Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The influence of the quasi-biennial oscillation on the Madden–Julian oscillation

Abstract

The stratospheric quasi-biennial oscillation (QBO) and the tropospheric Madden–Julian oscillation (MJO) are strongly linked in boreal winter. In this Review, we synthesize observational and modelling evidence for this QBO–MJO connection and discuss its effects on MJO teleconnections and subseasonal-to-seasonal predictions. After 1980, observations indicate that, during winters when lower-stratospheric QBO winds are easterly, the MJO is ~40% stronger and persists roughly 10 days longer compared with when QBO winds are westerly. Global subseasonal forecast models, in turn, show a 1-week improvement (or 25% enhancement) in MJO prediction skill in QBO easterly versus QBO westerly phases. Despite the robustness of the observed QBO–MJO link and its global impacts via atmospheric teleconnections, the mechanisms that drive the connection are uncertain. Theories largely centre on QBO-related temperature stratification effects and subsequent impacts on deep convection, although other hypotheses propose that cloud radiative effects or QBO impacts on wave propagation might be important. Most numerical models, however, are unable to reproduce the observed QBO–MJO relationship, suggesting biases, deficiencies or omission of key physical processes in the models. While future work must strive to better understand all aspects of the QBO–MJO link, focus is needed on establishing a working mechanism and capturing the connection in models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The QBO and the MJO.
Fig. 2: Seasonality and emergence of the QBO–MJO connection.
Fig. 3: MJO precipitation in QBOE and QBOW winters.
Fig. 4: MJO activity in CMIP6 models.
Fig. 5: Schematic illustration of the QBO–MJO connection.
Fig. 6: MJO prediction skill during different phases of the QBO.

References

  1. 1.

    Sobel, A. H. Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future (Harper Wave, 2014).

  2. 2.

    Hand, E. The storm king. Science 350, 22–25 (2015).

    Article  Google Scholar 

  3. 3.

    Hitchman, M. H., Yoden, S., Haynes, P. H., Kumar, V. & Tegtmeier, S. An observational history of the direct influence of the stratospheric quasi-biennial oscillation on the tropical and subtropical upper troposphere and lower stratosphere. J. Meteorol. Soc. Jpn 99, 239–267 (2021).

    Article  Google Scholar 

  4. 4.

    Yanai, M. & Maruyama, T. Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteorol. Soc. Jpn 44, 291–294 (1966).

    Article  Google Scholar 

  5. 5.

    Wallace, J. M. & Kousky, V. E. Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci. 25, 900–907 (1968).

    Article  Google Scholar 

  6. 6.

    Maruyama, Taketo The quasi-biennial oscillation (QBO) and equatorial waves. Pap. Meteorol. Geophys. 48, 1–17 (1997).

    Article  Google Scholar 

  7. 7.

    Ebdon, R. & Veryard, R. Fluctuations in equatorial stratospheric winds. Nature 189, 791–793 (1961).

    Article  Google Scholar 

  8. 8.

    Reed, R. J., Campbell, W. J., Rasmussen, L. A. & Rogers, D. G. Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res. 66, 813–818 (1961).

    Article  Google Scholar 

  9. 9.

    Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).

    Article  Google Scholar 

  10. 10.

    Gray, L. J. et al. Surface impacts of the quasi-biennial oscillation. Atmos. Chem. Phys. 18, 8227–8247 (2018).

    Article  Google Scholar 

  11. 11.

    Osprey, S. M. et al. An unexpected disruption of the atmospheric quasi-biennial oscillation. Science 353, 1424–1427 (2016).

    Article  Google Scholar 

  12. 12.

    Newman, P. A., Coy, L., Pawson, S. & Lait, L. R. The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett. 43, 8791–8797 (2016).

    Article  Google Scholar 

  13. 13.

    Hamilton, K., Osprey, S. & Butchart, N. Modeling the stratosphere’s “heartbeat”. Eos https://doi.org/10.1029/2015EO032301 (2015).

  14. 14.

    Lindzen, R. S. & Holton, J. R. A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25, 1095–1107 (1968).

    Article  Google Scholar 

  15. 15.

    Holton, J. R. & Lindzen, R. S. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972).

    Article  Google Scholar 

  16. 16.

    Plumb, R. A. & Bell, R. C. A model of the quasi-biennial oscillation on an equatorial beta-plane. Q. J. R. Meteorol. Soc. 108, 335–352 (1982).

    Article  Google Scholar 

  17. 17.

    Madden, R. A. & Julian, P. R. Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28, 702–708 (1971).

    Article  Google Scholar 

  18. 18.

    Madden, R. A. & Julian, P. R. Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci. 29, 1109–1123 (1972).

    Article  Google Scholar 

  19. 19.

    Zhang, C. Madden-Julian oscillation. Rev. Geophys. 43, RG2003 (2005).

    Google Scholar 

  20. 20.

    Zhang, C. & Dong, M. Seasonality of the Madden–Julian oscillation. J. Clim. 17, 3169–3180 (2004).

    Article  Google Scholar 

  21. 21.

    Hendon, H. H., Zhang, C. & Glick, J. Interannual variation of the Madden–Julian oscillation during austral summer. J. Clim. 12, 2538–2550 (1999).

    Article  Google Scholar 

  22. 22.

    Hendon, H. H. & Salby, M. L. The life cycle of the Madden–Julian oscillation. J. Atmos. Sci. 51, 2225–2237 (1994).

    Article  Google Scholar 

  23. 23.

    Zhang, C. Madden–Julian oscillation: Bridging weather and climate. Bull. Am. Meteorol. Soc. 94, 1849–1870 (2013).

    Article  Google Scholar 

  24. 24.

    Vitart, F. et al. The subseasonal to seasonal (S2S) prediction project database. Bull. Am. Meteorol. Soc. 98, 163–173 (2017).

    Article  Google Scholar 

  25. 25.

    Meehl, G. A. et al. Initialized Earth System prediction from subseasonal to decadal timescales. Nat. Rev. Earth Environ. 2, 340–357 (2021).

    Article  Google Scholar 

  26. 26.

    Yoo, C. & Son, S.-W. Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett. 43, 1392–1398 (2016).

    Article  Google Scholar 

  27. 27.

    Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H. & Kim, J. Stratospheric control of the Madden–Julian oscillation. J. Clim. 30, 1909–1922 (2017).

    Article  Google Scholar 

  28. 28.

    Marshall, A. G., Hendon, H. H., Son, S.-W. & Lim, Y. Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Clim. Dyn. 49, 1365–1377 (2017).

    Article  Google Scholar 

  29. 29.

    Zhang, C., Adames, Á. F., Khouider, B., Wang, B. & Yang, D. Four theories of the Madden-Julian oscillation. Rev. Geophys. 58, e2019RG000685 (2020).

    Article  Google Scholar 

  30. 30.

    Christiansen, B., Yang, S. & Madsen, M. S. Do strong warm ENSO events control the phase of the stratospheric QBO? Geophys. Res. Lett. 43, 10489–10495 (2016).

    Article  Google Scholar 

  31. 31.

    Camargo, S. J. & Sobel, A. H. Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Clim. 23, 5810–5825 (2010).

    Article  Google Scholar 

  32. 32.

    Gray, W. M., Sheaffer, J. D. & Knaff, J. A. Influence of the stratospheric QBO on ENSO variability. J. Meteorol. Soc. Jpn 70, 975–995 (1992).

    Article  Google Scholar 

  33. 33.

    Collimore, C. C., Martin, D. W., Hitchman, M. H., Huesmann, A. & Waliser, D. E. On the relationship between the QBO and tropical deep convection. J. Clim. 16, 2552–2568 (2003).

    Article  Google Scholar 

  34. 34.

    Liess, S. & Geller, M. A. On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res. Atmos. 117, D03108 (2012).

    Article  Google Scholar 

  35. 35.

    Abhik, S., Hendon, H. H. & Wheeler, M. C. On the sensitivity of convectively coupled equatorial waves to the quasi-biennial oscillation. J. Clim. 32, 5833–5847 (2019).

    Article  Google Scholar 

  36. 36.

    Sakaeda, N., Dias, J. & Kiladis, G. N. The unique characteristics and potential mechanisms of the MJO-QBO relationship. J. Geophys. Res. Atmos. 125, e2020JD033196 (2020).

    Article  Google Scholar 

  37. 37.

    Lee, J. C. & Klingaman, N. P. The effect of the quasi-biennial oscillation on the Madden–Julian oscillation in the Met Office Unified Model Global Ocean Mixed Layer configuration. Atmos. Sci. Lett. 19, e816 (2018).

    Article  Google Scholar 

  38. 38.

    Lim, Y. & Son, S.-W. QBO-MJO connection in CMIP5 models. J. Geophys. Res. Atmos. 125, e2019JD032157 (2020).

    Article  Google Scholar 

  39. 39.

    Kim, H., Caron, J. M., Richter, J. H. & Simpson, I. R. The lack of QBO-MJO connection in CMIP6 models. Geophys. Res. Lett. 47, e2020GL087295 (2020).

    Google Scholar 

  40. 40.

    Martin, Z., Orbe, C., Wang, S. & Sobel, A. H. The MJO-QBO relationship in a GCM with stratospheric nudging. J. Clim. 34, 4603–4624 (2021).

    Google Scholar 

  41. 41.

    Kuma, K.-I. A quasi-biennial oscillation in the intensity of the intra-seasonal oscillation. Int. J. Climatol. 10, 263–278 (1990).

    Article  Google Scholar 

  42. 42.

    Densmore, C. R., Sanabia, E. R. & Barrett, B. S. QBO influence on MJO amplitude over the Maritime Continent: Physical mechanisms and seasonality. Mon. Weather Rev. 147, 389–406 (2019).

    Article  Google Scholar 

  43. 43.

    Wang, S., Tippett, M. K., Sobel, A. H., Martin, Z. K. & Vitart, F. Impact of the QBO on prediction and predictability of the MJO convection. J. Geophys. Res. Atmos. 124, 11766–11782 (2019).

    Article  Google Scholar 

  44. 44.

    Klotzbach, P. et al. On the emerging relationship between the stratospheric Quasi-Biennial oscillation and the Madden-Julian oscillation. Sci. Rep. 9, 2981 (2019).

    Article  Google Scholar 

  45. 45.

    Zhang, C. & Zhang, B. QBO-MJO connection. J. Geophys. Res. Atmos. 123, 2957–2967 (2018).

    Article  Google Scholar 

  46. 46.

    Nishimoto, E. & Yoden, S. Influence of the stratospheric quasi-biennial oscillation on the Madden–Julian oscillation during austral summer. J. Atmos. Sci. 74, 1105–1125 (2017).

    Article  Google Scholar 

  47. 47.

    Hood, L. L. QBO/solar modulation of the boreal winter Madden-Julian oscillation: A prediction for the coming solar minimum. Geophys. Res. Lett. 44, 3849–3857 (2017).

    Article  Google Scholar 

  48. 48.

    Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E. Convectively coupled equatorial waves. Rev. Geophys. 47, RG2003 (2009).

    Article  Google Scholar 

  49. 49.

    Gray, W. M. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Weather Rev. 112, 1649–1668 (1984).

    Article  Google Scholar 

  50. 50.

    Richter, J. et al. Progress in simulating the quasi-biennial oscillation in CMIP models. J. Geophys. Res. Atmos. 125, e2019JD032362 (2020).

    Article  Google Scholar 

  51. 51.

    Ahn, M.-S. et al. MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett. 47, e2020GL087250 (2020).

    Article  Google Scholar 

  52. 52.

    Giorgetta, M., Manzini, E., Roeckner, E., Esch, M. & Bengtsson, L. Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Clim. 19, 3882–3901 (2006).

    Article  Google Scholar 

  53. 53.

    Charlton-Perez, A. J. et al. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 118, 2494–2505 (2013).

    Article  Google Scholar 

  54. 54.

    Slingo, J. et al. Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Clim. Dyn. 12, 325–357 (1996).

    Article  Google Scholar 

  55. 55.

    Kim, D., Sobel, A. H., Maloney, E. D., Frierson, D. M. W. & Kang, I.-S. A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Clim. 24, 5506–5520 (2011).

    Article  Google Scholar 

  56. 56.

    Martin, Z., Vitart, F., Wang, S. & Sobel, A. The impact of the stratosphere on the MJO in a forecast model. J. Geophys. Res. Atmos. 125, e2019JD032106 (2020).

    Google Scholar 

  57. 57.

    Lim, Y., Son, S.-W., Marshall, A. G., Hendon, H. H. & Seo, K.-H. Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Clim. Dyn. 53, 1681–1695 (2019).

    Article  Google Scholar 

  58. 58.

    Abhik, S. & Hendon, H. H. Influence of the QBO on the MJO during coupled model multiweek forecasts. Geophys. Res. Lett. 46, 9213–9221 (2019).

    Article  Google Scholar 

  59. 59.

    Kim, H., Richter, J. H. & Martin, Z. Insignificant QBO-MJO prediction skill relationship in the SubX and S2S subseasonal reforecasts. J. Geophys. Res. Atmos. 124, 12655–12666 (2019).

    Article  Google Scholar 

  60. 60.

    Back, S.-Y., Han, J.-Y. & Son, S.-W. Modeling evidence of QBO-MJO connection: A case study. Geophys. Res. Lett. 47, e2020GL089480 (2020).

    Article  Google Scholar 

  61. 61.

    Martin, Z., Wang, S., Nie, J. & Sobel, A. The impact of the QBO on MJO convection in cloud-resolving simulations. J. Atmos. Sci. 76, 669–688 (2019).

    Article  Google Scholar 

  62. 62.

    Virts, K. S. & Wallace, J. M. Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci. 71, 1143–1157 (2014).

    Article  Google Scholar 

  63. 63.

    Del Genio, A. D., Chen, Y., Kim, D. & Yao, M. The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Clim. 25, 3755–3770 (2012).

    Article  Google Scholar 

  64. 64.

    Hendon, H. H. & Abhik, S. Differences in vertical structure of the Madden-Julian Oscillation associated with the quasi-biennial oscillation. Geophys. Res. Lett. 45, 4419–4428 (2018).

    Article  Google Scholar 

  65. 65.

    Nie, J. & Sobel, A. H. Responses of tropical deep convection to the QBO: Cloud-resolving simulations. J. Atmos. Sci. 72, 3625–3638 (2015).

    Article  Google Scholar 

  66. 66.

    Giorgetta, M. A., Bengtsson, L. & Arpe, K. An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Clim. Dyn. 15, 435–450 (1999).

    Article  Google Scholar 

  67. 67.

    Madden, R. A. Seasonal variations of the 40-50 day oscillation in the tropics. J. Atmos. Sci. 43.24, 3138–3158 (1986).

    Article  Google Scholar 

  68. 68.

    Martin, Z., Sobel, A., Butler, A. & Wang, S. Variability in QBO temperature anomalies on annual and decadal timescales. J. Clim. 34, 589–605 (2021).

    Article  Google Scholar 

  69. 69.

    Tegtmeier, S. et al. Zonal asymmetry of the QBO temperature signal in the tropical tropopause region. Geophys. Res. Lett. 47, e2020GL089533 (2020).

    Article  Google Scholar 

  70. 70.

    Reid, G. C. & Gage, K. S. On the annual variation of height of the tropical tropopause. J. Atmos. Sci. 38, 1928–1937 (1981).

    Article  Google Scholar 

  71. 71.

    Yulaeva, E., Holton, J. R. & Wallace, J. M. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 51, 169–174 (1994).

    Article  Google Scholar 

  72. 72.

    Aquila, V. et al. Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings. J. Geophys. Res. Atmos. 121, 8067–8082 (2016).

    Article  Google Scholar 

  73. 73.

    Gettleman, A. & Forester, P. M. F. A climatology of the tropical tropopause layer. J. Meteorol. Soc. Jpn 80, 911–924 (2002).

    Article  Google Scholar 

  74. 74.

    Sun, L., Wang, H. & Liu, F. Combined effect of the QBO and ENSO on the MJO. Atmos. Ocean. Sci. Lett. 12, 170–176 (2019).

    Article  Google Scholar 

  75. 75.

    Hartmann, D. L., Holton, J. R. & Fu, Q. The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett. 28, 1969–1972 (2001).

    Article  Google Scholar 

  76. 76.

    Yang, Q., Fu, Q. & Hu, Y. Radiative impacts of clouds in the tropical tropopause layer. J. Geophys. Res. Atmos. 115, D00H12 (2010).

    Google Scholar 

  77. 77.

    Hong, Y., Liu, G. & Li, J.-L. Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements. J. Clim. 29, 7651–7674 (2016).

    Article  Google Scholar 

  78. 78.

    Zhang, C. & Ling, J. Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Clim. 30, 3439–3459 (2017).

    Article  Google Scholar 

  79. 79.

    Raymond, D. J. A new model of the Madden–Julian oscillation. J. Atmos. Sci. 58, 2807–2819 (2001).

    Article  Google Scholar 

  80. 80.

    Sobel, A. & Maloney, E. An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci. 69, 1691–1705 (2012).

    Article  Google Scholar 

  81. 81.

    Sobel, A. & Maloney, E. Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci. 70, 187–192 (2013).

    Article  Google Scholar 

  82. 82.

    Crueger, T. & Stevens, B. The effect of atmospheric radiative heating by clouds on the Madden-Julian Oscillation. J. Adv. Model. Earth Syst. 7, 854–864 (2015).

    Article  Google Scholar 

  83. 83.

    Del Genio, A. D. & Chen, Y. Cloud-radiative driving of the Madden-Julian oscillation as seen by the A-Train. J. Geophys. Res. Atmos. 120, 5344–5356 (2015).

    Article  Google Scholar 

  84. 84.

    Zhang, B., Kramer, R. J. & Soden, B. J. Radiative feedbacks associated with the Madden–Julian oscillation. J. Clim. 32, 7055–7065 (2019).

    Article  Google Scholar 

  85. 85.

    Adames, Á. F. & Kim, D. The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci. 73, 913–941 (2016).

    Article  Google Scholar 

  86. 86.

    Kim, D., Ahn, M., Kang, I. & Del Genio, A. D. Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Clim. 28, 6979–6994 (2015).

    Article  Google Scholar 

  87. 87.

    Davis, S. M., Liang, C. K. & Rosenlof, K. H. Interannual variability of tropical tropopause layer clouds. Geophys. Res. Lett. 40, 2862–2866 (2013).

    Article  Google Scholar 

  88. 88.

    Tseng, H.-H. & Fu, Q. Temperature control of the variability of tropical tropopause layer cirrus clouds. J. Geophys. Res. Atmos. 122, 11062–11075 (2017).

    Article  Google Scholar 

  89. 89.

    Randall, D., Khairoutdinov, M., Arakawa, A. & Grabowski, W. Breaking the cloud parameterization deadlock. Bull. Am. Meteorol. Soc. 84, 1547–1564 (2003).

    Article  Google Scholar 

  90. 90.

    Lane, T. P. Does lower-stratospheric shear influence the mesoscale organization of convection? Geophys. Res. Lett. 48, e2020GL091025 (2021).

    Article  Google Scholar 

  91. 91.

    Bui, H., Nishimoto, E. & Yoden, S. Downward influence of QBO-like oscillation on moist convection in a two-dimensional minimal model framework. J. Atmos. Sci. 74, 3635–3655 (2017).

    Article  Google Scholar 

  92. 92.

    Nishimoto, E., Yoden, S. & Bui, H. Vertical momentum transports associated with moist convection and gravity waves in a minimal model of QBO-like oscillation. J. Atmos. Sci. 73, 2935–2957 (2016).

    Article  Google Scholar 

  93. 93.

    Raphaldini, B., Teruya, A. S. W., Leite da Silva Dias, P., Massaroppe, L. & Takahashi, D. Y. Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: a normal-mode perspective. Earth Syst. Dyn. 12, 83–101 (2021).

    Article  Google Scholar 

  94. 94.

    Wang, J., Kim, H. -M. & Chang, E. K. M. Interannual modulation of Northern Hemisphere winter storm tracks by the QBO. Geophys. Res. Lett. 45, 2786–2794 (2018).

    Article  Google Scholar 

  95. 95.

    White, I. P., Lu, H., Mitchell, N. J. & Phillips, T. Dynamical response to the QBO in the northern winter stratosphere: Signatures in wave forcing and eddy fluxes of potential vorticity. J. Atmos. Sci. 72, 4487–4507 (2015).

    Article  Google Scholar 

  96. 96.

    Garfinkel, C. I. & Hartmann, D. L. Influence of the quasi-biennial oscillation on the North Pacific and El Niño teleconnections. J. Geophys. Res. 115, D20116 (2010).

    Article  Google Scholar 

  97. 97.

    Kim, H., Vitart, F. & Waliser, D. E. Prediction of the Madden–Julian oscillation: A review. J. Clim. 31, 9425–9443 (2018).

    Article  Google Scholar 

  98. 98.

    Pegion, K. et al. The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Am. Meteorol. Soc. 100, 2043–2060 (2019).

    Article  Google Scholar 

  99. 99.

    Baggett, C. F., Barnes, E. A., Maloney, E. D. & Mundhenk, B. D. Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett. 44, 7528–7536 (2017).

    Article  Google Scholar 

  100. 100.

    Mundhenk, B. D., Barnes, E. A., Maloney, E. D. & Baggett, C. F. Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. NPJ Clim. Atmos. Sci. 1, 20177 (2018).

    Article  Google Scholar 

  101. 101.

    Mayer, K. J. & Barnes, E. A. Subseasonal midlatitude prediction skill following quasi-biennial oscillation and Madden–Julian oscillation activity. Weather Clim. Dyn. 1, 247–259 (2020).

    Article  Google Scholar 

  102. 102.

    Nardi, K. M. et al. Skillful all-season S2S prediction of US precipitation using the MJO and QBO. Weather Forecast. 35, 2179–2198 (2020).

    Article  Google Scholar 

  103. 103.

    Hood, L. L., Redman, M. A., Johnson, W. L. & Galarneau, T. J. Jr Stratospheric influences on the MJO-induced Rossby wave train: Effects on intraseasonal climate. J. Clim. 33, 365–389 (2020).

    Article  Google Scholar 

  104. 104.

    Wang, J., Kim, H.-M., Chang, E. K. M. & Son, S.-W. Modulation of the MJO and North Pacific storm track relationship by the QBO. J. Geophys. Res. Atmos. 123, 3976–3992 (2018).

    Article  Google Scholar 

  105. 105.

    Toms, B. A., Barnes, E. A., Maloney, E. D. & van den Heever, S. C. The global teleconnection signature of the Madden-Julian oscillation and its modulation by the quasi-biennial oscillation. J. Geophys. Res. Atmos. 125, e2020JD032653 (2020).

    Article  Google Scholar 

  106. 106.

    Kim, H., Son, S. -W. & Yoo, C. QBO modulation of the MJO-related precipitation in East Asia. J. Geophys. Res. Atmos. 125, e2019JD031929 (2020).

    Google Scholar 

  107. 107.

    Feng, P.-N. & Lin, H. Modulation of the MJO-related teleconnections by the QBO. J. Geophys. Res. Atmos. 124, 12022–12033 (2019).

    Article  Google Scholar 

  108. 108.

    Song, L. & Wu, R. Modulation of the westerly and easterly quasi-biennial oscillation phases on the connection between the Madden–Julian oscillation and the Arctic Oscillation. Atmosphere 11, 175 (2020).

    Article  Google Scholar 

  109. 109.

    Kim, Y.-H. & Chun,, H. -Y. Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res. Atmos. 120, 1065–1090 (2015).

    Article  Google Scholar 

  110. 110.

    Pahlavan, H. A., Wallace, J. M., Fu, Q. & Kiladis, G. N. Revisiting the quasi-biennial oscillation as seen in ERA5. Part II: evaluation of waves and wave forcing. J. Atmos. Sci. 78, 693–707 (2021).

    Article  Google Scholar 

  111. 111.

    Butler, A. H. et al. The Climate-system Historical Forecast Project: do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Q. J. R. Meteorol. Soc. 142, 1413–1427 (2016).

    Article  Google Scholar 

  112. 112.

    Garfinkel, C. I. et al. Extratropical atmospheric predictability from the quasi-biennial oscillation in subseasonal forecast models. J. Geophys. Res. Atmos. 123, 7855–7866 (2018).

    Article  Google Scholar 

  113. 113.

    Liebmann, B. & Smith, C. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 77, 1275–1277 (1996).

    Google Scholar 

  114. 114.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  115. 115.

    Naujokat, B. An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci. 43, 1873–1877 (1986).

    Article  Google Scholar 

  116. 116.

    Kiladis, G. N. et al. A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Weather Rev. 142, 1697–1715 (2014).

    Article  Google Scholar 

  117. 117.

    Wheeler, M. C. & Hendon, H. H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather Rev. 132.8, 1917–1932 (2004).

    Article  Google Scholar 

  118. 118.

    Kobayashi, S. et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

    Article  Google Scholar 

  119. 119.

    Oliver, E. C. J. & Thompson, K. A reconstruction of Madden–Julian oscillation variability from 1905 to 2008. J. Clim. 25, 1996–2019 (2012).

    Article  Google Scholar 

  120. 120.

    Liu, Z., Ostrenga, D., Teng, W. & Kempler, S. Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Am. Meteorol. Soc. 93, 1317–1325 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to S.-Y. Back for helping to produce figures, to E. Oliver and P. Klotzbach for sharing the reconstructed MJO index in Fig. 2b, and to I. Simpson for sharing the model data in Fig. 4. Thanks to M. Wheeler for helpful feedback on an early version of this manuscript. Z.M. acknowledges support for this work from the National Science Foundation under Award No. 2020305. S.-W.S. is supported by the Korea Meteorological Administration Research and Development Program under Grant KMI (2018-01011). H.K. acknowledges support from NSF Grant AGS-1652289. A.S. acknowledges support from NSF AGS-1543932. PMEL contribution number 5186.

Author information

Affiliations

Authors

Contributions

S.-W. S. conceived the work, created the general outline and coordinated creation of figures. Z.M. wrote the initial draft and coordinated subsequent editing. All authors contributed to writing and editing the manuscript, including especially selection of figures, formulation of schematics and discussion of key points and of future work.

Corresponding authors

Correspondence to Zane Martin or Seok-Woo Son.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Hai Lin, Andrew Charlton-Perez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin, Z., Son, SW., Butler, A. et al. The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nat Rev Earth Environ 2, 477–489 (2021). https://doi.org/10.1038/s43017-021-00173-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing