler, R. F. Spatial patterns of global precipitation change and variability during 1901–2010. J. Clim. 28, 4431–4453 (2015).

    Article  Google Scholar 

  81. 81.

    Santer, B. D. et al. Identification of human-induced changes in atmospheric moisture content. Proc. Natl Acad. Sci. USA 104, 15248–15253 (2007).

    Article  Google Scholar 

  82. 82.

    O’Gorman, P. & Muller, C. J. How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett. 5, 025207 (2010).

    Article  Google Scholar 

  83. 83.

    Wentz, F. J. & Schabel, M. Precise climate monitoring using complementary satellite data sets. Nature 403, 414–416 (2000).

    Article  Google Scholar 

  84. 84.

    Trenberth, K. E., Fasullo, J. & Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dyn. 24, 741–758 (2005).

    Article  Google Scholar 

  85. 85.

    Chung, E.-S., Soden, B., Sohn, B. & Shi, L. Upper-tropospheric moistening in response to anthropogenic warming. Proc. Natl Acad. Sci. USA 111, 11636–11641 (2014).

    Article  Google Scholar 

  86. 86.

    Wang, J., Dai, A. & Mears, C. Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements. J. Clim. 29, 5205–5222 (2016).

    Article  Google Scholar 

  87. 87.

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 228–232 (2002).

    Google Scholar 

  88. 88.

    Andrews, T., Forster, P. M., Boucher, O., Bellouin, N. & Jones, A. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett. 37, L14701 (2010).

    Article  Google Scholar 

  89. 89.

    Samset, B. et al. Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett. 43, 2782–2791 (2016).

    Article  Google Scholar 

  90. 90.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 12 (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

  91. 91.

    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    Article  Google Scholar 

  92. 92.

    Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).

    Article  Google Scholar 

  93. 93.

    Yang, T., Ding, J., Liu, D., Wang, X. & Wang, T. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm. J. Clim. 32, 737–748 (2019).

    Article  Google Scholar 

  94. 94.

    Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  95. 95.

    Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).

    Article  Google Scholar 

  96. 96.

    Singh, H. K., Bitz, C. M., Donohoe, A., Nusbaumer, J. & Noone, D. C. A mathematical framework for analysis of water tracers. Part II: Understanding large-scale perturbations in the hydrological cycle due to CO2 doubling. J. Clim. 29, 6765–6782 (2016).

    Article  Google Scholar 

  97. 97.

    Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1218 (2003).

    Article  Google Scholar 

  98. 98.

    Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., Stringer, M. A. & Lavers, D. A. How do atmospheric rivers form? Bull. Am. Meteorol. Soc. 96, 1243–1255 (2015).

    Article  Google Scholar 

  99. 99.

    Hu, H. & Dominguez, F. Understanding the role of tropical moisture in atmospheric rivers. J. Geophys. Res. Atmos. 124, 13826–13842 (2019).

    Article  Google Scholar 

  100. 100.

    McDonnell, J. J. Beyond the water balance. Nat. Geosci. 10, 396–396 (2017).

    Article  Google Scholar 

  101. 101.

    McGuire, K. J. & McDonnell, J. J. A review and evaluation of catchment transit time modeling. J. Hydrol. 330, 543–563 (2006).

    Article  Google Scholar 

  102. 102.

    Brooks, J. R., Barnard, H. R., Coulombe, R. & McDonnell, J. J. Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat. Geosci. 3, 100–104 (2010).

    Article  Google Scholar 

  103. 103.

    Kirchner, J. W., Feng, X. & Neal, C. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524–527 (2000).

    Article  Google Scholar 

  104. 104.

    Godsey, S. E. et al. Generality of fractal 1/f scaling in catchment tracer time series, and its implications for catchment travel time distributions. Hydrol. Proc. 24, 1660–1671 (2010).

    Article  Google Scholar 

  105. 105.

    Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).

    Article  Google Scholar 

  106. 106.

    Schneider, T., O’Gorman, P. A. & Levine, X. J. Water vapor and the dynamics of climate changes. Rev. Geophys. 48, RG3001 (2010).

    Article  Google Scholar 

  107. 107.

    Arkin, P. A., Smith, T. M., Sapiano, M. R. & Janowiak, J. The observed sensitivixy of the global hydrological cycle to changes in surface temperature. Environ. Res. Lett. 5, 035201 (2010).

    Article  Google Scholar 

  108. 108.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  109. 109.

    Risi, C. et al. Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. J. Geophys. Res. Atmos. 117, D05303 (2012).

    Google Scholar 

  110. 110.

    Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. &Tan, J. GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06. (Goddard Earth Sciences Data and Information Services Center, 2019).

  111. 111.

    Wentz, F. J., Ricciardulli, L., Hilburn, K. & Mears, C. How much more rain will global warming bring? Science 317, 233–235 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

L.G., R.N. and J.E.-B. were funded by the Spanish government within the LAGRIMA (RTI2018-095772-B-I00) project, funded by Ministerio de Ciencia, Innovación y Universidades, Spain, which are also funded by FEDER (European Regional Development Fund, ERDF). J.E.-B. was also supported by the Xunta de Galicia (Galician Regional Government) under grant ED481B 2018/069 and by the Fulbright Program (US Department of State). L.G., R.N. and J.E.-B. were partially supported by Xunta de Galicia, Spain under project ED413C 2017/64 ‘Programa de Consolidacion e Estructuracion de Unidades de Investigacion Competitivas (Grupos de Referencia Competitiva)’ co-funded by the European Regional Development Fund, European Union (FEDER). J.E.-B. thanks the Defense University Center at the Spanish Naval Academy (CUD-ENM) for all the support provided for this research. R.V.d.E. acknowledges funding from the Netherlands Organization for Scientific Research (NWO), project number 016.Veni.181.015. A.M.D.-Q. acknowledges support from IAEA CRP F31006 (UCR project number B9519). F.D. is supported by National Science Foundation (NSF) CAREER Award AGS 1454089. H.S. acknowledges support by the Norwegian Research Council (Project SNOWPACE, grant no. 262710) and by the European Research Council (Consolidator Grant ISLAS, project no. 773245).

Author information

Affiliations

Authors

Contributions

L.G. initiated writing of the Review and organized the writing process. All the authors contributed equally to the discussion and writing of the manuscript.

Corresponding author

Correspondence to Luis Gimeno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks M. Byrne, Z. Wei and Ø. Hodnebrog for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gimeno, L., Eiras-Barca, J., Durán-Quesada, A.M. et al. The residence time of water vapour in the atmosphere. Nat Rev Earth Environ 2, 558–569 (2021). https://doi.org/10.1038/s43017-021-00181-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing